Performance Analysis

Metrics, Analysis, and Examples

Performance Metrics and Analysis

- Metrics
- Traditional and extensions
- Sources of delay
- Optimizing communication systems
- Measuring systems
- Basic queueing theory
- Distributions and processes
- Single, memoryless queues

Performance Metrics

- Traditional metrics
- End-to-end latency/RTT
- Measures time delay
- Across all layers of network
- Often abbreviated to "latency" (even for RTT)
- Bandwidth/throughput
- Measures data sent per unit time
- Across all layers of network

Performance Metrics

- Sources of delay
- Latency: three main components
- DMA from sending/to receiving host memory
- Propagation delay in network
- Queueing delay in routers
- Overhead: also three main components
- Data copy between buffers (e.g., into kernel memory)
- Protocol (TCP, IP, etc.) processing
- PIO to write description of frame
- Note that overhead has fixed and per-byte costs

Performance Metrics

- Optimizing communication systems
- Optimize the common case
- Send/receive usually more important than connection setup/teardown
- TCP header changes little between segments
- Often only a few connections at end hosts
- Minimize context switches
- Minimize copying of data

Performance Metrics

- Optimizing communication systems
- General rule of thumb
- Most (80-90\%) messages are short
- Most data (80-90\%) travel in long messages
- Focus on bottlenecks
- Reduce overhead to improve short message performance
- Reduce number of copies to improve long message performance
- Thus, CPU speed is often more important than network speed

Performance Metrics

- Optimizing communication systems
- Maximize network utilization
- Use large packets when possible
- Fill delay-bandwidth pipe
- Avoid timeouts
- Set timers conservatively
- Use "smarter" receiver (e.g., with selective ACK's)
- Avoid congestion rather than recovering from it

Performance Metrics

- Measuring communication systems
- Latency
- Measure RTT for 0-byte (or 1-byte) messages
- Also report variability
- Bandwidth
- Measure RTT for range of long messages
- Divide by number of bytes sent
- Report as graph or as value in asymptotic limit
- Overhead
- Time multiple N-byte message send operations
- Be careful of flow control and aggregation

Modeling and Analysis

- Problem
- The inputs to a system (i.e., number of packets and their arrival times) and the exact resource requirements of these packets cannot be predetermined in advance exactly
- But, we can probabilistically characterize these quantities
- On average, 100 packets arrive per second
- On average, packets are 500KB
- So, given a probabilistic characterization of these quantities
- Can we draw some intelligent conclusions about the performance of the system

Delay

- Link delay consists of four components

Processing delay

- From when the packet is correctly received to when it is put on the queue
- Queueing delay
- From when the packet is put on the queue to when it is ready to transmit
- Transmission delay
- From when the first bit is transmitted to when the last bit is transmitted
- Propagation delay
- From when the last bit is transmitted to when the last bit is received

Delay Models

- Consider a data link using stop-and-wait ARQ
- What is the throughput?
- Given
$\begin{array}{ll}\text { - MSS } & =\text { packet payload size } \\ \text { - } C & =\text { raw link data rate } \\ \text { - } R T T & =\text { round trip time (for one bit) } \\ -\quad p & =\text { probability a packet is successful }\end{array}$

Delay Models

- Calculate the maximum throughput for stop-andwait
- Max throughput = packetlength/(RTT + (packetlength/C))
- Could also multiply by (payload/packetlength) and p = probability of correct reception
- But what about the delay incurred?
- There may be multiple bursty data sources

Basic Queueing Theory

- Elementary notions
- Things arrive at a queue according to some probability distribution
- Things leave a queue according to a second probability distribution
- Averaged over time
- Things arriving and things leaving must be equal
- Or the queue length will grow without bound
- Convenient to express probability distributions as average rates

Little’ s Law

- Goal

Estimate relevant values

- Average number of customers in the system
- The number of customers either waiting in queue or receiving service
- Average delay per customer
- The time a customer spends waiting plus the service time
- In terms of known values
- Customer arrival rate
- The number of customers entering the system per unit time
- Customer service rate
- The number of customers the system serves per unit time

Little’ s Law

- For any box with something steady flowing through it

Little’ s Law

Mean amount in box

Mean time spent in box

- Example
- Suppose you arrive at a busy restaurant in a major city
- Some people are waiting in line, while other are already seated (i.e., being served)
- You want to estimate how long you will have to wait to be seated if you join the end of the line
- Do you apply Little’ s Law? If so
- What is the box?
- What is N ?
- What is λ ?
- What is T ?

Little’ s Law

- Box
- Include the people seated (i.e., being served)
- Include the people waiting in line (i.e., in the queue)
- Let $N=$ the number of people seated (say 150 seated +50 in line)
- Let $T=$ mean amount of time a person waits and then eats (say 90 min)
- Conclusion
- Arrivals (and departures) $=200 / 90=2.22$ persons per minute

Little’ s Law

- Suppose data streams are multiplexed at an output link with speed 622 Mbps
- Question
- If 20050 B packets are queued on average, what is the average time in the system?
- Answer
- $T=N / \lambda$
- $T=200$ * 50 * $8 / 622 \mathrm{M}$
- $T=0.128 \mathrm{~ms}$

Little’ s Law

- Variables
- $N(t)=$ number of customers in the system at time t
- $A(t)=$ number of customers who arrived in the interval [0,t]
- $T_{i}=$ time spent in the system by the $i^{\text {th }}$ customer
- $\lambda_{\mathrm{t}}=$ average arrival rate over the interval $[0, t]$

Proof of Little' s Law

- But this is $N_{t}=\lambda_{t} t_{t}$
- With time averaging over $[0, t]$
- Let t tend to infinity: $N=\lambda t$
$N(t)=$ number of customers
$A(t)=$ number of customers who arrived in the interval $[0, t]$
$T_{i}=$ time spent in the system by the $i^{\text {th }}$ customer
$\lambda_{\mathrm{t}}=$ average arrival rate over the interval $[0, t]$

[Memoryless Distributions/ Poisson Arrivals

- Goal for easy analysis
- Want processes (arrival, departure) to be independent of time
- i.e., likelihood of arrival should depend neither on earlier nor on later arrivals
- In terms of probability distribution in time (defined for $t>0$),

$$
\mathrm{f}(\mathrm{t})=\frac{\mathrm{f}(\mathrm{t}+\Delta \mathrm{t})}{\int_{\Delta \mathrm{t}}^{\infty} \mathrm{f}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}}
$$

for all $\Delta t \geq 0$

[Memoryless Distributions/ Poisson Arrivals

solution is:

$$
\mathrm{f}(\mathrm{t})=\lambda \mathrm{e}^{-\lambda \mathrm{t}}
$$

what is λ ?
-it' s the rate of $\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \mathrm{tdt}=\left(\mathrm{te}^{-\lambda \mathrm{t}} \int_{0}^{\infty}+\int_{0}^{\infty} \mathrm{e}^{-\lambda \mathrm{t}} \mathrm{dt}\right.$ events
-note that the average time until the next event is

$$
\begin{aligned}
& =\left[-\frac{1}{\lambda} \mathrm{e}^{-\lambda \mathrm{t}}\right]_{0}^{\infty} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Plan

- Review exponential and Poisson probability distributions
Discuss Poisson point processes and the $\mathrm{M} / \mathrm{M} / 1$ queue model

Exponential Distribution

- A random variable X has an exponential distribution with parameter λ if it has a probability density function
- $f(x)=\lambda e^{-\lambda x}$, for $x \geq 0$

Exponential Distribution

- Suppose a waiting time X is exponentially distributed with parameter $\lambda=2 / \mathrm{sec}$
- Mean wait time is $1 / 2 \mathrm{sec}$
- What is
- $P[X>2]$?
- $P[X>6]$?
- $P[X>6 \mid X>4]$?

Exponential Distribution

- Remember: $\lambda=2$
- $P[X>2]$
- $=e^{-2 \lambda}=0.183$
- $P[X>6]$
$-\quad=e^{-6 \lambda}=6.14 \times 10^{-6}$
- $P[X>6 \mid X>4]$
- $=P[X>6, X>4] / P[X>4]$
- $=P[X>6] / P[X>4]$
$0=e^{-6 \lambda} / e^{-4 \lambda}$
$0=e^{-2 \lambda}$
- $=0.183$!
- Note: this demonstrates the memoryless property of exponential distributions

Poisson Distribution

- The random variable X has a Poisson distribution with mean λ, if for non-negative integers i :
- $P[X=i]=\left(\lambda^{i} e^{-\lambda}\right) / i!$
- Facts
- $E[X]=\lambda$
- If there are many independent events,
- The $k^{\text {th }}$ of which has probability p_{k} (which is small) and
- $\quad \lambda=$ the sum of the p_{k} is moderate
- Then the number of events that occur has approximately the Poisson distribution with mean λ

Poisson Distribution

- Example
- Consider a CSMA/CD like scenario There are 20 stations, each of which transmits in a slot with probability 0.03 . What is the probability that exactly one transmits?

Poisson Distribution

- Exact answer
- 20 * (0.03) * $(1-0.03)^{19}=0.3364$

There are 20 stations, each of which transmits in a slot with probability 0.03 . What is the probability that exactly one transmits?

- Poisson approximation
- Use $P[X=i]=\left(\lambda^{i} e^{-\lambda}\right) / i$!
- With $i=1$ and $\lambda=20$ * $(0.03)=0.6$
- Approximate answer $=\lambda e^{\lambda}=0.3393$

Poisson Point Process

- Definition
- A Poisson point process with parameter λ
- A point process with interpoint times that are independent and exponentially distributed with parameter λ.

Poisson Point Process

- Equivalently
- The number of points in disjoint intervals are independent, and the number of points in an interval of length t has a Poisson distribution with mean λt

Shown are three disjoint intervals. For a Poisson point process, the number of points in each interval has a Poisson distribution.

Poisson Point Process

- Exercise
- Given a Poisson point process with rate $\lambda=0.4$, what is the probability of NO arrivals in an interval of length 5 ?

Try to answer two ways, using two equivalent descriptions of a Poisson process

Poisson Point Process

Solution 1: $P[X>5]=e^{-5 \lambda}=0.1353$
Solution 2: $P[N=0]=e^{-5 \lambda}=0.1353$
(remember: $P[N=i]=(5 \lambda)^{i} *\left(e^{-5 \lambda}\right) / i!$, for $i=0$)

Simple Queueing Systems

Classify by

- "arrival pattern/service pattern/number of servers"
- Interarrival time probability density function
- The service time probability density function
- The number of servers
- The queueing system
- The amount of buffer space in the queues
- Assumptions
- Infinite number of customers

Simple Queueing Systems

- Terminology
- $\mathrm{M}=$ Markov (exponential probability density)
- $\mathrm{D}=$ deterministic (all have same value)
- $G=$ general (arbitrary probability density)
- Example
- M/D/4
- Markov arrival process
- Deterministic service times
- 4 servers

M/M/1 System

- Goal
- Describe how the queue evolves over time as customers arrive and depart
- An M/M/1 system with arrival rate λ and departure rate μ has
- Poisson arrival process, rate λ
- Exponentially distributed service times, parameter μ
- One server

$N(t)=$ number in system (system = queue + server)

M/M/1 System

- If the arrival rate λ is greater then the departure rate μ
- $N(t)$ drifts up at rate $\lambda-\mu$
$N(t)$

M/M/1 System

- On the other hand,
- if $\lambda<\mu$, expect an equilibrium distribution.
- The state of the queue is completely described by the number of customers in the queue
- Due to the memoryless property of exponential distributions, N is described by a single state transition diagram
- $\quad N$ is a Markov process, meaning past and future are independent given present

States of the queue

M/M/1 System

- N is a discrete random variable
- $p_{k}=$ probability that there are k customers in the queue
- Equivalently,
- $p_{k}=$ probability that queue is in state k

States of the queue

M/M/1 System

- Goal
- Find the steady state (long run) probabilities of the queue being in state i, $i=0,1,2,3, \ldots$
- Transitions occur only when
- A customer finishes service
- A customer arrives
- Birth-death process
- Transition from state i to state $i+1$ on arrival
- Transition from state i to state $i-1$ on departure

M/M/1: Transition rates

- If the queue is in state i with probability p_{i}
- Then equivalently, the queue is in state i a fraction of p_{i} of the time
- The number of transitions/second out of state i onto state $i+1$ is given by
- (fraction of time queue is in state i) * (arrival rate)
- $p_{i}{ }^{*} \lambda$
- The number of transitions/second out of state i onto state $i-1$ is given by
- (fraction of time queue is in state i) * (departure rate)
- $p_{i}{ }^{*} \mu$

M/M/1: Steady State

- Claim
- For the steady state to exist, \# of transitions/sec from state i to state $i+1$ must equal \# of transitions/sec from state $i+1$ to state i
- Result
- Net flow across boundary between states must be zero
- Basic idea (not a real proof)
- Otherwise, in the long run, the net flow of the system would always drift to the higher state with probability 1

M/M/1 System

- Given that we must balance flow across all boundaries,
- $\lambda p_{i}=\mu p_{i+1}$ for all $i \geq 0$
- Balance Equations

$$
\begin{array}{lll}
\lambda p_{0}=\mu p_{1} & \Rightarrow p_{1}=(\lambda / \mu) p_{0} & \\
\lambda p_{1}=\mu p_{2} & \Rightarrow p_{2}=(\lambda / \mu) p_{1} & \Rightarrow p_{2}=(\lambda / \mu)^{2} p_{0} \\
\lambda p_{2}=\mu p_{3} & \Rightarrow p_{3}=(\lambda / \mu) p_{2} & \Rightarrow p_{3}=(\lambda / \mu)^{3} p_{0} \\
\cdots & \cdots & \cdots \\
\lambda p_{i}=\mu p_{i+1} & \Rightarrow p_{i+1}=(\lambda / \mu) p_{i} & \Rightarrow p_{i+1}=(\lambda / \mu)^{i+1} p_{0}
\end{array}
$$

M/M/1 System

- Problem
- To solve the balance equations, we need one more equation:
- $\quad \sum_{i=0}{ }^{\infty} p_{i}=1$
- Thus

$$
\begin{array}{ll}
\circ & p_{k}=(\lambda / \mu)^{k} p_{0} \\
\circ & \sum_{i=0^{\infty}} p_{i}=1 \tag{2}
\end{array}
$$

- Plugging 1 into 2 , we get

$$
\text { - } \quad \sum_{i=0^{\infty}} p_{0} *(\lambda / \mu)^{i}=1
$$

- Result (for $\lambda<\mu$)

$$
\begin{aligned}
\circ & p_{0}=1 /\left(\Sigma(\lambda / \mu)^{i}\right)=\ldots=1-\lambda / \mu \\
\circ & p_{k}=(\lambda / \mu)^{k} *(1-\lambda / \mu)
\end{aligned}
$$

M/M/1 System

- So What?
- We now know the probability that there are $0,1,2,3, \ldots$ customers in the queue (p_{i})
- Define $N_{\text {avg }}$
- = average \# of customers in queue
- = expected value of the \# of customers in the queue
- $N_{\text {avg }}$
- $=\sum_{\text {all possible \# of cust }} i^{*} P[i$ customers $]$
$\bigcirc=\sum_{i=0}^{\infty} i^{*} p_{i}=\sum_{i=0}^{\infty}(1-\lambda / \mu)$ * $(\lambda / \mu)^{i}{ }^{*} i$
$\circ=(\lambda / \mu) /(1-\lambda / \mu)$

M/M/1 System

- Define $Q_{\text {avg }}$
- = average \# of customers in waiting area of the queue
- $Q_{\text {avg }}$
- $=\sum_{\text {all possible for of cust in wating area }} i^{*}$ Pli customers in waiting area]
- $=\sum_{i=0}{ }^{\infty}{ }^{*} P[i+1$ customers in queue $]$
- $=\sum_{i=0}^{\infty}(1-\lambda / \mu) *(\lambda / \mu)^{i+1} * i$
- $=(\lambda / \mu) /(1-\lambda / \mu)-\lambda / \mu$
- $=N_{\text {avg }}-\lambda / \mu$

M/M/1 System - Utilization

- Utilization
- The fraction of time the server is busy
- $=P$ [server is busy]
- $=1-P$ [server is NOT busy]
- $=1-P$ [zero customers in queue]
- $=1-p_{0}$
- $=1-(1-\lambda / \mu)$
- $=\lambda / \mu$
- Since utilization cannot be greater then 1,
- Utilization $=\min (1.0, \lambda / \mu)$

M/M/1 System - Utilization

- Utilization example
- Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
- Each packet requires 2 seconds to transmit on average (exponentially distributed)
- What are $N_{\text {avg, }} Q_{\text {avg }}$ and ρ ?

M/M/1 System - Utilization

- Utilization example
- Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
- Each packet requires 2 seconds to transmit on average (exponentially distributed)
- $N_{\text {avg }}=(\lambda / \mu) /(1-\lambda / \mu)=0.1^{*} 2 /\left(1-0.1^{*} 2\right)=0.25$
- $Q_{\text {avg }}=N_{\text {avg }}-\lambda / \mu=0.25-0.1^{*} 2=0.05$
- $\rho=\lambda / \mu=0.2$

M/M/1 System - Utilization

- Intuitively, as the number of packets arriving per second (λ) increases, the number of packets in the queue should increase

M/M/1 System - Utilization

- Normalized Traffic Parameter (ρ)
- Note that $N_{a v g}$ and $Q_{a v g}$ only depend on the ratio λ / μ
- Define ρ
- = (avg arrival rate * avg service time)
- $=\lambda{ }^{*} 1 / \mu=\lambda / \mu$
- Intuitively, if we scale both arrival rate and service time by a constant factor, $N_{\text {avg }}$ and $Q_{\text {avg }}$ should remain the same
- Note
- If $\lambda>\mu$ (i.e. $\lambda / \mu>1$), then more packets are arriving per second than can be serviced
- Thus, $N_{\text {avg }}$ and $Q_{\text {avg }}$ are unbounded when $\rho \geq 1$!

M/M/1 System - Time Delays

- Given $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$, we can derive $N_{\text {avg }}$ and $Q_{a v g}$
- We may also want to know the following
- $T_{\text {avg }}=$ average time from when a packet arrives until it completes transmission
- $W_{\text {avg }}=$ average time from when a packet arrives until it starts transmission

M/M/1 System - Time Delays

M/M/1 System - Little’ s Law

- Now we can use Little' s Law to relate $N_{\text {avg }}$ and $Q_{\text {avg }}$ to $T_{\text {avg }}$ and $W_{\text {avg }}$
- $N_{\text {avg }}=\lambda T_{\text {avg }}$

$$
\Rightarrow T_{\text {avg }}=N_{\text {avg }} / \lambda
$$

- $Q_{\text {avg }}=\lambda W_{\text {avg }}$

$$
\Rightarrow W_{\text {avg }}=Q_{\text {avg }} / \lambda
$$

- Also note: $W_{\text {avg }}+1 / \mu=T_{\text {avg }}$

M/M/1 System

- Packets arrive with the following parameters
- $\lambda=2$ packets per second
- $1 / \mu=1 / 4 \mathrm{sec}$ per packets

○ $\rho=0.5$

- Utilization $=\rho=\lambda / \mu=2 / 4=0.5$
- $N_{\text {avg }}=\rho /(1-\rho)=0.5 / 1-0.5=1$ packet
$\circ \Rightarrow T_{\text {avg }}=N_{\text {avg }} / \lambda=1 / 2=0.5 \mathrm{sec}$
$-Q_{a v g}=N_{\text {avg }}-\rho=1-0.5=0.5$
$\circ \Rightarrow W_{\text {avg }}=Q_{\text {avg }} / \lambda=0.5 / 2=0.25 \mathrm{sec}$

M/M/1 System - Summary

1. Draw state diagram

2. Write down balance equations
flow "up" = flow "down"
3. Solve balance equations using

$$
\sum_{i=0}^{\infty} p_{i}=1 \text { for }\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}
$$

4. Compute $N_{\text {avg }}$ and $Q_{\text {avg }}$ from $\left\{p_{i}\right\}$
5. Compute $T_{\text {avg }}$ and $W_{\text {avg }}$ using Little's Theorem

M/M/1 System - Example

- Packets arrive ant an output link according to a Poisson process
- The mean total data rate is 80 Kbps (including headers)
- The mean packet length is 1500
- The link speed is 100 Kbps
- Questions
- What assumptions can we make to fit this situation to the M/M/1 model?
- Under these assumptions, what is the mean time needed for queueing and transmission of a packet?

M/M/1 System - Example

- Answer Part 1:
- "Customers"
- Packets
- "Server"
- The transmitter
- Service times
- The transmission times
- Packets sizes
- Variable lengths, with a exponential distribution
- Packet lengths are independent of each other and independent of arrival time

M/M/1 System - Example

- Remember
- The mean total data rate is 80 Kbps
- The mean packet length is 1500
- The link speed is 100 Kbps
- Answer Part 2: Find λ, μ and T
- Need to convert from bit rates to packet rates
- $\lambda=80 \mathrm{Kbps} / 12 \mathrm{~Kb}=6.66$ packets $/ \mathrm{sec}$
- $\mu=100 \mathrm{Kbps} / 12 \mathrm{~Kb}=8.33$ packets $/ \mathrm{sec}$
- So, $T=$ mean time for queueing and transmission
- $T=1 /(\mu-\lambda)=1 / 1.67=0.6 \mathrm{sec}$

M/M/1 System - Example

- Also
- The mean transmission time is
- $1 / \mu=0.12 \mathrm{sec}$,
- So the mean time spent in queue is
- $W=T-1 / \mu=0.6-0.12=0.48 \mathrm{sec}$
- The mean number of packets is
$\square N=\rho /(1-\rho)=0.8 /(1-0.8)=4$ packets

M/M/1 System in Practice

- The assumptions we made are often not realistic
- We still get the correct qualitative behavior
- Simple formulas for predictive delay are useful for provisioning resources in a network and setting controls
- Real traffic seems to have bursty behavior on multiple time scales
- This is not true for Poisson processes

