TCP Internals

Spring 2019 © CS 438 Staff, University of lllinois

TCP Usage Model

Connection setup
o 3-way handshake

Data transport

o Sender writes data
o TCP

Breaks data into segments
Sends each segment over IP
Retransmits, reorders and removes duplicates as necessary

o Receiver reads some data

Teardown
o 4 step exchange

Spring 2019 © CS 438 Staff, University of lllinois 2

TCP Connection
Establishment

3-Way Handshake

o Sequence Numbers Client Server
J,K Synch, oni listen

o Message Types W
Synchronize (SYN)
Acknowledge (ACK) SYN:(AGK\ ¥

o Passive Open soknowie®

Server listens for

connection from client
: ACKK+1
o Active Open

Client initiates connection _
Time flows down
to server

Spring 2019 © CS 438 Staff, University of lllinois 3

Purpose of the handshake

Why use a handshake before sending / processing
data?

Suppose we don’t wait for the handshake

o send data (e.g., HTTP request) along with SYN

o deliver to application

o send some results (e.g., index.html) along with SYN ACK

What could go wrong?

o Hint: remember packets can be delayed, dropped,
duplicated, ...

Spring 2019 © CS 438 Staff, University of lllinois 4

Purpose of the handshake

Why use a handshake
before sending / Client Server
processing data?

Duplicated packet
causes data to be sent
to application twice

Why does handshake
fix this?

timeoulf

1 1st Connection

(es“\‘.s

Spring 2019 © CS 438 Staff, University of lllinois 5

Purpose of the handshake

If server receives
request a second time, Client Server

it responds with SYN
ACK a second time

But sender will not

subsequently respond
with ACK (“what is this meou
garbage | just
received??”)

1 1st Connection

(es“\‘.s

Spring 2019 © CS 438 Staff, University of lllinois 6

Another purpose of the
handshake

No handshake == security hole

o Attacker sends request

o ...but spoofs source address, using address of a victim (C)

o Server happily sends massive amounts of data to victim

o Attacker repeats for 10,000 web servers

o Massive denial of service attack, almost free and
anonymous for the attacker!

Used in the largest distributed denial of service

(DDoS) attacks in 2008, 2009, and 2010

o Use services that lack handshake (e.g., DNS over UDP)

o Amplification factor 1:76 in 2008!

Spring 2019 © CS 438 Staff, University of lllinois 7

Another purpose of the
handshake

Handshake lets server verify source address is real

SYN
\SYNACK

e Doesn’ t match a
connection initiated by C:
ignore (or reply with reset)

° >No ACK received after
timeout: drop connection
without sending data

Q: does this prevent A: No, but at least it
reflection attack? prevents amplification

Spring 2019 © CS 438 Staff, University of lllinois 8

Handshaking

Internet was not designed for accountability
o Hard to tell where a packet came from

o |ISPs filter suspicious packets: sometimes easy,
sometimes hard, and sometimes not done

And the Internet is not secure until everyone filters
More generally, Internet was not designed for
security
o Vulnerabilities in most of the core protocols

o Even with handshake, early designs are vulnerable
Had predictable Initial Sequence Number (why’ s that bad?)
Because security was not initial goal of the handshake

Spring 2019 © CS 438 Staff, University of lllinois 9

TCP Data Transport

Data broken into segments

o Limited by maximum segment size (MSS)
o Defaults to 352 bytes

o Negotiable during connection setup

O

Typically set to

MTU of directly connected network — size of TCP and IP
headers

Three events cause a segment to be sent
o > MSS bytes of data ready to be sent

o Explicit PUSH operation by application

o Periodic timeout

Spring 2019 © CS 438 Staff, University of lllinois 10

TCP Byte Stream

Application Application
process process

Write Read
bytes bytes

TCP TCP
[_Send buffer |

A

TCP Segment| |[TCP Segment]- - = [TCP Segment

Spring 2019 © CS 438 Staff, University of lllinois 11

TCP Connection Termination

= Two generals problem

o Enemy camped in valley

o Two generals’ hills separated by enemy

o Communication by unreliable messengers

o Generals need to agree whether to attack or retreat

Spring 2019

Two generals problem

= Can messages over an unreliable network be used
to guarantee two entities do something
simultaneously?
o No, even if all messages get through

47Yeah, but what it you
don’ t get this ack?

= No way to be sure last message gets through!

Spring 2019 © CS 438 Staff, University of lllinois 13

TCP Connection Termination

Message Types
o Finished (FIN)
o Acknowledge (ACK) F Dished (e, |

Active Close
o Sends no more data

Passive close
o Accepts no more data ACK ks

Client Server

FN K

A

Time flows down

Spring 2019 © CS 438 Staff, University of lllinois 14

TCP Segment Header Format

0 8

16

31

Source Port

Header Length 0

Flags

Destination Port

Advertised Window

TCP Checksum

Urgent Pointer

Options

Spring 2019

© CS 438 Staff, University of lllinois

15

TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

= 16-bit source and destination ports

Spring 2019 © CS 438 Staff, University of lllinois 16

TCP Segment Header Format

0 8

16

31

Source Port

Header Length 0

Flags

Destination Port

Advertised Window

TCP Checksum

Urg_jent Pointer

Options

= 32-bit send and ACK sequence

numbers

Spring 2019

© CS 438 Staff, University of lllinois

17

ACKing and Sequence
Numbers

Sender sends packet

o Data starts with sequence number X

o Packet contains B bytes
X, X+1, X+2, ... X+B-1

B bytes

\
[|

/ !

byte X byte X+B - 1

Spring 2019 © CS 438 Staff, University of lllinois

18

ACKing and Sequence
Numbers

Upon receipt of packet, receiver sends an ACK

o If all data prior to X already received:

ACK acknowledges X+B (because that is next expected
byte)

B bytes

(|

L

N\
byte X+B

Spring 2019 © CS 438 Staff, University of lllinois 19

ACKing and Sequence
Numbers

Upon receipt of packet, receiver sends an ACK

o If highest byte already received is some smaller
value Y
ACK acknowledges Y+1
Even if this has been ACKed before

B bytes
/ N\

\
byte Y byte Y + 1

Spring 2019 © CS 438 Staff, University of lllinois 20

TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number

ACK Sequence Number
Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

= 4-bit header length in 4-byte words
o Minimum 5 bytes
o Offset to first data byte

Spring 2019 © CS 438 Staff, University of lllinois 21

TCP Segment Header Format

0 8 16 31
Source Port | Destination Port

Sequence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options
= Reserved

o MustbeO

Spring 2019 © CS 438 Staff, University of lllinois 22

TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number
ACK Sequence Number
Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

= 6 1-bit flags

URG: Contains urgent data RST: Reset connection
ACK: Valid ACK seq. number SYN: Synchronize for setup
PSH: Do not delay data delivery FIN: Final segment for teardown

Spring 2019 © CS 438 Staff, University of lllinois 23

TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number

ACK Sequence Number
Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

= 16-bit advertised window
o Space remaining in receive window

Spring 2019 © CS 438 Staff, University of lllinois 24

TCP Segment Header Format

0 8

16

31

Source Port

Destination Port

Sequence Number

ACK Sequence Number

Header Length 0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

= 16-bit checksum

o Uses IP checksum algorithm

o Computed on header, data and pseudo header

Destination IP Address

0 16 (TDP)

TCP Segment Length

25

TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

= 16-bit urgent data pointer

o IfURG =1
o Index of last byte of urgent data in segment

Spring 2019 © CS 438 Staff, University of lllinois 26

TCP Options

Negotiate maximum segment size (MSS)

o Each host suggests a value
o Minimum of two values is chosen
o Prevents IP fragmentation over first and last hops

Packet timestamp

o Allows RTT calculation for retransmitted packets

o Extends sequence number space for identification of stray
packets

Negotiate advertised window granularity

o Allows larger windows
o Good for routes with large bandwidth-delay products

Spring 2019 © CS 438 Staff, University of lllinois 27

[TCP State Descriptions]

CLOSED Disconnected

Spring 2019 © CS 438 Staff, University of lllinois 28 -

TCP State Transition Diagram

Active
open/SYN

CLOSED

Passive open m

SYN/SYN + ACK

Send/SYN

“ACK _ SYN/SYN + ACK
SYN + ACK/ACK
Close/FIN Close/ACK ESTABLISHED
} FIN/ACK
FIN_WAIT_1 FIN/ACK CLOSE_WAIT

ACK]{ CLOSING Close/FIN 4

FIN_WAIT 2 ACK/ACK 1 ACK LAST_ACK
> TIME WAIT + ACK
FIN/ACK — '
Timeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois 29

<

TCP State Transition Diagram

Active
open/SYN

CLOSED

Passive open m

SYN/SYN + ACK

Send/SYN

“ACK__ SYN/SYN + ACK

SYN + ACK/ACK
Close/ACK «ESTABLISHED

Close/FIN

FIN/ACK

FIN_WAIT_1 FINVACK CLOSE_WAIT D\ passive
ACK} CLOSING Close/FIN Close
@ACF KIACK y ACK LAST_ACK
Aok CTIME_WAIT DA —— @
Active Close

Spring 2019 © CS 438 Staff, University of lllinois 30

TCP State Transition Diagram

m local

Message from fion Event from local Active

receiver/ application/ open/SYN
response sent ® Passive open message sent

mmm) SYN/SYN + ACK

Close

Send/SYN

“ACK__ SYN/SYN + ACK

SYN + ACK/ACK
Close/FIN Close/ACK «ESTABLISHED

} FIN/ACK
FIN_WAIT_1 FIN/ACK CLOSE_WAIT

ACK]{ CLOSING Close/FIN 4

FIN_WAIT 2 ACK/ACK 1 ACK LAST_ACK
> TIME WAIT + ACK
FIN/ACK - i
Timeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois

<

31

TCP State Transition Diagram

Reset after
SYN/ACK was CLOSED

Passive open
sent P m Close

SYN/SYN + ACK

Active
open/SYN

Send/SYN

=) ST
ACK

SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN Close/ACK ESTABLISHED
} FIN/ACK
FIN_WAIT_1 FIN/ACK CLOSE_WAIT
ACKy CLOSING Close/FIN §
FIN_WAIT 2 A(':: ACR I Ack LAST ACK
»_ TIME_WAIT | ACK
FIN/ACK — Timeout

CLOSED

Spring 2019 © CS 438 Staff, University of lllinois 32

TCP State Transition Diagram

Questions
o State transitions

Spring 2019

Describe the path taken by a server under normal
conditions

Describe the path taken by a client under normal
conditions

Describe the path taken assuming the client closes the
connection first

© CS 438 Staff, University of lllinois 33

TCP State Transition Diagram

Establishment under
normal conditions

Active
open/SYN

Passive open
SYN/SYN + ACK

Send/SYN

“ACK__ SYN/SYN + ACK

=~ SYN + ACK/ACK
ESTABLISHED

FIN/ACK

Close/FIN Close/FIN

FIN/ACK

FIN_WAIT 1 CLOSE_WAIT
ACKy CLOSING Close/FIN
FINF C
FIN.WAIT_2 D, £\ | ACK LAST_ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois

34

TCP State Transition Diagram

Lost ACK from
receiver?

Active
open/SYN

Passive open

SYN/SYN + ACK

Send/SYN

“ACK__ SYN/SYN + ACK

Close/FIN Close/FIN S 7;6 ACK/ACK

ESTABLISHED
FIN/ACK

FIN/ACK

FIN_WAIT 1 CLOSE_WAIT
ACKy CLOSING Close/FIN
FINF C
FIN.WAIT_2 D, £\ | ACK LAST_ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois 35

TCP State Transition Diagram

Local send when in
LISTEN

Active
open/SYN

Passive open
SYN/SYN + ACK

Send/SYN

<ACK SYN/SYN + ACK

SOR) ACK/ACK

FIN/ACK
CLOSE_WAIT

Y
Close/FIN Close/F Never used

FIN/ACK

FIN_WAIT 1
ACK]{ CLOSING Close/FIN 4
T CLasT
FIN.WAIT_2 D, £\ | ACK LAST_ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois 36

TCP State Transition Diagram

Timeouts?

Passive open

SYN/SYN + ACK

) ACK SYN/SYN + ACK
Y
Close/FIN Close/E | ho response after

FI
FIN_WAIT_2 ACK/ACK

FIN/ACK

Spring 2019

multiple tries, return

to CLOSED

. ACK
TIME_WAIT

Send/SYN

Timeout

© CS 438 Staff, University of lllinois

SUK) ACK/ACK

I/ACK
CLOSE_WAIT

Close/FIN {

Active
open/SYN

LAST ACK

+ ACK
CLOSED

37

TCP State Transition Diagram

One side closes first

Active
open/SYN

CLOSED

Passive open
P Close

SYN/SYN + ACK

Send/SYN

“ACK__ SYN/SYN + ACK

SYN + ACK/ACK
Close/FIN ESTABLISHED
FIN/ACK
CEN WA D>— FINACK
AC CLOSING Close/FIN
CFIN_WAIT 2>, FIT? ACK CLAST ACK D
ACK/ACK !
TIME_ WAIT D ACK

FIN/ACK Timeout @

Spring 2019 © CS 438 Staff, University of lllinois 38

TCP TIME_WAIT State

What purpose does the TIME_ WAIT stae serve?

Problem

o What happens if a segment from an old connection arrives
at a new connection?

Maximum Segment Lifetime
o Max time an old segment can live in the Internet

TIME_WAIT State

o Connection remains in this state from two times the
maximum segment lifetime

Spring 2019 © CS 438 Staff, University of lllinois 39

TCP State Transition Diagram

Both sides close at
the same time

Active
open/SYN

CLOSED

Passive open m

SYN/SYN + ACK

Send/SYN

“ACK

SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN Close/FIN «ESTABLISHED
} FIN/ACK

FIN_WAIT_1 EIN/ACK CLOSE_WAIT

Close/FIN {
FIN_WAIT 2 A('::A*CK LAST ACK
ACK

TIME WAIT Il
FIN/ACK M MIE_ WAL =
Timeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois 40

TCP State Transition Diagram

FIN_ACK received
(rare)

Active
open/SYN

CLOSED

Passive open m

SYN/SYN + ACK

Send/SYN

“ACK__ SYN/SYN + ACK

SYN + ACK/ACK
Close/FIN Close/FIN «ESTABLISHED
} FIN/ACK
FIN_WAIT_1 FIN/ACK CLOSE_WAIT
ACKy CLOSING Close/FIN §

<

\
FIN_WAIT 2 ACK/ACK ‘ _ACK\ LAST_ACK
FIN/ACK > TIME_WAIT - + ACK
Imeout CLOSED

Spring 2019 © CS 438 Staff, University of lllinois 41

[TCP Sliding Window Protocol

Sequence numbers
o Indices into byte stream

ACK sequence number

o Actually next byte expected as opposed
to last byte received

Spring 2019 © CS 438 Staff, University of lllinois 42 -

TCP Sliding Window Protocol

Initial Sequence Number
o Why not just use 07?

Practical issue

o IP addresses and port #s uniquely identify a connection
o Eventually, though, these port #s do get used again

o ... small chance an old packet is still in flight

o ... and might be associated with new connection

TCP requires (RFC793) changing ISN
o Set from 32-bit clock that ticks every 4 microseconds
o ... only wraps around once every 4.55 hours

To establish a connection, hosts exchange ISNs

Spring 2019 © CS 438 Staff, University of lllinois 43

TCP Sliding Window Protocol

Advertised window
o Enables dynamic receive window size

Receive buffers

o Data ready for delivery to application until
requested

o Out-of-order data to maximum buffer capacity
Sender buffers

o Unacknowledged data
o Unsent data out to maximum buffer capacity

Spring 2019 © CS 438 Staff, University of lllinois 44

TCP Sliding Window Protocol
— Sender Side

LastByteAcked <= LastByteSent
LastByteSent <= LastByteWritten
Buffer bytes between LastByteAcked and LastByteWritten

A

Maximum buffer size >

A

Advertised window >

A A T

Data available, but
outside window

First unacknowledged byte Last byte sent

Spring 2019 © CS 438 Staff, University of lllinois 45

TCP Sliding Window Protocol
— Recelver Side

LastByteRead < NextByteExpected
NextByteExpected <= LastByteRcvd + 1
Buffer bytes between NextByteRead and LastByteRcvd

\ 4

A

Maximum buffer size

P

¢ Advertised window

4 4 \/

Buffered, out-of-order data

\ 4

Next byte expected (ACK value)

Next byte to be read by application

Spring 2019 © CS 438 Staff, University of lllinois 46

Flow Control vs. Congestion
Control

Flow control
o Preventing senders from overrunning the capacity of the
receivers

Congestion control

o Preventing too much data from being injected into the
network, causing switches or links to become overloaded

Which one does TCP provide?
TCP provides both

o Flow control based on advertised window
o Congestion control discussed later in class

Spring 2019 © CS 438 Staff, University of lllinois 47

Advertised Window Limits
[Rate

W = window size

o Sender can send no faster than W/RTT
bytes/sec

o Receiver implicitly limits sender to rate
that receiver can sustain

o If sender is going too fast, window
advertisements get smaller & smaller

Spring 2019 © CS 438 Staff, University of lllinois 48 -

TCP Flow Control: Receiver

Receive buffer size

o = MaxRcvBuffer

0 LastByteRcvd - LastByteRead < = MaxRcvBuf
Advertised window

0 = MaxRcvBuf - (NextByteExp - NextByteRead)
o Shrinks as data arrives and

o Grows as the application consumes data

Spring 2019 © CS 438 Staff, University of lllinois 49

TCP Flow Control: Sender

Send buffer size
O = MaxSendBuffer
0 LastByteSent - LastByteAcked < = AdvertWindow

Effective buffer
O = AdvertWindow - (LastByteSent - LastByteAck)
o EffectiveWindow > 0 to send data

Relationship between sender and receiver

0 LastByteWritten - LastByteAcked < =
MaxSendBuffer

O block sender if (LastByteWritten -
LastByteAcked) + y > MaxSenderBuffer

Spring 2019 © CS 438 Staff, University of lllinois 50

TCP Flow Control

Problem: Slow receiver application

o Advertised window goes to O

o Sender cannot send more data

o Non-data packets used to update window

o Receiver may not spontaneously generate update or
update may be lost

Solution

o Sender periodically sends 1-byte segment, ignoring
advertised window of O

o Eventually window opens

o Sender learns of opening from next ACK of 1-byte

Spring 2019

segment

© CS 438 Staff, University of lllinois

51

TCP Flow Control

Problem: Application delivers tiny pieces of data to
TCP

o Example: telnet in character mode

o Each piece sent as a segment, returned as ACK

o Very inefficient

Solution
o Delay transmission to accumulate more data

o Nagle’ s algorithm
Send first piece of data
Accumulate data until first piece ACK’ d
Send accumulated data and restart accumulation
Not ideal for some traffic (e.g., mouse motion)

Spring 2019 © CS 438 Staff, University of lllinois 52

TCP Flow Control

Problem: Slow application reads data in tiny pieces
o Receiver advertises tiny window

o Sender fills tiny window

o Known as silly window syndrome

Solution
o Advertise window opening only when MSS or %2 of buffer
is available

o Sender delays sending until window is MSS or %z of
receiver’ s buffer (estimated)

Spring 2019 © CS 438 Staff, University of lllinois 53

TCP Bit Allocation Limitations

Sequence numbers vs. packet lifetime

o Assumed that IP packets live less than 60
seconds

o Can we send 232 bytes in 60 seconds?
o Less than an STS-12 line

Advertised window vs. delay-bandwidth

o Only 16 bits for advertised window
o Cross-country RTT =100 ms
o Adequate for only 5.24 Mbps!

Spring 2019 © CS 438 Staff, University of lllinois 54

TCP Sequence Numbers —

32-bit

Bandwidth Speed Time until wrap around
T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps | 6 minutes

STS-3 155 Mbps | 4 minutes

STS-12 622 Mbps | 55 seconds

STS-24 1.2 Gbps 28 seconds

Spring 2019

© CS 438 Staff, University of lllinois

55

TCP Advertised Window —

16-bit
Bandwidth Speed Delay x Bandwidth Product
T1 1.5 Mbps 18 KB
Ethernet 10 Mbps 122 KB
T3 45 Mbps 949 KB
FDDI 100 Mbps | 1.2 MB
STS-3 155 Mbps | 1.8 MB
STS-12 622 Mbps | 7.4 MB
STS-24 1.2 Gbps 14.8 MB

Spring 2019

© CS 438 Staff, University of lllinois

56

;--%

Timeout

| AEE—

_Timeout

Pack
\et’

K

Packet lost

Spring 2019

Timeout

© CS 438 Staff, University of lllinois

__Timeout

| —Pack
: \et’

| A

CK

L

K

ACK lost
DUPLICATE
PACKET

_..Timeout

Timeout

Reasons for Retransmission

Early timeout
DUPLICATE
PACKETS

57

How Long Should Sender
Wait?

Sender sets a timeout to wait for an
ACK

o Too short
wasted retransmissions

o Too long
excessive delays when packet lost

Spring 2019 © CS 438 Staff, University of lllinois 58 -

TCP Round Trip Time and
Timeout

How should TCP set Estimating RTT
its timeout value? o SampleRTT
o Longerthan RTT Measured time from
But RTT varies segment transmission
until ACK receipt
o Too short . P
P fure fi t Will vary
remature timeou Want smoother
Unnecessary estimated RTT
retransmissions
Too| o Average several recent
© loolong measurements
Slow reaction to :
] Not just current
segment l0ss SampleRTT

Spring 2019 © CS 438 Staff, University of lllinois 59

TCP Adaptive Retransmission
Algorithm - Original

Theory
o Estimate RTT
o Multiply by 2 to allow for variations

Practice

o Use exponential moving average (a = 0.1 10 0.2)
o Estimate = (a) * measurement + (1- a) * estimate

o Influence of past sample decreases
exponentially fast

Spring 2019 © CS 438 Staff, University of lllinois 60

TCP Adaptive Retransmission
Algorithm - Original

Problem: What does an ACK really ACK?

o Was ACK in response to first, second, etc
transmission?

Sample
RTT

Spring 2019 © CS 438 Staff, University of lllinois 61

TCP Adaptive Retransmission
[Algorithm — Karn-Partridge

Algorithm

Exclude retransmitted packets from RTT
estimate

For each retransmission
Double RTT estimate
Exponential backoff from congestion

Spring 2019 © CS 438 Staff, University of lllinois 62 -

TCP Adaptive Retransmission
[Algorithm — Karn-Partridge

Problem

Still did not handle variations well

Did not solve network congestion
problems as well as desired

At high loads round trip variance is high

Spring 2019 © CS 438 Staff, University of lllinois 63 -

RTT (milliseconds)

Example RTT Estimation

— ¢ SampleRTT = Estimated RTT

Mn I

350

300

N

@)

o
—

N
o
o

-
&)
o

100

1 50 100
time (seconnds)

Spring 2019 © CS 438 Staff, University of lllinois 64

TCP Adaptive Retransmission
Algorithm — Jacobson

Algorithm

o Estimate variance of RTT

Calculate mean interpacket RTT deviation to
approximate variance

Use second exponential moving average
Dev = (B) * |IRTT _Est— Sample| + (1—) * Dev
B =0.25 A=0.125for RTT est
o Use variance estimate as component of RTT
estimate
Next RTT = RTT Est + 4 * Dev

o Protects against high jitter

Spring 2019 © CS 438 Staff, University of lllinois 65

TCP Adaptive Retransmission
[Algorithm — Jacobson

Notes

Algorithm is only as good as the granularity of
the clock

Accurate timeout mechanism is important for
congestion control

Spring 2019 © CS 438 Staff, University of lllinois 66

Evolution of TCP

1984
1975 Nagel’s algorithm
Three-way handshake to reduce overhead 1987
Raymond Tomlinson of small packets: Karn’s algorithm 1990
In SIGCOMM 75 predicts congestion to better estimate 4.3BSD Reno
collapse round-trip time fast retransmit
delayed ACK’s
1983
BSD Unix 4.2 1986 1988
1974 supports TCP/IP Congestion Van Jacpbson’s
TCP described by collapse algorithms
Vint Cerf and Bob Kahn observed congestion avoidance
In IEEE Trans Comm 1982 and congestion control
TCP & IP (most implemented in
RFC 793 & 791 4.3BSD Tahoe)

*IIIIIIII
1975 1980 1985 1990

Spring 2019 © CS 438 Staff, University of lllinois 67

TCP Through the 1990s

1996
SACK TCP
(Floyd et al)
Selective
Acknowledgement
1993 1994 1996 And beyond:
TCP Vegas ECN Hoe
(Brakmo et al) (Floyd) NewReno startup .

delay-based Explicit and loss recovery TCP in Challenged (eg

congestion avoidance Congestion
Notification

wireless) conditions;
faster flow completion;
lower latency; “incast”
problem; ...

1993 1994 1996

Spring 2019 © CS 438 Staff, University of lllinois 68

