
Spring 2020 © CS 438 Staff - University of Illinois 1

Congestion Avoidance

◼ Control vs. avoidance

 Control: minimize impact of congestion when it occurs

 Avoidance: avoid producing congestion

◼ In terms of operating point limits

loadp
o

w
e
r

optimal load

idealized

power curve

controlavoidance

Spring 2020 © CS 438 Staff - University of Illinois 2

Congestion Avoidance

◼ TCP’s strategy
 Control congestion once it happens

 Repeatedly increase load in an effort to find the point at which
congestion occurs, then back off

◼ Alternative Strategy
 Predict when congestion is about to happen and reduce the rate

at which hosts send data just before packets start being
discarded

 Congestion avoidance, as compared to congestion control

◼ Two possibilities
 Host-centric

◼ TCP Vegas (may get some help from routers as in DECbit or via
RED gateways)

 Router-centric
◼ Virtual circuits with reserved resources (ATM, RSVP)

Spring 2020 © CS 438 Staff - University of Illinois 3

DECbit (Destination

Experiencing Congestion Bit)

◼ Developed for the Digital Network
Architecture

◼ Basic idea
 One bit allocated in packet header

 Any router experiencing congestion sets bit

 Destination returns bit to source

 Source adjusts rate based on bits

◼ Note that responsibility is shared
 Routers identify congestion

 Hosts act to avoid congestion

Spring 2020 © CS 438 Staff - University of Illinois 4

DECbit

◼ Router

 Monitors length over last busy + idle cycle

 Sets congestion bit if average queue length is greater then 1

when packet arrives

 Attempts to balance throughput against delay

◼ smaller values result in more idle time

◼ larger values result in more queueing delay

Q
u

e
u
e

 l
e

n
g

th

Current
time

Time
Current cyclePrevious cycle

Averaging
interval

Spring 2020 © CS 438 Staff - University of Illinois 5

DECbit

◼ End Hosts
 Destination echoes congestion bit back to source

 Source records how many packets resulted in set bit

 If less than 50% of last window had bit set

◼ Increase CongestionWindow by 1 packet

 If 50% or more of last window had bit set

◼ Decrease CongestionWindow by 0.875 percent

◼ Note:
 Techniques used in DECbit known as explicit congestion

notification (ECN)

 Proposal to add ECN bit to TCP in progress

Spring 2020 © CS 438 Staff - University of Illinois 6

Router-Based Congestion

Avoidance

◼ Random Early Detection (RED) gateways

 Developed for use with TCP

 Basic idea

◼ Implicit rather than explicit notification

◼ When a router is “almost” congested

◼ Drop packets randomly

 Responsibility is again shared

◼ Router identifies, host acts

◼ Relies on TCP’s response to dropped packets

RED Overview

◼ Observation

 Transient congestion

◼ Should be accommodated for by having large enough

queues

 Longer-lived congestion

◼ Reflected as an increase in the average queue size

◼ Approach

 Detect incipient congestion from average queue

size

◼ Upper bound for average queue length

Spring 2020 © CS 438 Staff - University of Illinois 7

RED Overview

◼ Notify the end host of congestion

 Dropping packet

 Marking packet

◼ Select connections randomly

 Avoid global synchronization

◼ Change dropping probability dynamically

◼ Avoid bias against bursty data

 Use average queue length

 Random marking
Spring 2020 © CS 438 Staff - University of Illinois 8

Spring 2020 © CS 438 Staff - University of Illinois 9

Random Early Detection

(RED)

◼ Hosts

 Implement TCP congestion control

 Back off when a packet is dropped

◼ Routers

 Compute average queue length (exponential

moving average)

◼ AvgLen = (1 – Weight) * AvgLen + Weight *

SampleLen

◼ 0 < Weight < 1 (usually 0.002)

◼ SampleLen is queue length at packet arrival time

Spring 2020 © CS 438 Staff - University of Illinois 10

RED – Dropping Policy

◼ If AvgLen MinThreshold

 Enqueue packet

◼ If MinThreshold < AvgLen < MaxThreshold

 Calculate P and drop arriving packet with probability P

◼ If MaxThreshold AvgLen

 Drop arriving packet

MaxThreshold MinThreshold

AvgLenAvgLen AvgLen

Spring 2020 © CS 438 Staff - University of Illinois 11

RED – Dropping Probability

◼ Computing P

 P is a function of AvgLen and Count

 Count is the number of packets that have arrived since

last reset

 Reset happens when either a packet is dropped or

AvgLen is above MaxThreshold

TempP =
(MaxP) * (AvgLen – MinThreshold)

MaxThreshold - MinThreshold

P =
TempP

(1 – count * TempP)
AvgLen

P(drop)
1.0

MaxP

MinThresh MaxThresh

Calculate Average Queue Size

◼ Low pass filter

 If idle:

 Example: wq = 0.002

Spring 2020 © CS 438 Staff - University of Illinois 12

maxth = 15

minth = 5

instantaneous queue size

average queue size

minth and maxth

◼ Determined by the desired average queue size

 Should be set sufficiently to maximize network utilization

◼ minth

 Controls the size of bursts

◼ maxth

 Depends on the maximum average delay

◼ maxth - minth

 Should be larger than increase in average queue size in

one round trip time

 Avoid global synchronization

Spring 2020 © CS 438 Staff - University of Illinois 13

Spring 2020 © CS 438 Staff - University of Illinois 14

RED Parameters

◼ MaxP is typically set to 0.02
 When the average queue size is halfway

between the two thresholds, the gateway drops
roughly 1 out of 50 packets.

◼ MinThreshold is typically max/2

◼ Choosing parameters
 Carefully tuned to maximize power function

 Confirmed through simulation

 But answer depends on accuracy of traffic
model

Spring 2020 © CS 438 Staff - University of Illinois 15

Tuning RED

◼ Probability of dropping a particular flow’s packet(s)

 Roughly proportional to the that flow’s current share of the
bandwidth

◼ If traffic is bursty

 MinThreshold should be sufficiently large to allow link utilization
to be maintained at an acceptably high level

 If no buffer space is available, RED uses Tail Drop

◼ Difference between two thresholds

 Should be larger than the typical increase in the calculated
average queue length in one RTT

 Setting MaxThreshold to twice MinThreshold is reasonable for
traffic on today’s Internet

◼ Penalty Box for Offenders

Spring 2020 © CS 438 Staff - University of Illinois 16

Source-Based Congestion

Avoidance

◼ Idea

 Source watches for some sign that some

router’s queue is building up and

congestion will happen soon

◼ Examples

 RTT is growing

 Sending rate flattens

Spring 2020 © CS 438 Staff - University of Illinois 17

Source-Based Congestion

Avoidance

◼ Observe RTT
 If current RTT is greater than average of minRTT and maxRTT,

decrease congestion window by one-eigth

◼ Observe RTT and Window Size
 Adjust window once every two RTT

◼ If (CurrWindow – OldWindow) * (CurrRTT – OldRTT) > 0, decrease
window by one-eigth, otherwise increase window my one MSS

◼ Observe sending rate
 Increase window and compare throughput to previous value

◼ Observe throughput
 Compare measured throughput with observed throughput

 TCP Vegas

Spring 2020 © CS 438 Staff - University of Illinois 18

TCP Vegas

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

C
o
n
g
e
s
ti
o
n
 W

in
d
o

K
B

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)

900

300

100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

O
b
s
e
rv

e
d
 T

h
ro

u
g
h
p
u
t

K
B

p
s

1100

500

700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

u
e
u

e
 s

iz
e

 i
n

ro
u
te

r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Spring 2020 © CS 438 Staff - University of Illinois 19

TCP Vegas

◼ Basic idea

 Watch for signs of queue growth

 In particular, difference between
◼ increasing congestion window

◼ stable throughput (presumably at capacity)

 Keep just enough “extra data” in the
network
◼ Time to react if bandwidth decreases

◼ Data available if bandwidth increases

Spring 2020 © CS 438 Staff - University of Illinois 20

TCP Vegas

◼ Implementation

 Estimate uncongested RTT

◼ baseRTT = minimum measured RTT

◼ Expected throughput = congestion window /

baseRTT

 Measure throughput each RTT

◼ Mark time of sending distinguished packet

◼ Calculate data sent between send time and

receipt of ACK

Spring 2020 © CS 438 Staff - University of Illinois 21

TCP Vegas

 Act to keep the difference between estimated

and actual throughput in a specified range

◼ Below minimum threshold

 Increase congestion window

◼ Above maximum threshold

 Decrease congestion window

 Additive decrease used only to avoid congestion

 Want between 1 and 3 packets of extra data

(used to pick min/max thresholds)

Spring 2020 © CS 438 Staff - University of Illinois 22

TCP Vegas Algorithm

◼ Let BaseRTT be minimum of all measured RTTs
 Commonly the RTT of the first packet

◼ If not overflowing the connection, then
 ExpectRate = CongestionWindow/BaseRTT

◼ Source calculates sending rate (ActualRate) once per RTT

◼ Source compares ActualRate with ExpectRate
 Diff = ExpectedRate – ActualRate

 if Diff < a
◼ Increase CongestionWindow linearly

 else if Diff > b
◼ Decrease CongestionWindow linearly

 else
◼ Leave CongestionWindow unchanged

Spring 2020 © CS 438 Staff - University of Illinois 23

TCP Vegas Algorithm

◼ Parameters

 a = 1 packet

 b = 3 packets

◼ Even faster

retransmit

 Keep fine-

grained

timestamps for

each packet

 Check for

timeout on first

duplicate ACK

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A

M
 K

B
p
s

240

200

160

120

80

40

Time (seconds)

