Media Access Protocols

Where are We?

you are here

Multiple Access Media

- Multiple senders on some media
- Buses (Ethernet)
- Radio, Satellite
- Token Ring
- Need methods to mediate access
- Fair arbitration
- Good performance

Point-to-Point vs. Broadcast Media

- Point-to-point: dedicated pairwise communication
- Long-distance fiber link
- Point-to-point link between Ethernet switch and host
- Broadcast: shared wire or medium
- Traditional Ethernet
- 802.11 wireless LAN

[Types of Shared Link Networks

Bus Topology

Star Topology

Ring Topology

Wireless

Multiple Access Algorithm

- Single shared broadcast channel
- Must avoid having multiple nodes speaking at once
- Otherwise, collisions lead to garbled data
- Need distributed algorithm for sharing the channel
- Algorithm determines which node can transmit
- Typical assumptions
- Communication needs vary
- Over time
- Between hosts
- Network is not fully utilized

Multiple Access Media

- Which kind of multiplexing is best?
- Channel partitioning: divide channel into pieces
- Frequency-division multiplexing (FDM, separate bands)
- Taking turns: scheme for trading off who gets to transmit
- Time-division multiplexing (TDM, synchronous time slots)
- Statistical time-division multiplexing (STDM, time slots on demand)
- Random access: allow collisions, and then recover

Channel Partitioning: FDMA

- FDMA: Frequency Division Multiple Access
- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

FDM cable

Channel Partitioning: TDMA

TDMA: Time Division Multiple Access

- Access to channel in "rounds"
- Each station gets fixed length slot in each round
-Time-slot length is packet transmission time
- Unused slots go idle
- Example: 6-station LAN with slots 0,3 , and 4

Channel Partitioning: STDMA

- STDMA: Statistical Time Division Multiple Access
- Access to channel as needed
- Each station gets fixed length on transmission
-Time-slot length is packet transmission time
- Unused slots go idle only if no station has data to send
- Example

Channel Partitioning: Taking Turns

- Polling
- Master node "invites" slave nodes to transmit in turn

- Token passing
- Control token passed from one node to next sequentially
- Node must have token to send
- Concerns
- Token overhead
- Latency
- At mercy of any node

Multiple Access Media: Random Access

- Random access
- Optimize for the common case (no collision)
- Don't avoid collisions, just recover from them....
- When node has packet to send
- Transmit at full channel data rate
- No a priori coordination among nodes
- Two or more transmitting nodes \Rightarrow collision
- Data lost
- Random access MAC protocol specifies
- How to detect collisions
- How to recover from collisions

Multiple Access Media to Discuss

- Two solutions (of many)
- Carrier sense multiple access with collision detection (CSMA/CD)
- Send only if medium is idle
- Stop sending immediately if collision detected
- Carrier sense multiple access with collision Avoidance (CSMA/CA)
- Send only if medium is idle
- Design send algorithm to avoid collisions
- Tanenbaum Sec. 4.2 covers many others

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

- Used by Ethernet
- Xerox and IEEE 802.3 (10Mbps standards)
- IEEE 802.3u (Fast Ethernet, 100Mbps standard)
- IEEE 802.3z,ab (1Gbps Ethernet)
- IEEE 802.3-2005/8 (10 Gbps Ethernet, no shared bus)
- Outline
- Historical development
- Topologies and components
- MAC algorithm
- Collision detection limitations
- Lessons learned

Aloha, Networking!

- Aloha Packet Radio Network
- Norm Abramson left Stanford to surf
- Set up first data communication system for Hawaiian islands
- Hub at U. Hawaii, Oahu
- Two radio channels:
- Random access: for sites sending data
- Broadcast for hub rebroadcasting data

Pure ALOHA

- Keep it simple
- User transmits at will
- If two or more messages overlap in time \rightarrow collision
- Receiver cannot decode packets
- Wait roundtrip time plus a fixed increment \rightarrow collision
- Lack of ACK
- After a collision
- Colliding stations retransmit
- Stagger attempts randomly to reduce repeat collisions
- After several attempts, senders give up
- Simple but wasteful
- Max efficiency of at most $1 /(2 e)=18 \%$!

From Aloha comes Ethernet

- Ethernet
- Developed by Xerox PARC, 1974
- Standardized by Xerox, DEC and Intel in 1978
- Later, IEEE 802.3 standard
- Fast Ethernet (100 Mbps) - IEEE 802.3u standard
- Switched Ethernet now popular
- Numerous standards with increasing bandwidth over the years
- $10 \mathrm{Mbps}-100 \mathrm{Mbps}-1$ Gbps - 10 Gbps

Xerox Alto, first machine networked with ethernet

Ethernet - CSMA/CD

- CS - Carrier Sense
- Nodes can distinguish between an idle and a busy link
- MA - Multiple Access
- A set of nodes send and receive frames over a shared link
- CD - Collision Detection
- Nodes listen during transmission to determine if there has been interference

Ethernet Topologies

Bus Topology: Shared
All nodes connected to a wire

Star Topology:
All nodes connected to a central repeater

Ethernet Connectivity

Ethernet Connectivity

10Base2 -
ThinNet
<200m

Bus Topology

Ethernet Connectivity

10BaseT
< 100m

Ethernet Specifications

- Coaxial Cable
- up to 500 m
- Taps
- >2.5m apart
- Transceiver
- Idle detection
- Sends/Receives signal
- Repeater
- Joins multiple Ethernet segments
- < 5 repeaters between any two hosts
- < 1024 hosts

10Mb Ethernet Specifications

- Broadcast
- Encoding
- Manchester
- $10 \mathrm{Mbps} \Rightarrow$ Transmission at 20 Mhz
- Faster Ethernet standards use more efficient encodings
- Framing
- Preamble marks beginning, sentinel marks end of frame
- Bit oriented (similar to HDLC)
- Data-dependent length
- Error Detection
- 32-bit CRC

Ethernet MAC Algorithm

Node A

Node A starts transmission at time 0

Node B starts transmission at time T

Collision Detection

- Problem
- How can A detect a collision?
- Solution
- A must still be transmitting when it receives B's transmission!
- Example
- Node A's message reaches node B at time T
- Node B' s message reaches node A at time 2T
- For node A to detect a collision, node A must still be transmitting at time 2T

Ethernet MAC Algorithm

Node A

At time almost T, node A’s message has almost arrived

Node A starts
transmission at time 0

Node B

Node B starts transmission at time T

At time $2 \mathrm{~T}, \mathrm{~A}$ is still transmitting and notices a collision

Collision Detection

- IEEE 802.3
- 2T is bounded to $51.2 \mu \mathrm{~s}$
- At $10 \mathrm{Mbps} 51.2 \mu \mathrm{~s}=512 \mathrm{~b}$ or $64=512 \mathrm{~b}$ or 64 B
- Packet length $\geq 64 B$
- Jam after collision
- Ensures that all hosts notice the collision

Ethernet MAC Algorithm

Why have a max size?

- Sender/Transmitter
- If line is idle (carrier sensed)
- Send immediately
- Send maximum of 1500B data (1527B total)
- Wait $9.6 \mu \mathrm{~s}$ before sending again
- If line is busy (no carrier sense)
- Wait until line becomes idle
- Send immediately (1-persistent)
- If collision detected
- Stop sending and jam signal
- Try again later \longleftarrow How do we do this?

Collision Detection Techniques: Bus Topology

- Transceiver handles
- Carrier detection
- Collision detection
- Jamming after collision
- Transceiver sees sum of voltages
- Outgoing signal
- Incoming signal
- Transceiver looks for
- Voltages impossible for
 only outgoing

Collision Detection Techniques: Hub Topology

- Controller/Card handles
- Carrier detection
- Hub handles
- Collision detection
- Jamming after collision

- Need to detect activity on all lines
- If more than one line is active
- Assert collision to all lines
- Continue until no lines are active

Frame Reception

- Sender handles all access control
- Receiver simply pulls the frame from the network
- Ethernet controller/card
- Sees all frames
- Selectively passes frames to host processor
- Acceptable frames
- Addressed to host
- Addressed to broadcast
- Addressed to multicast address to which host belongs
- Anything (if in promiscuous mode)
- Need this for packet sniffers/TCPDump

Retransmission

- How long should a host wait to retry after a collision?
- What happens if the host waits too long?
- Wasted bandwidth
- What happens if the host doesn' t wait long enough?
- More collisions
- Ethernet Solution
- Binary exponential backoff
- Maximum backoff doubles with each failure
- After N failures, pick an N -bit number

Spring 2020 - 2^{N} discrete possiblkitis. frionfitof tioinaximum

Binary Exponential Backoff

Choices after 2 collisions

Binary Exponential Backoff

- For IEEE 802.3, T = $51.2 \mu \mathrm{~s}$
- Consider the following
- k hosts collide
- Each picks a random number from 0 to $2^{(N-1)}$
- If the minimum value is unique
- All other hosts see a busy line
- Note: Ethernet RTT < $51.2 \mu \mathrm{~s}$
- If the minimum value is not unique
- Hosts with minimum value slot collide again!
- Next slot is idle
- Consider the next smallest backoff value

Binary Exponential backoff algorithm

- When collision first occurs
- Send a jamming signal to prevent further data being sent
- Resend a frame
- After either 0 or T seconds, chosen at random
- If resend fails, resend the frame again
- After either $0, T, 2 T$, or $3 T$ seconds.
- In other words, send after $k T$ seconds, where k is a random integer with $0 \leq k<2^{2}$
- If that still doesn't work, resend the frame again
- After $k T$, where k is a random number with $0 \leq k<2^{3}$
- In general, after the $n^{\text {th }}$ failed attempt, resend the frame after $k T$, where k is a random number and $0 \leq k<2^{n}$

10 Mbps Ethernet Example

- Two nodes are ready to send a packet at the same time a third ends transmission
- $i^{\text {th }}$ round
- Each nodes wait $\left[0,1, \ldots, 2^{(i-1)}-1\right]$ slots until next attempt
- $1^{\text {st }}$ round choices: 0
- $\quad 2^{\text {nd }}$ round choices: 0,1
- $3^{\text {rd }}$ round choices: $0,1,2,3$
- All 2^{i-1} choices have equal probability
- $q_{i}=\mathrm{P}$ [collision in the $i^{\text {th }}$ round]
- Assuming collisions in all the previous $i-1$ rounds

10 Mbps Ethernet Example

- Find q_{i} as a function of i for all $i \geq 1$
- There are $2^{(i-1)}$ slots to chose from
- Station A selects a slot with probability $1 / 2^{(i-1)}$
- Station B selects a slot with probability $1 / 2^{(i-1)}$
- And the same slot is chosen with probability $1 / 2^{(i-1)}$
- This probability doesn' t depend on the slot the first station selected, so the unconditional probability is
$q_{i}=2^{-(i-1)}$

10 Mbps Ethernet Example

- Find the probability p_{i} that exactly i rounds are needed for the first success
- $p_{i}=q_{1} q_{2} q_{3} \ldots q_{i-1}\left(1-q_{i}\right)$
- Compute $p_{1}, p_{2}, p_{3}, p_{4}$ and p_{5}
- $p_{1}=1-q_{1}=0$
- $p_{2}=q_{1} \times\left(1-q_{2}\right)=1 \times\left(1-\frac{1}{2}\right)$
- $p_{3}=q_{1} \times q_{2} \times\left(1-q_{3}\right)=1 \times 1 / 2 \times(1-1 / 4)$
- $p_{4}=q_{1} \times q_{2} \times q_{3} \times\left(1-q_{4}\right)=1 \times 1 / 2 \times 1 / 4 \times(1-1 / 8)$
- $p_{5}=q_{1} \times q_{2} \times q_{3} \times q_{4} \times\left(1-q_{5}\right)=1 \times 1 / 2 \times 1 / 4 \times 1 / 8 \times(1$
$-1 / 16$)

10 Mbps Ethernet Example

- Give an upper bound on the probability it takes more that 20 ms until the first success
- Slot duration is $51.2 \mu s$
- $20 \mathrm{~ms}=390$ slots
- Maximum probability \rightarrow smallest number of collisions
- Both stations must wait maximum amount of time
- Delay for eight collisions = $1+2+4+8+16+32+64+128=255$
- Delay for nine collisions $=$ $1+2+4+8+16+32+64+128+256=511$

10 Mbps Ethernet Example

- Give an upper bound on the probability it takes more that 20 ms until the first success
- At least 8 collisions \rightarrow delay $>=20 \mathrm{~ms}$
- $P($ delay $>=20 \mathrm{~ms})=$

$$
q_{1} q_{2} q_{3} q_{4} q_{5} q_{6} q_{7} q_{8}=2^{-(0+1+2+3+4+5+6+7)}
$$

10Mbps Ethernet Media

Name	Cable	Advantages	Max. Segment Length	Max Nodes on Segment
10Base5	Thick Coaxial $(10 \mathrm{~mm})$	Good for backbones	500 m	100
10Base2	Thin Coaxial $(5 \mathrm{~mm})$	Cheapest system	200 m	30
10BaseT	Twisted Pair $(0.5 \mathrm{~mm})$	Easy Maintenance	100 m	1 (to hub)
10BaseFP	Fiber (0.1mm)	Best between buildings	500 m	33
Extended segments may have up to 4 repeaters (total of 2.5km)				

10Mbps Ethernet Media

Name	Cable	Advantages	Max. Segment Length	Max Nodes on Segment
10Base5	Thick Coaxial (1nmm) The fixed T defines the maximum backbones	Good for segment length	200 m	100
10Base2	Then (0.5mm)	Maintenance	100 m	1 (to hub)
10BaseT	Fiber (0.1mm)	Best between buildings	500 m	33
10BaseFP				
Extended segments may have up to 4 repeaters (total of 2.5km)				

100Mbps Ethernet Media

Name	Cable	Max. Segment Length	Advantages
100BaseT4	4 Twisted Pair	100 m	Cat 3, 4 or 5 UTP
100BaseTX	Twisted Pair	100 m	Full duplex on Cat 5 UTP
100BaseFX	Fiber Pair	100 m	Full duplex, long runs
All hub based. Other types not allowed. Hubs can be shared or switched			

100Mbps Ethernet Media

Name	Cable	Max. Segment Length	Advantages
100BaseT4	4 Twisted Pair	100 m	Cat 3, 4 or 5 UTP
100BasShorter distances, same protocol!	100 m	Full duplex on Cat 5 UTP	
100BaseFX	Fiber Pair	100 m	Full duplex, long runs
All hub based. Other types not allowed. Hubs can be shared or switched			

..and beyond

- Gigabit ethernet is common 100 GB ethernet standard was ratified in June 2010

Ethernet in Practice

- Number of hosts
- Limited to 200 in practice, standard allows 1024
- Range
- Typically much shorter than 2.5 km limit in standard
- Round Trip Time
- Typically 5 or $10 \mu \mathrm{~s}$, not 50
- Flow Control
- Higher level flow control limits load (e.g. TCP)
- Topology
- Star easier to administer than bus
- Even better: exclusive access rather than shared!

