Direct Link Networks – Error Detection and Correction

Reading: Peterson and Davie, Chapter 2

Error Detection

- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Error detection validates correctness of each frame

Error Detection

- Adds redundant information that checks for errors
 - And potentially fix them
 - If not, discard packet and resend
- Occurs at many levels
 - Demodulation of signals into symbols (analog)
 - Bit error detection/correction (digital)—our main focus
 - Within network adapter (CRC check)
 - Within IP layer (IP checksum)
 - Within some applications

Error Detection

- Analog Errors
 - Example of signal distortion
- Hamming distance
 - Parity and voting
 - Hamming codes
- Error bits or error bursts?
- Digital error detection
 - Two-dimensional parity
 - Checksums
 - Cyclic Redundancy Check (CRC)

Analog Errors

- Consider RS-232 encoding of character 'Q'
- Assume idle wire (-15V) before and after signal

RS-232 Encoding of 'Q'

Encoding isn't perfect

Example with bandwidth = baud rate

Encoding isn't perfect

Example with bandwidth = baud rate/2

Symbols

possible binary voltage encoding possible QAM symbol symbol neighborhoods and erasure neighborhoods in green; all region other space results in erasure

Digital error detection and correction

- Input: decoded symbols
 - Some correct
 - Some incorrect
 - Some erased
- Output:
 - Correct blocks (or codewords, or frames, or packets)
 - Erased blocks

Error Detection Probabilities

Definitions

- P_b: Probability of single bit error (BER)
- P₁: Probability that a frame arrives with no bit errors
- P₂: While using error detection, the probability that a frame arrives with one or more undetected errors
- P₃: While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors

Error Detection Probabilities

Single bit error

With no error detection

No bit errors

$$P_1 = \left(1 - P_b\right)^F$$

Undetected errors

$$P_2 = 1 - P_1$$

Detected errors

$$P_{3} = 0$$

F = Number of bits per frame

Error Detection Process

Transmitter

- For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits

Receiver

- Separates incoming frame into data bits and check bits
- Calculates check bits from received data bits
- Compares calculated check bits against received check bits
- Detected error occurs if mismatch

Parity

- Parity bit appended to a block of data
- Even parity
 - Added bit ensures an even number of 1s
- Odd parity
 - Added bit ensures an odd number of 1s
- Example

0	7-bit character	1110001
	<i>i</i> bit dilalactor	1110001

Even parity 1110001 0

Odd parity
 1110001 1

Parity: Detecting Bit Flips

- 1-bit error detection with parity
 - Add an extra bit to a code to ensure an even (odd) number of 1s
 - Every code word has an even (odd) number of 1s

Voting: Correcting Bit Flips

- 1-bit error correction with voting
 - Every codeword is transmitted n times
 - Codeword is 3 bits long

Voting: 2-bit Erasure Correction

Every code word is copied 3 times

2-erasure planes in green remaining bit not ambiguous

cannot correct 1-error and 1-erasure

Hamming Distance

- The Hamming distance between two code words is the minimum number of bit flips to move from one to the other
 - Example:
 - 00101 and 00010
 - Hamming distance of 3

Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
 - Minimum Hamming Distance for parity
 - **2**
 - Minimum Hamming Distance for voting
 - 3

Coverage

- N-bit error detection
 - No code word changed into another code word
 - Requires Hamming distance of N+1
- N-bit error correction
 - N-bit neighborhood: all codewords within N bit flips
 - No overlap between N-bit neighborhoods
 - Requires hamming distance of 2N+1

- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2-bit errors
- Can correct up to 1-bit errors

- Construction
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which (j AND k) = j
- Example:
 - 4 bits of data,3 check bits

- Construction
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which (j AND k) = j
- Example:
 - 4 bits of data,3 check bits

- Construction
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which (j AND k) = j
- Example:
 - 4 bits of data,3 check bits

What are we trying to handle?

- Worst case errors
 - We solved this for 1 bit error
 - Can generalize, but will get expensive for more bit errors
- Probability of error per bit
 - Flip each bit with some probability, independently of others
- Burst model
 - Probability of back-to-back bit errors
 - Error probability dependent on adjacent bits
 - Value of errors may have structure
- Why assume bursts?
 - Appropriate for some media (e.g., radio)
 - Faster signaling rate enhances such phenomena

Digital Error Detection Techniques

- Two-dimensional parity
 - Detects up to 3-bit errors
 - Good for burst errors
- IP checksum
 - Simple addition
 - Simple in software
 - Used as backup to CRC
- Cyclic Redundancy Check (CRC)
 - Powerful mathematics
 - Tricky in software, simple in hardware
 - Used in network adapter

Two-Dimensional Parity

- Use 1-dimensional parity
 - Add one bit to a 7-bit code to ensure an even/odd number of 1s
- Add 2nd dimension
 - Add an extra byte to frame
 - Bits are set to ensure even/odd number of 1s in that position across all bytes in frame
- Comments
 - Catches all 1-, 2- and 3-bit and most 4-bit errors

Two-Dimensional Parity

0	1	0	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What happens if...

Can detect exactly which bit flipped Can also correct it!

0	1	8 ¹	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0 (1	0	0	0	1	1	1

What about 2-bit errors?

Can detect the two-bit error

Can't detect a problem here

Can't tell which bits are flipped, so can't correct

0	1	8 ¹	0	0		1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	U	1	1	1

What about 2-bit errors?

Could be the dotted pair or the dashed pair. Can't correct 2-bit error.

If these four parity bits don't match Which bits could be in error?

0	1	0	0	0	1	1	1	\bigcirc
0	1	1	0	1	1	1	1	$\left(0\right)$
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	$\left(1\right)$	0	0	$oldsymbol{0}$	1	1	1

What about 3-bit errors?

Can detect the three-bit error

But you can't correct (eg if dashed bits got flipped instead of the dotted ones)

0	1 (81	, 0	0 (, 1	10	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0 (0	1	$\left(\begin{array}{c}1\end{array}\right)$	1

What about 4-bit errors?

Are there any 4-bit errors this scheme *can* detect?

0	1	0	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What about 4-bit errors?

Can you think of a 4-bit error this scheme can't detect?

8 ¹	1	81	0	0	1	1	1	0
1							1	
81	1	10	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

Internet Checksum

Idea

- Add up all the words
- Transmit the sum
- Use 1's complement addition on 16bit codewords
- Example

Codewords:	-5	-3
1's complement binary:	1010	1100
1's complement sum	1000	

Comments

- Small number of redundant bits
- Easy to implement
- Not very robust
- Eliminated in IPv6

IP Checksum

```
u short cksum(u short *buf, int count) {
   register u_long sum = 0;
   while (count--) {
       sum += *buf++;
       if (sum & 0xFFFF0000) {
       /* carry occurred, so wrap around */
              sum &= 0xFFFF;
              sum++;
   return ~(sum & 0xFFFF);
```

What could cause this check to fail?

Main Goal: Check the Data!

Hash function k pseudorandom

check bits

Main Goal: Check the Data!

n data bits

- In any code, what fraction of codewords are valid?
 - \circ 1/2^k
- Ideal (random) hash function:
 - Any change in input produces an output that's essentially random
 - So any error would be detected with probability 1 2-k
- Checksum: not close to ideal
- CRC: better

Simplified CRC-like protocol using regular integers

Basic idea

- Both endpoints agree in advance on divisor value C = 3
- Sender wants to send message M = 10
- Sender computes X such that C divides 10M + X
- Sender sends codeword W = 10M + X
- Receiver receives W' and checks whether C divides W'
 - If so, then probably no error
 - If not, then error

Simplified CRC-like protocol using regular integers

Intuition

- If C is large, it's unlikely that bits are flipped exactly to land on another multiple of C.
- CRC is vaguely like this, but uses polynomials instead of numbers

Cyclic Redundancy Check (CRC)

- Given
 - Message M = 10011010
 - Represented as Polynomial M(x)

=
$$1 *x^7 + 0 *x^6 + 0 *x^5 + 1 *x^4 + 1 *x^3 + 0 *x^2 + 1 *x + 0$$

= $x^7 + x^4 + x^3 + x$

- Select a divisor polynomial C(x) with degree k
 - Example with k = 3:
 - $C(x) = x^3 + x^2 + 1$
 - Represented as 1101
- Transmit a polynomial P(x) that is evenly divisible by C(x)
 - $P(x) = M(x) * x^k + k$ check bits

How can we determine these k bits?

Properties of Polynomial Arithmetic

Coefficients are modulo 2

$$(x^3 + x) + (x^2 + x + 1) = ...$$

 $...x^3 + x^2 + 1$
 $(x^3 + x) - (x^2 + x + 1) = ...$
 $...x^3 + x^2 + 1$ also!

- Addition and subtraction are both xor!
- Need to compute R such that C(x) divides $P(x) = M(x) \cdot x^k + R(x)$
- So R(x) = remainder of $M(x) \cdot x^k / C(x)$
 - Will find this with polynomial long division

Polynomial arithmetic

Divisor

 Any polynomial B(x) can be divided by a polynomial C(x) if B(x) is of the same or higher degree than C(x)

Remainder

The remainder obtained when B(x) is divided by C(x) is obtained by subtracting C(x) from B(x)

Subtraction

To subtract C(x) from B(x), simply perform an XOR on each pair of matching coefficients

For example:
$$(x^3+1)/(x^3+x^2+1) =$$
 ?

CRC - Sender

Given

- $O(x) = 10011010 = x^7 + x^4 + x^3 + x$ $O(x) = 1101 = x^3 + x^2 + 1$
- Steps
 - o $T(x) = M(x) * x^k$ (add zeros to increase deg. of M(x) by k)
 - Find remainder, R(x), from T(x)/C(x)
 - o $P(x) = T(x) R(x) \Rightarrow M(x)$ followed by R(x)

Example

- T(x) = 10011010000
- \circ R(x) = 101
- P(x) = 10011010101

CRC - Receiver

- Receive Polynomial P(x) + E(x)
 - \circ E(x) represents errors
 - E(x) = 0, implies no errors
- Divide (P(x) + E(x)) by C(x)
 - If result = 0, either
 - No errors (E(x) = 0, and P(x) is evenly divisible by C(x)
 - (P(x) + E(x)) is exactly divisible by C(x), error will not be detected
 - If result = 1, errors.

CRC – Example Encoding

-CRC – Example Decoding – No Errors

•CRC – Example Decoding – with Errors

CRC Error Detection

- Properties
 - Characterize error as E(x)
 - Error detected unless C(x) divides E(x)
 - (i.e., E(x) is a multiple of C(x))

Example of Polynomial Multiplication

Multiply

- o 1101 by 10110
- o $x^3 + x^2 + 1$ by $x^4 + x^2 + x$

On Polynomial Arithmetic

- The use of polynomial arithmetic is a fancy way to think about addition with no carries. It also helps in the determination of a good choice of C(x)
 - A non-zero vector is not detected if and only if the error polynomial E(x) is a multiple of C(x)
- Implication
 - Suppose C(x) has the property that C(1) = 0 (i.e. (x + 1) is a factor of C(x))
 - If E(x) corresponds to an undetected error pattern, then it must be that E(1) = 0
 - Therefore, any error pattern with an odd number of error bits is detected

CRC Error Detection

- What errors can we detect?
 - All single-bit errors, if x^k and x⁰ have non-zero coefficients
 - All double-bit errors, if C(x) has at least three terms
 - \circ All odd bit errors, if C(x) contains the factor (x + 1)
 - Any bursts of length < k, if C(x) includes a constant term
 - Most bursts of length ≥ k

Common Polynomials for C(x)

CRC	C(x)
CRC-8	$x^8 + x^2 + x^1 + 1$
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$
CRC-12	$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$
CRC-16	$x^{16} + x^{15} + x^2 + 1$
CRC-CCITT	$x^{16} + x^{12} + x^5 + 1$
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$

Error Detection vs. Error Correction

Detection

- Pro: Overhead only on messages with errors
- Con: Cost in bandwidth and latency for retransmissions

Correction

- Pro: Quick recovery
- Con: Overhead on all messages
- What should we use?
 - Correction if retransmission is too expensive
 - Correction if probability of errors is high
 - Detection when retransmission is easy and probability of errors is low

