CS/ECE 438: Communication Networks

Prof. Robin Kravets

Course Information

Instructor

Prof. Robin Kravets3114 SC217-244-6026rhk@illinois.edu

TAs

- Federico Cifuentes-Urtubey, Zhanghao Chen, Bo Chen
- Class Webpage
 - http://courses.engr.illinois.edu/cs438/

Course Information

- Use Piazza for all class related communication
 - Announcements and discussions
 - http://www.piazza.com/illinois/cs438
 - All class questions
 - This is your one-stop help-line!
 - Will get answer < 24 hours
 - For personal communications, do not send email
 - Use the private message function on Piazza

Course Information

- Text book
 - Computer Networks: A Systems Approach, by Peterson and Davie, 5th Ed. (minor differences from 4th edition)
- Supplemental Text books
 - UNIX Network Programming, by Stevens

Prerequisites

- Operating Systems Concepts
 - CS 241 or ECE 391 or equivalent
 - Threads, memory management, sockets
- C or C++ Programming
 - Preferably Unix
- Probability and Statistics

Grading Policy

Homework

7 homework assignments

Programming Projects 46%

MP0 3%, MP1 11%, MP2 16%, MP3 16%

Midterm Exam15%

March 10, 7 - 9PM

Final Exam25%

TBA

Homework and Projects

Homework

- 7 homeworks each worth 2%
- Due Thursday at start of class (hard deadline).
 - Solutions posted on Thursdays

Projects

- Late policy for projects 2% off per hour late
- MP0 and MP1 are solo
- MP2 and MP3 are 2 person teams

Regrades

- Within one week of posting of grades for a homework, MP or exam
- Regrades must be submitted in writing on a separate piece of paper
 - Please do not write on your homework,
 MP or Exam

Academic Honesty

- Your work in this class must be your own.
- If students are found to have cheated (e.g., by copying or sharing answers during an examination or sharing code for a project), all involved will at a minimum receive grades of 0 for the first infraction.
 - We will run a similarity-checking system on code and binaries
- Further infractions will result in failure in the course and/or recommendation for dismissal from the university.
- Department honor code: https://cs.illinois.edu/academics/honor-code

-What is cheating in a programming class?

- At a minimum
 - Copying code
 - Copying pseudo-code
 - Copying flow charts
- Consider
 - Did some one else tell you how to do it?
 - Did you find the code on the web?
- Does this mean I can't help my friend?
 - No, but don't solve their problems for them

Graduate Students

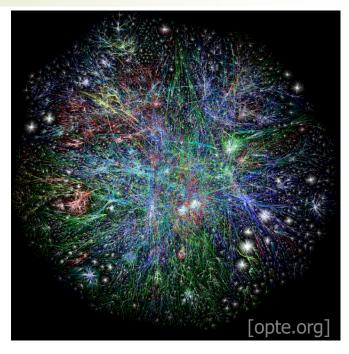
- Graduate students MAY take this class for 4 credits
 - Graduate students
 - Write a survey paper in a networking research area of your choice
 - Project proposal with list of 10+ academic references (no URL's) due February 25th
 - Paper due last day of class
 - Undergraduates may not take this 4 credit course
 - However, if you are interested in networking research, please contact me

Goal: foundational view of computer networks

- Fundamental challenges of computer networking
- Design principles of computer networks
- From principles to practical protocols
- Build real network applications

Course Contents

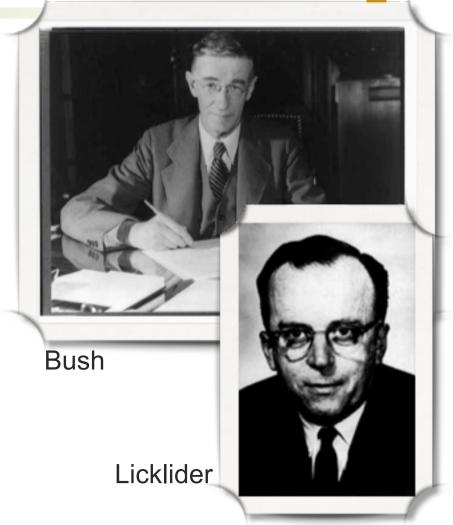
- Introduction to UNIX Network Programming
- Direct Link Networks
- Packet Switched Networks
- Routing
- Internetworking
- End-to-End Protocols
- Congestion Control
- Mobile Networks
- Network Security
- ... more if there is time


Complete Schedule

- See class webpage
- http://www.cs.illinois.edu/class/cs438
 - Schedule is dynamic
 - Check regularly for updates
- Content
 - Slides will be posted by the night before class
 - Some class material may not be in slides
 - Examples may be worked out in class

-What do these two things have in common?

First printing press


The Internet

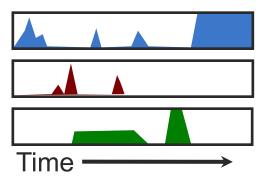
Both lowered the cost of distributing information and changed human society

A Brief History of the Internet

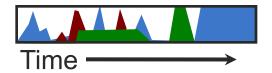
Visionaries

- Vannevar Bush, "As we may think" (1945):
 - memex an adjustable microfilm viewer
- J. C. R. Licklider (1962): "Galactic Network"
 - Concept of a global network of computers connecting people with data and programs
 - First head of DARPA computer research, October 1962
 - Funded Arpanet

Circuit switching


1920s

1967



- Leonard Kleinrock
 - Queueing-theoretic analysis of packet switching in MIT Ph.D. thesis (1961-63) demonstrated value of statistical multiplexing
- Paul Baran (RAND), Donald Davies
 - Concurrent work from (National Physical Labratories, UK)

Packet switching

Kleinrock

Baran

Circuit Switching	Datagram packet switching

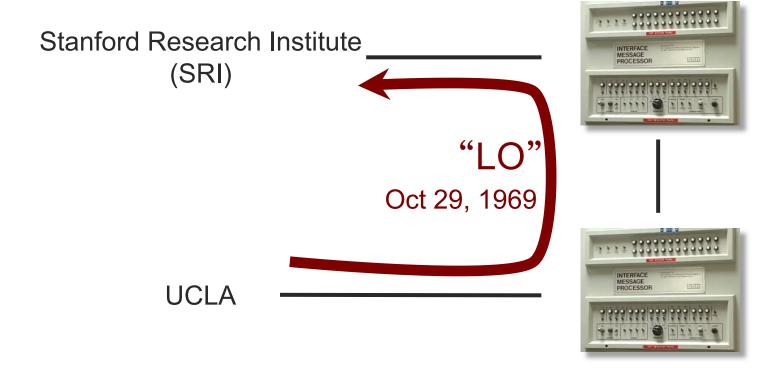
Circuit Switching	Datagram packet switching
Physical channel carrying stream of data from source to destination	
Three phase: setup, data transfer, tear- down	
Data transfer involves no routing	

Circuit Switching	Datagram packet switching	
Physical channel carrying stream of data from source to destination	Message broken into short packets, each handled separately	
Three phase: setup, data transfer, tear- down	One operation: send packet	
Data transfer involves no routing	Packets stored (queued) in each router, forwarded to appropriate neighbor	

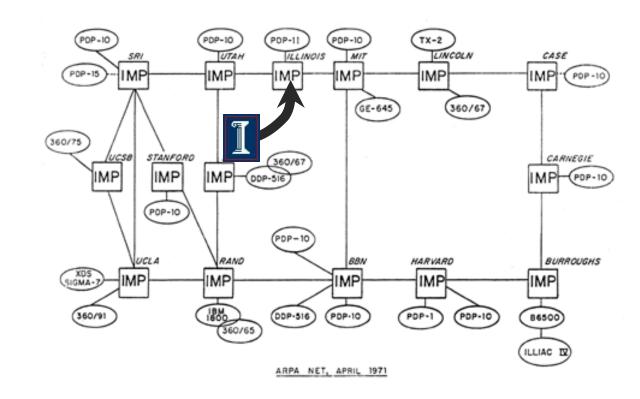
1965: First computer network

- Lawrence Roberts and Thomas Merrill connect a TX-2 at MIT to a Q-32 in Santa Monica, CA
- ARPA-funded project
- Connected with telephone line –
 it works, but it's inefficient and
 expensive confirming
 motivation for packet switching

Roberts


The ARPANET begins

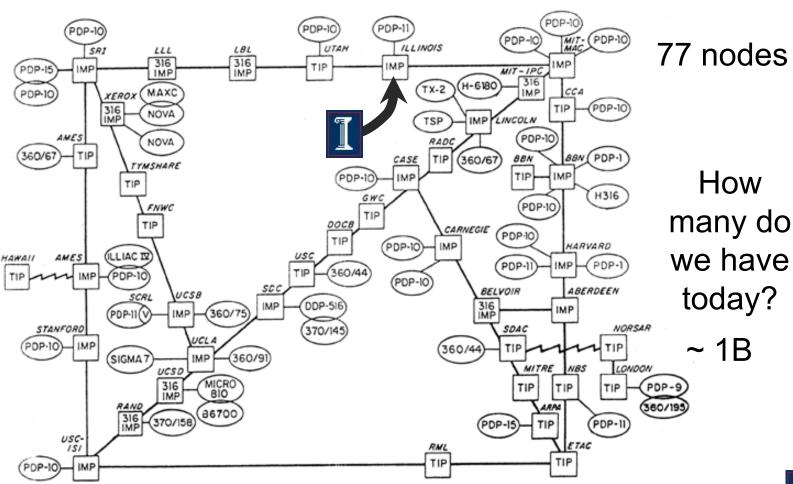
- Roberts joins DARPA (1966), publishes plan for the ARPANET computer network (1967)
- December 1968: Bolt, Beranek, and Newman (BBN) wins bid to build packet switch, the Interface Message Processor (IMP)
- September 1969: BBN delivers first IMP to Kleinrock's lab at UCLA


An older Kleinrock with the first IMP

ARPANET comes alive

ARPANET grows

- Dec 1970:
 ARPANET
 Network Control
 Protocol (NCP)
- 1971: Telnet, FTP
- 1972: Email (Ray Tomlinson, BBN)
- 1979: USENET



ARPANET, April 1971

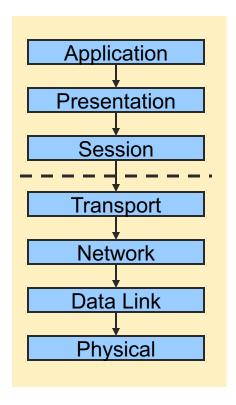
And grows ...

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

ARPANET to Internet

- Meanwhile, other networks such as PRnet, SATNET deveoped
- May 1973: Vinton G. Cerf and Robert E. Kahn present first paper on interconnecting networks
- Concept of connecting diverse networks, unreliable datagrams, global addressing, ...
- Became TCP/IP

2004 Turing Award!


TCP/IP deployment

OSI Reference Model's layers

- TCP/IP implemented on mainframes by groups at Stanford, BBN, UCL
- David Clark implements it on Xerox
 Alto and IBM PC
- 1982: International Organization for Standards (ISO) releases Open Systems Interconnection (OSI) reference model
 - Design by committee didn't win out
- January 1, 1983: "Flag Day" NCP to TCP/IP transition on ARPANET

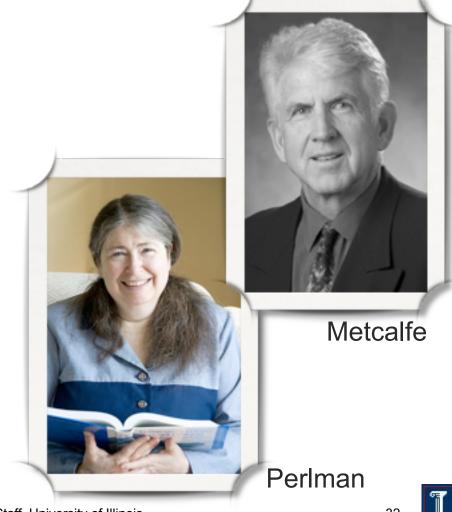
OSI Protocol Stack

Application: Application specific protocols

Presentation: Format of exchanged data

Session: Name space for connection mgmt

Transport: Process-to-process channel


Network: Host-to-host packet delivery

Data Link: Framing of data bits

Physical: Transmission of raw bits

Growth from Ethernet

- Ethernet
 - R. Metcalfe and D. Boggs, July 1976
- **Spanning Tree** protocol
 - Radia Perlman, 1985
- Made local area networking easy

Spring 2020

Growth spurs organic change

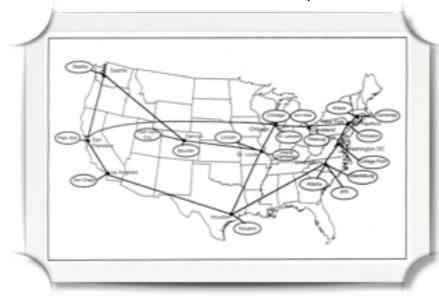
Early 1980s

 Many new networks: CSNET, BITNET, MFENet, SPAN (NASA), ...

Nov 1983

 DNS developed by Jon Postel, Paul Mockapetris (USC/ISI), Craig Partridge (BBN)

1984


 Hierarchical routing: EGP and IGP (later to become eBGP and iBGP)

NSFNET

- 1984: NSFNET for US higher education
 - Serve many users, not just one field
 - Encourage development of private infrastructure (e.g., initially, backbone required to be used for Research and Education)
 - Stimulated investment in commercial long-haul networks
- 1990: ARPANET ends
- 1995: NSFNET decommissioned

NSFNET backbone, 1992

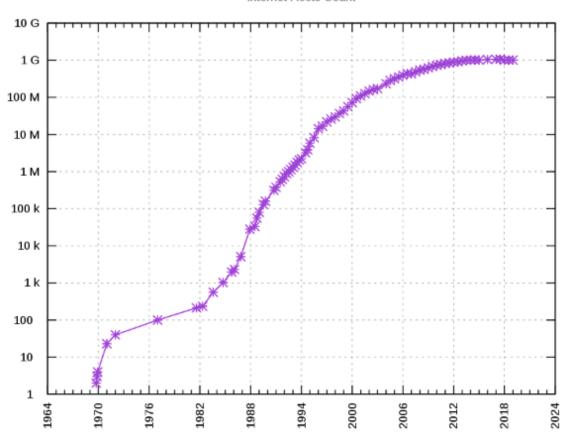
Explosive growth!

In users

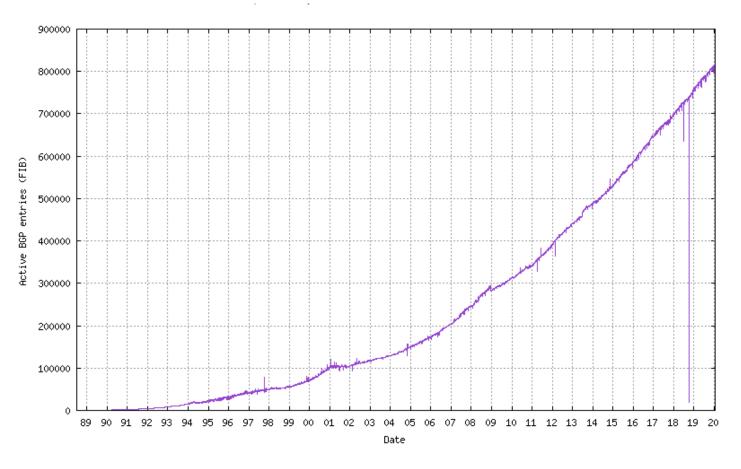
WORLD INTERNET USAGE AND POPULATION STATISTICS 2019 Mid-Year Estimates

2015 Wild-Teal Estillates						
World Regions	Population (2019 Est.)	Population % of World	Internet Users 30 June 2019	Penetration Rate (% Pop.)	Growth 2000-2019	Internet World %
<u>Africa</u>	1,320,038,716	17.1 %	522,809,480	39.6 %	11,481 %	11.5 %
<u>Asia</u>	4,241,972,790	55.0 %	2,300,469,859	54.2 %	1,913 %	50.7 %
<u>Europe</u>	829,173,007	10.7 %	727,559,682	87.7 %	592 %	16.0 %
Latin America / Caribbean	658,345,826	8.5 %	453,702,292	68.9 %	2,411 %	10.0 %
Middle East	258,356,867	3.3 %	175,502,589	67.9 %	5,243 %	3.9 %
North America	366,496,802	4.7 %	327,568,628	89.4 %	203 %	7.2 %
Oceania / Australia	41,839,201	0.5 %	28,636,278	68.4 %	276 %	0.6 %
WORLD TOTAL	7,716,223,209	100.0 %	4,536,248,808	58.8 %	1,157 %	100.0 %

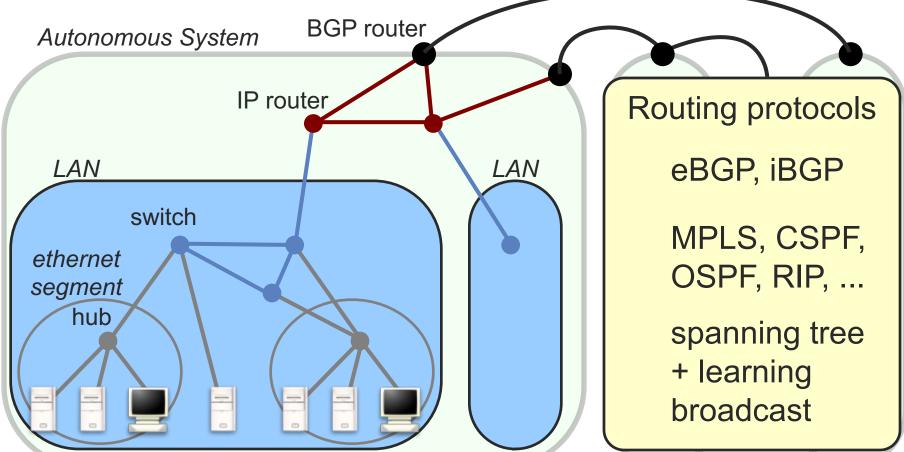
Explosive growth!


In users

WORLD INTERNET USAGE AND POPULATION STATISTICS JUNE 30, 2018 - Update						
World Regions	Population (2018 Est.)	Population % of World	Internet Users 30 June 2018	Penetration Rate (% Pop.)	Growth 2000-2018	Internet Users %
<u>Africa</u>	1,287,914,329	16.9 %	464,923,169	36.1 %	10,199 %	11.0 %
<u>Asia</u>	4,207,588,157	55.1 %	2,062,197,366	49.0 %	1,704 %	49.0 %
<u>Europe</u>	827,650,849	10.8 %	705,064,923	85.2 %	570 %	16.8 %
Latin America / Caribbean	652,047,996	8.5 %	438,248,446	67.2 %	2,325 %	10.4 %
Middle East	254,438,981	3.3 %	164,037,259	64.5 %	4,894 %	3.9 %
North America	363,844,662	4.8 %	345,660,847	95.0 %	219 %	8.2 %
Oceania / Australia	41,273,454	0.6 %	28,439,277	68.9 %	273 %	0.7 %
WORLD TOTAL	7,634,758,428	100.0 %	4,208,571,287	55.1 %	1,066 %	100.0 %

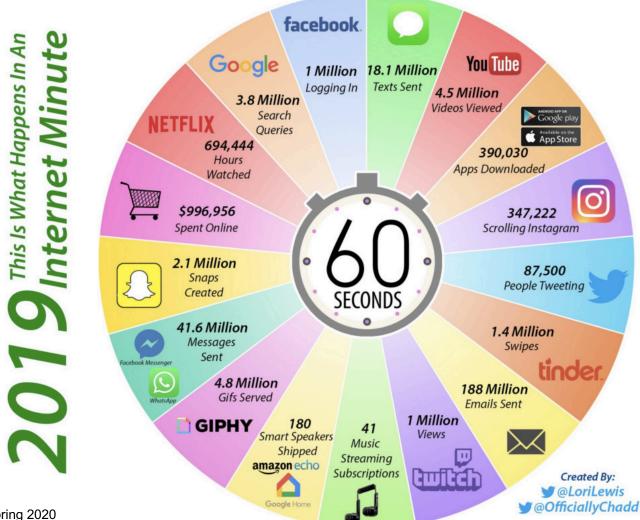

Explosive growth!

In hosts

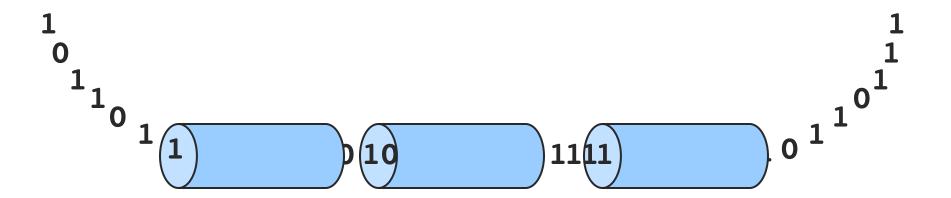

Internet Hosts Count

In networks

In complexity


In technologies

- Link speeds 200,000x faster
- NATs and firewalls
- Wireless everywhere
- Mobile everywhere
- Tiny devices (smart phones)
- Giant devices (data centers)


In applications

- Morris Internet Worm (1988)
- World wide web (1989)
- MOSAIC browser (1992)
- Search engines
- Peer-to-peer
- Voice
- Radio
- Botnets
- Social networking
- Streaming video
- Data centers
- Cloud computing
- loT

Why is Networking Challenging

That's it! ...right?

Fundamental Challenge:Speed of Light

- How long does it take light to travel from UIUC to Mountain View, CA (Google Headquarters)?
- Answer:
 - Distance UIUC -> Mountain View is 2,935 km
 - Traveling 300,000 km/s: 9.78ms
- Note: Dependent on transmission medium
 - 3.0 x 10⁸ meters/second in a vacuum
 - 2.3 x 10⁸ meters/second in a cable
 - 2.0 x 10⁸ meters/second in a fiber

Fundamental Challenge: Speed of Light

- How long does it take an Internet "packet" to travel from UIUC to Mountain View?
- Answer:
 - For sure ≥ 9.78ms
 - But also depends on:
 - The route the packet takes (could be circuitous!)
 - The propagation speed of the links the packet traverses
 - e.g. in optical fiber light propagates only at 2/3 C
 - The transmission rate (bandwidth) of the links (bits/sec)
 - And also the size of the packet
 - Number of hops traversed ("store and forward" delay)
 - The "competition" for bandwidth the packet encounters (congestion). It may have to wait in router queues.
 - In practice this boils down to ≥ 40ms (and likely more)
 - With variance (can be hard to predict!)

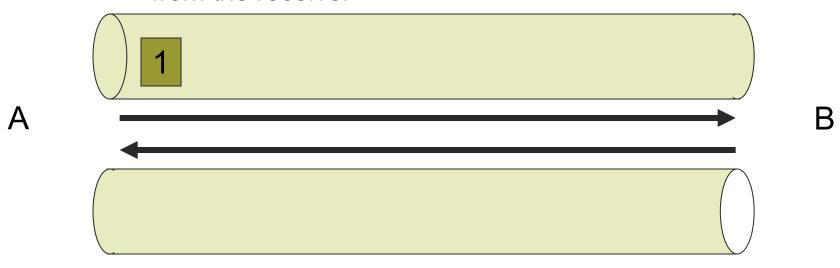
Performance

- Bandwidth/throughput
 - Data transmitted per unit time
 - Example: 10 Mbps
 - Link bandwidth vs. endto-end bandwidth

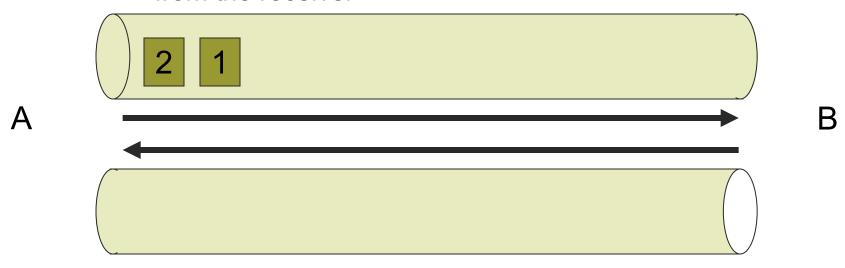
- Latency/delay
 - Time from A to B
 - Example: 30 msec
 - Many applications depend on round-trip time (RTT)

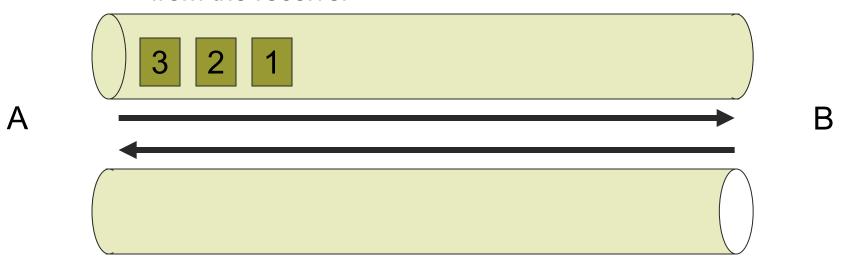
Notation

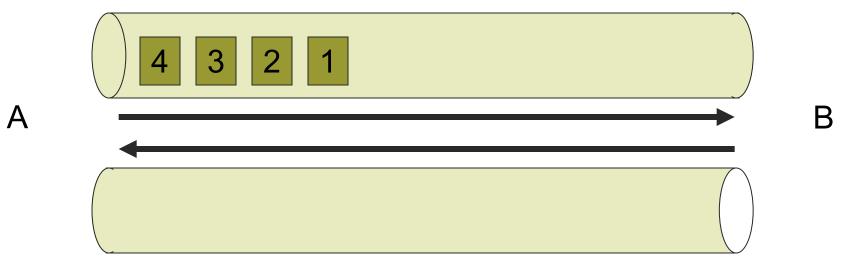
- \blacksquare KB = 2^{10} bytes
- Mbps = 10⁶ bits per second

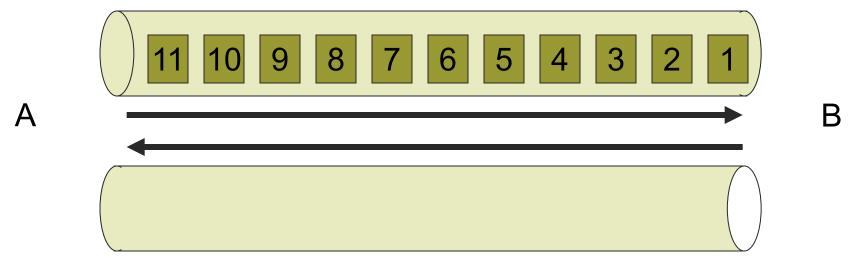

Why?

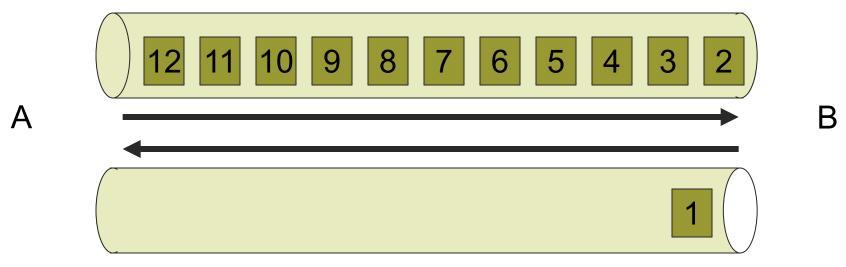
You will mess this up at least once on a HW or exam!

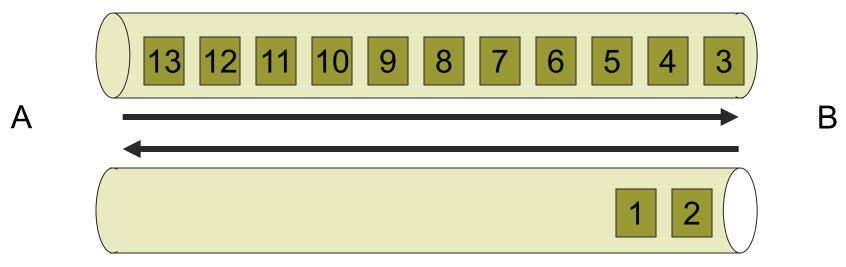

- Amount of data in "pipe"
 - channel = pipe
 - delay = length
 - bandwidth = area of a cross section
 - bandwidth x delay product = volume


- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver

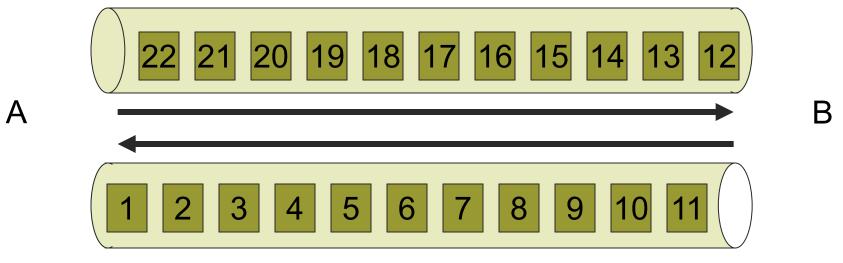

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver


- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver


- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver


- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver

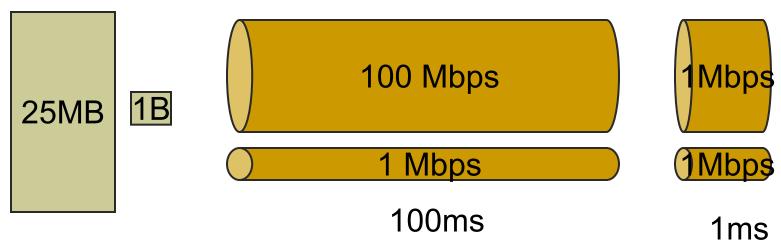
- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver



- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver

Spring 2020

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver (round trip BxD)



- Example: Transcontinental Channel
 - BW = 45 Mbps
 - delay = 50ms
 - bandwidth x delay product

```
= (50 \times 10^{-3} \text{ sec}) \times (45 \times 10^{6} \text{ bits/sec})
= 2.25 \times 10^{6} \text{ bits}
ms Mbps
```

Bandwidth vs. Latency

- Relative importance
 - 1-byte: Latency bound
 - 1ms vs 100ms latency dominates 1Mbps vs 100Mbps BW
 - 25MB: Bandwidth bound
 - 1Mbps vs 100Mbps BW dominates 1ms vs 100ms latency

Bandwidth vs. Latency

- Infinite bandwidth
 - RTT dominates
 - Throughput = TransferSize / TransferTime
 - TransferTime = RTT + 1/Bandwidth x TransferSize
- Its all relative
 - 1-MB file on a 1-Gbps link looks like a 1-KB packet on a 1-Mbps link

Fundamental Challenge:Speed of Light

How many cycles does your PC execute before it can possibly get a reply to a message it sent to a Mountain View web server?

Answer

- Round trip takes >= 80ms
- PC runs at (say) 3 GHz
- 3,000,000,000 cycles/sec * 0.08 sec = 240,000,000 cycles

Thus

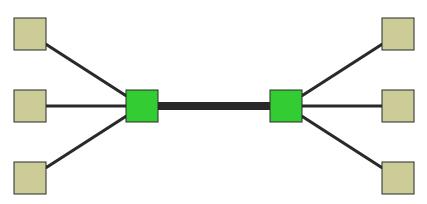
- Communication feedback is always dated
- Communication fundamentally asynchronous

Fundamental Challenge: Speed of Light

- What about machines directly connected (via a local area network or LAN)?
- Answer:

```
% ping www.cs.uiuc.edu
PING dcs-www.cs.uiuc.edu (128.174.252.83) 56(84) bytes of data.
64 bytes from 128.174.252.83: icmp_seq=1 ttl=63 time=0.263 ms
64 bytes from 128.174.252.83: icmp_seq=2 ttl=63 time=0.595 ms
64 bytes from 128.174.252.83: icmp_seq=3 ttl=63 time=0.588 ms
64 bytes from 128.174.252.83: icmp_seq=4 ttl=63 time=0.554 ms
...
```

- 500us = 1,500,000 cycles
 - Still a loooooong time...

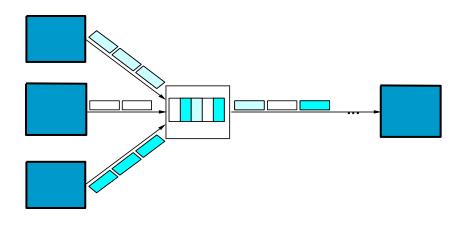


Fundamental Challenge: Shared infrastructure

- Different parties must work together
 - Multiple parties with different agendas must agree how to divide the task between them
- Working together requires
 - Protocols (defining who does what)
 - These generally need to be standardized
 - Agreements regarding how different types of activity are treated (policy)
- Different parties very well might try to "game" the network's mechanisms to their advantage

Fundamental Challenge: Shared infrastructure

 Physical links and switches must be shared among many users


- Common multiplexing strategies
 - (Synchronous) time-division multiplexing (TDM)
 - Frequency-division multiplexing (FDM)

Fundamental Challenge:Shared infrastructure

- Statistical Multiplexing (SM)
 - On-demand time-division multiplexing
 - Scheduled on a per-packet basis
 - Packets from different sources are interleaved
 - Uses upper bounds to limit transmission
 - Queue size determines capacity per source

Fundamental Challenge: Shared infrastructure

- Packets buffered in switch until forwarded
- Selection of next packet depends on policy
 - How do we make these decisions in a fair manner?
 Round Robin? FIFO?
 - How should the switch handle congestion?

Fundamental Challenge: Things break

 Communication involves a chain of interfaces, links, routers, and switches...

...stitched together with many layers of software...

...all of which must function correctly!

Fundamental Challenge: Things break

- Suppose a communication involves 50 components that work correctly (independently) 99% of the time.
- What's the likelihood the communication fails at a given point in time?
 - O Answer: success requires that they all function, so failure probability = $1 0.99^{50} = 39.5\%$
- So we have a lot of components, which tend to fail...
 - ... and we may not find out for a loooong time

Fundamental Challenge: Enormous dynamic range

- Challenge: enormous dynamic range
 - Round trip times (latency)
 - Data rates (bandwidth)
 - Queuing delays in the network
 - Packet loss
 - End system (host) capabilities
 - Application needs:

10 us's to sec's (10⁵)
kbps to 10 Gbps (10⁷)
0 to sec's
0 to 90+%
cell phones to clusters
size of transfers,
bidirectionality, reliability,

tolerance of jitter

Fundamental Challenge: Enormous dynamic range

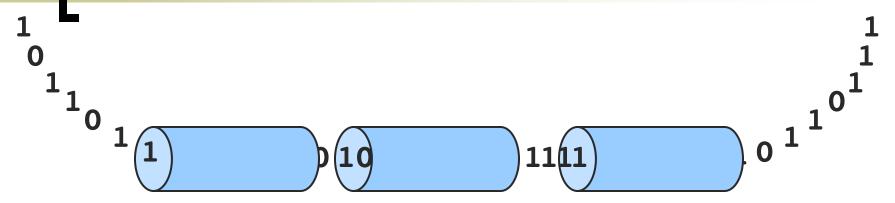
- Challenge: enormous dynamic range
- Related challenge: very often, there is no such thing as "typical"
 - Beware of your "mental models"!
 - Must think in terms of design ranges, not points
 - Mechanisms need to be adaptive

Fundamental Challenge:Security

- Challenge: there are Bad Guys out there!
- Early days
 - Vandals
 - Hackers
 - Crazies
 - Researchers
- As network population grows, it becomes more and more attractive to crooks
- As size of and dependence on the network grows, becomes more attractive to spies, governments, and militaries

Fundamental Challenge:Security

- Attackers seek ways to misuse the network towards their gain
 - Carefully crafted "bogus" traffic to manipulate the network's operation
 - Torrents of traffic to overwhelm a service (denial-of-service) for purposes of extortion/competition
 - Passively recording network traffic in transit (sniffing)
 - Exploit flaws in clients and servers using the network to trick into executing the attacker's code (compromise)
- They all do this energetically because there is significant \$\$\$ to be made



The Ultimate Challenge

- Cannot reboot the Internet
 - Everyone depends on the Internet
 - Businesses
 - Hospitals
 - Education institutions
 - Financial sector
 - ...
- Fixing the Internet akin to changing the engine while you are flying the plane!

Why Networking is Challenging

- Tubes: not entirely wrong, but simplistic
- How do we build a communication infrastructure for all of humanity?
- Must design for extreme heterogeneity across technology, applications, users

What's next

- MP 0
 - Available Thursday
 - Sockets refresher
- HW 1
 - Available Thursday
- Next topic
 - UNIX network programming
- Next week
 - Technical overview of Internet architecture
 - Data link technologies

