
Network security

Fall 2019 © CS 438 Staff - University of Illinois 1

Security is a problem

n Networks are
¡ shared by many with differing goals and

interests
n No security = potential compromise!

¡ Exposure of your information
¡ Encryption is not enough!
¡ Still need data integrity, originality, and

timeliness!
Fall 2019 © CS 438 Staff - University of Illinois 2

Basic Requirements for
Secure Communication

n Availability
¡ Will the network deliver data?
¡ Infrastructure compromise, DDoS

n Authentication
¡ Who is this person/machine?
¡ Spoofing, phishing

n Integrity
¡ Do messages arrive in original form?

Fall 2019 © CS 438 Staff - University of Illinois 3

Basic Requirements for
Secure Communication

n Confidentiality
¡ Can adversary read the data?
¡ Sniffing, man-in-the-middle

n Provenance
¡ Who is responsible for this data?
¡ Forging responses, denying responsibility
¡ Not who sent the data, but who created it

Fall 2019 © CS 438 Staff - University of Illinois 4

Other Desirable Security
Properties

n Authorization
¡ Is user/machine allowed to do this action?
¡ Access controls

n Accountability/Attribution
¡ Who did this activity?

n Audit/forensics
¡ What occurred in the past?
¡ A broader notion of accountability/attribution

Fall 2019 © CS 438 Staff - University of Illinois 5

Other Desirable Security
Properties

n Appropriate use
¡ Is action consistent with policy?
¡ e.g., no spam; no games during business hours;

etc.
n Freedom from traffic analysis

¡ Can someone tell when I am sending and to
whom?

n Anonymity
¡ can someone tell I sent this packet?

Fall 2019 © CS 438 Staff - University of Illinois 6

Security in the internet

n Focus on basic requirements
n Simple cryptographic methods
n Cryptographic toolkit (Hash, Digital

Signature, …)
n PKIs and HTTPS
n Compromises, worms, and underground

market
n Dealing with DDoS

Fall 2019 © CS 438 Staff - University of Illinois 7

Basic Forms of Cryptography

Fall 2019 © CS 438 Staff - University of Illinois 8

Confidentiality through
Cryptography

n Cryptography
¡ Communication over insecure channel in the

presence of adversaries
n Studied for thousands of years

¡ See Singh’s The Code Book for an excellent
history

n Central goal
¡ How to encode information so that an adversary

can’t extract it …but a friend can

Fall 2019 © CS 438 Staff - University of Illinois 9

Confidentiality through
Cryptography

n General premise
¡ A key is required for decoding
¡ Give it to friends, keep it away from attackers

n Two different categories of encryption
¡ Symmetric

n Efficient, requires key distribution
¡ Asymmetric (Public Key)

n Computationally expensive, but no key distribution
problem

Fall 2019 © CS 438 Staff - University of Illinois 10

Symmetric Key Encryption

n Same key for encryption and decryption
¡ Both sender and receiver know key
¡ But adversary does not know key

n For communication, problem is key distribution
¡ How do the parties (secretly) agree on the key?

n What can you do with a huge key?
¡ One-time pad
¡ Huge key of random bits

n To encrypt/decrypt: just XOR with the key!
¡ Provably secure! …. provided:

n You never reuse the key…and it really is random/unpredictable
¡ Spies actually use these

Fall 2019 © CS 438 Staff - University of Illinois 11

Using Symmetric Keys

n Both the sender and the receiver use the
same secret keys

Fall 2019 © CS 438 Staff - University of Illinois

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext

12

Asymmetric Encryption (Public
Key)

n Idea
¡ Use two different keys, one to encrypt (e)

and one to decrypt (d)
¡ A key pair

n Crucial property
¡ knowing e does not give away d
¡ Therefore e can be public

n Everyone knows e!
Fall 2019 © CS 438 Staff - University of Illinois 13

Asymmetric Encryption (Public
Key)

n Alice wants to send to Bob
¡ Fetch Bob’s public key (say from Bob’s

home page)
¡ Encrypt message with Bob’s public key
¡ Alice can’t decrypt what she’s sending

to Bob …
¡ … but then, neither can anyone else

(except Bob)

Fall 2019 © CS 438 Staff - University of Illinois 14

Public Key / Asymmetric
Encryption
n Sender uses receiver’s public key

¡ Advertised to everyone
n Receiver uses complementary private key

¡ Must be kept secret

Fall 2019 © CS 438 Staff - University of Illinois

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

15

Works in Reverse Direction
Too!
n Sender uses his own private key
n Receiver uses complementary public key
n Allows sender to prove he knows private key

Fall 2019 © CS 438 Staff - University of Illinois

Internet
Decrypt with
public key

Encrypt with
private key

Plaintext Plaintext

Ciphertext

16

Realizing Public Key
Cryptography

n Invented in the 1970s (probably even as early as
the 1960s)
¡ Revolutionized cryptography

n How can we construct an encryption/decryption
algorithm with public/private properties?
¡ Answer: Number Theory

n Most fully developed approach: RSA
¡ Rivest / Shamir / Adleman, 1977; RFC 3447
¡ Based on modular multiplication of very large integers
¡ Very widely used (e.g., SSL/TLS for https)

Fall 2019 © CS 438 Staff - University of Illinois 17

Cryptographic Toolkit

n Confidentiality: Encryption
n Integrity: ?
n Authentication: ?
n Provenance: ?

Fall 2019 © CS 438 Staff - University of Illinois 18

Integrity: Cryptographic
Hashes

n Sender computes a digest of message m,
¡ i.e., H(m)
¡ H() is a publicly known hash function

n Send m in any manner
n Send digest d = H(m) to receiver in a secure way

¡ Using another physical channel
¡ Using encryption

n Receive m and d
¡ Receiver re-computes H(m) to see whether result agrees

with d

Fall 2019 © CS 438 Staff - University of Illinois 19

Operation of Hashing for
Integrity

Fall 2019 © CS 438 Staff - University of Illinois

InternetDigest
(MD5)

Plaintext

digest

Digest
(MD5)

=

digest’

NO

corrupted msg Plaintext

20

Cryptographically Strong
Hashes

n Hard to find collisions
¡ Adversary can’t find

two inputs that
produce same hash

¡ Hard to alter message
without modifying
digest

¡ Can succinctly refer to
large objects

Fall 2019 © CS 438 Staff - University of Illinois 21

Cryptographically Strong
Hashes

n Hard to invert
¡ Given hash, adversary

can’t find input that
produces it

¡ Can refer obliquely to
private objects (e.g.,
passwords)
n Send hash of object

rather than object
itself

Fall 2019 © CS 438 Staff - University of Illinois 22

Cryptographic Toolkit

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: ?
n Provenance: ?

Fall 2019 © CS 438 Staff - University of Illinois 23

Public Key Authentication

n Each party only knows the
other’s public key
¡ No secret key need be

shared
n A encrypts a nonce

(random number) x using
B’s public key

n B proves it can recover x
n A can authenticate itself to

B in the same way

Fall 2019 © CS 438 Staff - University of Illinois

E(x, PublicB)

x

A B

24

Cryptographic Toolkit

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: Decrypting nonce
n Provenance: ?

Fall 2019 © CS 438 Staff - University of Illinois 25

Digital Signatures

n Alice publishes public key KE
n Prove she is Alice!

¡ Send a message x encrypted
with her private key KD

¡ Anyone w/ public key KE can
recover x, verify that Alice
must have sent the message

¡ It provides a digital signature
¡ Alice can’t deny later deny it

Þ non-repudiation

Fall 2019 © CS 438 Staff - University of Illinois 26

Our Crypto Toolkit

n Secure key distribution
¡ Symmetric ciphers (e.g., AES) offer fast,

presumably strong confidentiality
n Public key cryptography

¡ No need of secure key distribution
¡ But not as computationally efficient

n Often addressed by using public key crypto to exchange
a session key then used for symmetric crypto

¡ Not guaranteed secure
n but major result if not

Fall 2019 © CS 438 Staff - University of Illinois 27

Our Crypto Toolkit

n Cryptographically strong hash functions
¡ Building block for integrity (e.g., SHA-1, SHA-2)
¡ As well as providing concise digests
¡ And providing a way to prove you know

something (e.g., passwords) without revealing it
(non-invertibility)

¡ But: worrisome recent results regarding their
strength

n Public key also gives us signatures
¡ Including sender non-repudiation

Fall 2019 © CS 438 Staff - University of Illinois 28

What is Missing?

n How can you relate a key to a person?
¡ Trust (PKIs)

n How do all these pieces fit together?
¡ SSL

n What about availability?

Fall 2019 © CS 438 Staff - University of Illinois 29

Public Key Infrastructure (PKI)

n Public key crypto is very powerful
¡ But tying public keys to real world

identities is quite hard
n PKI: Trust distribution mechanism

¡ Authentication via Digital Certificates
¡ Trust doesn’t mean someone is honest,

just that they are who they say they are…

Fall 2019 © CS 438 Staff - University of Illinois 30

Managing Trust

n The most solid level of trust is rooted in our
direct personal experience
¡ E.g., Alice’s trust that Bob is Bob
¡ Clearly doesn’t scale to a global network!

n In its absence, we rely on delegation
¡ Alice trusts Bob’s identity because Charlie

attests to it ….
¡ …. and Alice trusts Charlie

Fall 2019 © CS 438 Staff - University of Illinois 31

Managing Trust, con’t

n Trust is not completely transitive
¡ Should Alice trust Bob because she trusts Charlie …
¡ … and Charlie vouches for Donna …
¡ … and Donna says Eve is trustworthy …
¡ … and Eve vouches for Bob’s identity?

n Two models of delegating trust
¡ Rely on your set of friends and their friends

n “Web of trust”, e.g., PGP
¡ Rely on trusted, well-known authorities (and their minions)

n “Trusted root”, e.g., HTTPS
Fall 2019 © CS 438 Staff - University of Illinois 32

PKI Conceptual Framework

n Trusted-Root PKI
¡ Basis: well-known public

key serves as root of a
hierarchy

¡ Managed by a Certificate
Authority (CA)

Fall 2019 © CS 438 Staff - University of Illinois 33

PKI Conceptual Framework

n Publishing a public key
¡ CA digitally signs

statement indicating that
they agree (“certify”) that it
is indeed your key

¡ This bunch of bits is a
certificate for your key
n Includes both your public

key and the signed
statement

¡ Anyone that knows CA’s
public key can verify the
signature

Fall 2019 © CS 438 Staff - University of Illinois 34

PKI Conceptual Framework

n Delegation of trust to
the CA
¡ They’d better not screw

up (duped into signing
bogus key)

¡ They’d better have
procedures for dealing
with stolen keys

¡ Note: can build up a
hierarchy of signing

Fall 2019 © CS 438 Staff - University of Illinois 35

Digital Certificate

n Binds an entity with its corresponding
public key
¡ Signed by a recognized and trusted

authority, i.e., Certification Authority (CA)
¡ Provide assurance that a particular public

key belongs to a specific entity

Fall 2019 © CS 438 Staff - University of Illinois 36

Digital Certificate

n Example: certificate of entity Y
Cert = E({nameY, KYpublic}, KCAprivate)
¡ KCAprivate: private key of Certificate Authority
¡ nameY: name of entity Y
¡ KYpublic: public key of entity Y

n In fact, they may sign whatever bits you give them

n Your browser has a bunch of CAs

Fall 2019 © CS 438 Staff - University of Illinois 37

Certification Authority

n People, processes responsible for creation, delivery and
management of digital certificates

n Organized in an hierarchy
¡ To verify signature chain, follow hierarchy up to root

n Need to trust the CA’s internal security
¡ Not always a good idea … http://goo.gl/84l3i

CA-1 CA-2

Root CA
Fall 2019 © CS 438 Staff - University of Illinois 38

Registration Authority

n People & processes responsible for
¡ Authenticating the identity of new entities (users

or computing devices),
n e.g. by phone, or physical presence + ID

¡ Issuing requests to CA for certificates

n The CA must trust the Registration Authority

Fall 2019 © CS 438 Staff - University of Illinois 39

Certificate Repository

n A database accessible to all users of a PKI
n Contains

¡ Digital certificates
¡ Policy information associated with certs
¡ Certificate revocation information

n Vital to be able to identify certs that have
been compromised

n Usually done via a revocation list

Fall 2019 © CS 438 Staff - University of Illinois 40

Putting It All Together: HTTPS

n Steps after clicking on https://www.amazon.com
n https = “Use HTTP over SSL/TLS”

¡ SSL = Secure Socket Layer
¡ TLS = Transport Layer Security

n Successor to SSL, and compatible with it
¡ RFC 4346

n Provides security layer (authentication, encryption)
on top of TCP
¡ Fairly transparent to the app

Fall 2019 © CS 438 Staff - University of Illinois 41

HTTPS Connection (SSL/TLS)

Fall 2019 © CS 438 Staff - University of Illinois

n Browser (client)
connects via TCP to
Amazon’s HTTPS
server

n Client sends over list of
crypto protocols it
supports

n Server picks protocols
to use for this session

n Server sends over its
certificate

n (all of this is in the clear)

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support
(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data

42

Inside the Server’s Certificate

n Name associated with cert (e.g., Bank of America)

Fall 2019 © CS 438 Staff - University of Illinois 43

Inside the Server’s Certificate

n Name associated with cert (e.g., Bank of America)
n BoA’s public key
n A bunch of auxiliary info (physical address, type of

cert, expiration time)
n URL to revocation center to check for revoked keys
n Name of certificate’s signatory (who signed it)
n A public-key signature of a hash (MD5) of all this

¡ Constructed using the signatory’s private RSA key

Fall 2019 © CS 438 Staff - University of Illinois 44

Validating Amazon’s Identity

n Browser retrieves cert belonging to the signatory
¡ These are hardwired into the browser

n If it can’t find the cert, then warns the user that site has not
been verified
¡ And may ask whether to continue
¡ Note, can still proceed, just without authentication

n Browser uses public key in signatory’s cert to decrypt
signature
¡ Compares with its own MD5 hash of Amazon’s cert

n Assuming signature matches, now have high confidence it’s
indeed Amazon …
¡ … assuming signatory is trustworthy!

Fall 2019 © CS 438 Staff - University of Illinois 45

HTTPS Connection (SSL/TLS)

n Browser constructs a random
session key K

n Browser encrypts K using
Amazon’s public key

n Browser sends E(K, KApublic) to
server

n Browser displays
n All subsequent communication

encrypted w/ symmetric cipher
using key K
¡ e.g., client can authenticate

using a password

Browser Amazon

Here’s my cert

~1 KB of data

E(K, KApublic)
K

K

E(password …, K)

E(response …, K)

Agreed

Fall 2019 © CS 438 Staff - University of Illinois 46

Solutions for basic
security requirements

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: Decrypting nonce
n Provenance: Digital signature

¡ Human-level provenance: PKI

n Availability: ?
Fall 2019 47© CS 438 Staff - University of Illinois

Solutions for basic
security requirements

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: Decrypting nonce
n Provenance: Digital signature

¡ Human-level provenance: PKI

n Availability: ?

Crypto lets us convert “messy
failures” into “clean failures” [Dave

Clark]

e.g., authentication failure becomes
connection drop

OK, so what about availability?

Fall 2019 48© CS 438 Staff - University of Illinois

Protecting Availability

Fall 2019 49© CS 438 Staff - University of Illinois

Threats

50

10

Several questions were added based upon suggestions by respondents to a previous survey, or as a result of direct feedback
from one of the many polled network security or operations forums from which survey review was expressly solicited.

Arbor Networks intends to continue conducting this survey annually, and sharing the results with the global Internet security
and operations communities. Our goals are: 1) to continually refine the questionnaire in order to provide more timely, detailed
and relevant information in future editions; and 2) to increase the scope of the survey respondent pool to provide greater
representation of the global Internet network operations community.

Most Significant Operational Threats

Sixty-eight percent of respondents indicated that DDoS attacks toward end customers were a significant operational threat
encountered during this 12-month survey period (Figure 7). Interestingly, 61 percent also identified misconfigurations and/or
equipment failures as contributing to outages during the survey period. Botnets and their unwanted effects (including DDoS
attacks) were rated highly, as were DDoS attacks targeted at operators’ ancillary support services, such as DNS, Web portals
and email servers. Spam and VoIP-related attacks were also included in the “Other” category.

With regards to application-layer attacks (Figure 8, page 11), respondents listed HTTP, DNS and SMTP as the most-frequently
targeted applications, with SIP/VoIP and HTTP/S coming in at fourth and fifth place, respectively. Our anecdotal experience
working with operators over the last year indicates that: 1) attacks against the reputation of individual email senders, known as
“joe jobs,” are on the increase; and 2) both SMTP servers and commercial anti-spam systems have suffered serious losses of
availability due to these incidents.

Targeted applications in the “Other” category include SSH, online gaming, FTP, Telnet, RDP, SQL databases, IRC, PHP and
TCP port 123.

Worldwide Infrastructure Security Report, Volume VI

Most Significant Operational Threats

Infrastructure Outages Due to Failures

DDoS Attacks Toward Infrastructure

DDoS Attacks Toward Services

Other

Zero-Day Exploits

Undercapacity for Bandwidth

Botted/Compromised Hosts on Network

New Vulnerabilities

DDoS Attacks Toward Customers

Infrastructure Outages Due to DDoS Attacks

70%

60%

50%

40%

30%

20%

10%

0%

Su
rv

ey
R

es
po

nd
en

ts

Figure 7
Source: Arbor Networks, Inc.

[Arbor Networks Security Report 2010]

Fall 2019 © CS 438 Staff - University of Illinois

Threats to Availability

n Infrastructure compromise (e.g. BGP, DNS):
¡ Attack removes service from operation
¡ Design protocols to have limited Byzantine vulnerability
¡ Prevent outsiders from posing as infrastructure (crypto)

n Denial-of-Service Attacks
¡ Attack consumes service resources so legitimate users

can’t get any
¡ What are they?
¡ How can we defend against them?

Fall 2019 51© CS 438 Staff - University of Illinois

Infrastructure compromise
Example #1: BGP

n Any router can advertise any IP prefix to any other
router
¡ Or, advertise fake path through attacker to legitimate

owner
¡ Or, advertise anything …

n Once advertisement attracts incoming traffic…
¡ Just drop it (“black hole”): denial of service attack
¡ Eavesdrop
¡ Impersonate real destination
¡ Send spam using someone else’s IPs; then disappear…

Fall 2019 52© CS 438 Staff - University of Illinois

Infrastructure compromise
Example #1: BGP

n No general-purpose automatic way of detecting
suspicious or incorrect advertisements in BGP

n Eventual solution: secure variants of BGP
incorporate cryptographic signatures
¡ Doesn’t fix all traffic attraction attacks

Fall 2019 53© CS 438 Staff - University of Illinois

Infrastructure compromise
Example #2: DNS

n What security issues does the design & operation of
the Domain Name System raise?

54

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Fall 2019 © CS 438 Staff - University of Illinois

DNS attack summary

n DNS currently lacks authentication
¡ Can’t tell if reply comes from the correct source
¡ Can’t tell if correct source tells the truth
¡ Malicious source can insert extra (mis)information
¡ Malicious bystander can spoof (mis)information
¡ Playing with caching lifetimes adds extra power to attacks

n More importantly, example of how security was
largely ignored in the original design of the Internet

Fall 2019 © CS 438 Staff - University of Illinois 59

Denial of Service (DoS)

n Attacker prevents legitimate users from
using something (network, server)

n Increased workload
¡ The overloaded component responds slowly or

not at all to legitimate requests.
n Consider the following...

Fall 2019 © CS 438 Staff - University of Illinois 60

Denial of Service

This slide is intended to demonstrate the concept of denial of
service by placing useful information in the middle of a
paragraph of drivel. If you’ve gotten this far, you may want to
jump to the middle or scan around, but you’re unlikely to find
the important part before I skip to the next slide, simulating the
fact that the garbage doesn’t stop coming in a denial of
service attack. In fact, in some cases you may get nothing but
garbage. If you recall how IP datagram services work, for
example, then you can reason about the likelihood of
legitimate requests spaced by increasingly long TCP timeouts
finding an empty queue slot in a router fed from another input
by a continuous stream of bogus packets. When a slot opens
up, it is quickly grabbed by the next bogus packets and rarely
available for the real thing.

Fall 2019 © CS 438 Staff - University of Illinois 61

Denial of Service

n So did you get the point?

Fall 2019 © CS 438 Staff - University of Illinois 62

read

n During a denial of service attack,
do servers continue to receive
client requests?

Denial of Service

This slide is intended to demonstrate the concept of denial of
service by placing useful information in the middle of a
paragraph of drivel. If you’ve gotten this far, you may want to
jump to the middle or scan around, but you’re unlikely to find
the important part before I skip to the next slide, simulating the
fact that the garbage doesn’t stop coming in a denial of
service attack. In fact, in some cases you may get nothing but
garbage. If you recall how IP datagram services work, for
example, then you can reason about the likelihood of
legitimate requests spaced by increasingly long TCP timeouts
finding an empty queue slot in a router fed from another input
by a continuous stream of bogus packets. When a slot opens
up, it is quickly grabbed by the next bogus packets and rarely
available for the real thing.

Fall 2019 © CS 438 Staff - University of Illinois 63

In fact, in some cases you may get nothing but
garbage.

Denial of Service (DoS)

n Attacker prevents legitimate users from
using something (network, server)

n Motives?
¡ Retaliation
¡ Extortion (e.g., betting sites just before big

matches)
¡ Commercial advantage (disable your competitor)
¡ Cripple defenses (e.g., firewall) to enable

broader attack

Fall 2019 © CS 438 Staff - University of Illinois 64

Denial of Service (DoS)

n Often done via some form of flooding
n Can be done at different semantic levels

¡ Network
n Clog a link or router with a huge rate of packets

¡ Transport
n Overwhelm victim’s ability to handle connections

¡ Application
n Overwhelm victim’s ability to handle requests

Fall 2019 © CS 438 Staff - University of Illinois 65

Fall 2019 © CS 438 Staff - University of Illinois 66

How Does It Traditionally
Work?

n Example: IP spoofing
¡ Remember the TCP SYN segment?

n Client sends SYN to server
n Server reserves queue entry
n Server sends back SYN

¡ Server sends back SYN to where?
n Client IP must be included in first SYN
n What if the client lies?
“Hi, please contact Riccardo’s computer.”

Fall 2019 © CS 438 Staff - University of Illinois 67

IP Spoofing

n Pretending to be Riccardo’s computer
¡ It responds
¡ Queue resources freed up
¡ Not terribly effective

n Instead, pick a computer that probably
won’t respond
¡ A random number works nicely
¡ Return SYN gets lost
¡ Server waits 75 seconds before freeing queue

entry
n What are the key elements?

Fall 2019 © CS 438 Staff - University of Illinois 68

Key Elements of Denial of
Service Attacks

n Expansion in required work
¡ Easy for me, hard for you
¡ In spoofing,

n Creating and sending a SYN: a few microseconds
n Timing out a queue entry: 75 seconds

n Protocols that admit starvation
¡ IP routers

n Drop datagrams when output buffer full
n Independent of source input

¡ Result is that clients can be starved
¡ Painfully slow even without starvation

Fall 2019 © CS 438 Staff - University of Illinois 69

What’s New about the Recent
Attacks?

n Expansion factor allows attack by a few or
one

n Alternative
¡ Attack by many
¡ Requires many resources distributed across

Internet
¡ Benefits from expansion, too

n Attack software
¡ Probably installed indirectly
¡ Apparently resident for some time
¡ No significant trail remains

Fall 2019 © CS 438 Staff - University of Illinois 70

What Changed to Make These
Attacks Possible?

n Change of Internet character
¡ Many more machines
¡ Many more naive users
¡ Much more complex software

n Old Internet
¡ Very little interpretation of data (e.g., e-mail)
¡ Operating system bugs relative secure (by

obscurity)
¡ Security-savvy administrator required

(so security breaches detected and repaired)

Fall 2019 © CS 438 Staff - University of Illinois 71

Denial of Service Attacks in
the New Internet

n New Internet
¡ Point-and-click network installation
¡ Very broad interfaces
¡ Even transparent code encapsulation
¡ And self-installing “plug-ins”!
¡ Public source operating systems, too
¡ (and frustrated security gurus writing tools to eliminate any

remaining obscurity)
n Example of attack:

¡ Abuse bug in Internet Explorer to install flashing window
telling owner to download patch

¡ What else might someone install instead?

Fall 2019 © CS 438 Staff - University of Illinois 72

IP Spoofing Countermeasures

n IP spoofing
¡ Abuses TCP connection queue time expansion
¡ Considered unsolvable for quite some time
¡ Solved by ingenious use of cryptography

n Solution
¡ Return one-use key with response SYN

segment
¡ Reserve no queue resources
¡ ACK to second SYN (third step of setup) must

return the key
¡ IP spoofing never sends such an ACK

Denial of Service (DoS)

14

Worldwide Infrastructure Security Report, Volume VI

Sixty-five percent of respondents reported that the highest-bandwidth DDoS attack they experienced during this survey
period was directed at their end customers, while 26 percent reported that their own ancillary support services such as DNS
and Web portals were targeted (Figure 14). Eight percent indicated that their own network infrastructure was the target of
the highest-bandwidth attack they experienced.

As shown in Figure 15, 47 percent of respondents indicated that they experienced 1 to 10 DDoS attacks per month during
the survey period, while an additional 47 percent experienced 10 to 500 or more DDoS attacks per month.

Target of Highest-Bandwidth DDoS Attack

Infrastructure OtherServiceCustomer

70%

60%

50%

40%

30%

20%

10%

0%

Su
rv

ey
R

es
po

nd
en

ts

Figure 14
Source: Arbor Networks, Inc.

10-20

100-500 500+

1-10

Average Number of DDoS Attacks per Month

None

50-100

20-50

50%

40%

30%

20%

10%

0%

Su
rv

ey
R

es
po

nd
en

ts

Figure 15
Source: Arbor Networks, Inc.

Fall 2019 73© CS 438 Staff - University of Illinois

Denial of Service (DoS)

11

Top security concerns for the next twelve months (Figure 9) include attacks against end customers; attacks against operators’
ancillary support services such as DNS and Web portals; attacks directed at operators’ network infrastructure devices; botnet
activities, which include DDoS attacks; and, interestingly, new vulnerabilities.

Worldwide Infrastructure Security Report, Volume VI

Layer 7 DDoS Attacks

SMTP OtherDNSHTTP HTTPSSIP/VoIP

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Su
rv

ey
R

es
po

nd
en

ts

Figure 8
Source: Arbor Networks, Inc.

60%

50%

40%

30%

20%

10%

0%

Su
rv

ey
R

es
po

nd
en

ts

Zero-Day ExploitsNew Vulnerabilities

Infrastructure Outages Due to Failure

Undercapacity of Bandwidth

Botted/Compromised Hosts on Network

DDoS Attacks Toward Services

DDoS Attacks Toward Infrastructure

Security Concerns

DDoS Attacks Toward Customers

Infrastructure Outages Due to DDoS Attacks

Other

Figure 9
Source: Arbor Networks, Inc.

Fall 2019 74© CS 438 Staff - University of Illinois

DoS: Network Flooding

n Goal is to clog network link(s) leading to
victim
¡ Either fill the link, or overwhelm their routers
¡ Users can’t access victim server due to

congestion
n Attacker sends traffic to victim as fast as

possible
¡ It will often use (many) spoofed source

addresses

Fall 2019 © CS 438 Staff - University of Illinois 75

DoS: Network Flooding

n Using multiple hosts (slaves, or zombies)
yields a Distributed Denial-of-Service attack,
aka DDoS

n Traffic can be varied (sources, destinations,
ports, length) so no simple filter matches it

n If attacker has enough slaves, often doesn’t
need to spoof - victim can’t shut them down
anyway! :-(

Fall 2019 © CS 438 Staff - University of Illinois 76

Distributed Denial-of-Service
(DDoS)

Fall 2019 © CS 438 Staff - University of Illinois 77

Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic directs
slaves at victim

src = random
dst = victim

Slaves send streams of traffic
(perhaps spoofed) to victim

Very Nasty DoS Attack:
Reflectors

n Reflection
¡ Cause one non-compromised host to help flood another
¡ e.g., host A sends DNS request or TCP SYN with source

V to server R.

Fall 2019 © CS 438 Staff - University of Illinois 78

Reflector (R)Internet

Attacker (A)

RV

Victim (V)

n Reflection
¡ Cause one non-compromised host to help flood another
¡ e.g., host A sends DNS request or TCP SYN with source

V to server R.

Reflector (R)

Internet

Attacker (A)

V R

Victim (V)

Very Nasty DoS Attack:
Reflectors

Fall 2019 © CS 438 Staff - University of Illinois 79

Diffuse DDoS: Reflector Attack

Fall 2019 © CS 438 Staff - University of Illinois 80

Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic
directs slaves at
victim & reflectors

Request: src = victim
dst = reflector

Reflectors send streams of
non-spoofed but
unsolicited traffic to victim

Reflector 1

Reflector 9

Reflector 4

Reflector 2

Reflector 3

Reflector 5

Reflector 6
Reflector 7

Reflector 11
Reflector 8

Reflector 10

Reply: src = reflector
dst = victim

Defending Against Network
Flooding

n How do we defend against such floods?
n Answer: we don’t! (not completely.)

¡ Big problem today!
n Techniques exist to trace spoofed traffic

back to origins
¡ Not useful in face of a large attack

n Techniques exist to filter traffic
¡ A well-designed flooding stream defies stateless

filtering
Fall 2019 © CS 438 Staff - University of Illinois 81

Defending Against Network
Flooding

n Best solutions to date
¡ Overprovision - have enough raw capacity that

it’s hard to flood your links
n Largest confirmed botnet to date: 1.5 million hosts
n Floods seen to date: as high as 100 Gbps

¡ Distribute your services - force attacker to flood
many points
n e.g., the root name servers

Fall 2019 © CS 438 Staff - University of Illinois 82

Proposed Solutions

n Network-level attacks
¡ Capabilities: don’t let flows send without

permission
¡ Shut-up message

n Application-level attacks
¡ Proof-of-work
¡ Ask clients to send more

Fall 2019 © CS 438 Staff - University of Illinois 83

Hooray!

We solved security!

Fall 2019 © CS 438 Staff - University of Illinois

…or not…It is a Big Bad
World Out There…

84

Host Compromise

n Tricking a host into executing on your behalf
n Can consider what is attacked (server or

client) and the semantic level at which it is
attacked

n Attacks on servers: client sends subversive
requests
¡ Happens at attacker’s choosing
¡ Some hosts are servers unknowingly!

Fall 2019 © CS 438 Staff - University of Illinois 85

Host Compromise

n Attacks on clients: server (attacker) waits for
client to connect, sends it a subversive reply
¡ e.g., “drive-by” spyware
¡ e.g., 2006 study found 15% of popular P2P files

infected by one of 52 different viruses

Fall 2019 © CS 438 Staff - University of Illinois 86

Automated Compromise:
Worms

n When attacker compromises a host, they can instruct it to do
whatever they want

n Instructing it to find more vulnerable hosts to repeat the
process creates a worm: a program that self-replicates across
a network
¡ Often spread by picking 32-bit Internet addresses at random to

probe …
¡ … but this isn’t fundamental

n As the worm repeatedly replicates, it grows exponentially fast
because each copy of the worm works in parallel to find more
victims

Fall 2019 © CS 438 Staff - University of Illinois 87

Worms: Exponentially Fast ….
and Big

n Morris Worm (1988): thousands?
n Code Red 1 (2001)

¡ 369K hosts in 10 hours
n Blaster (2003)

¡ 9M hosts in 9 days
¡ 25M hosts total

n Slammer (2003)
¡ 75K hosts … in < 10 minutes
¡ Peak scanning rate: 55M

addresses/sec
n Limited by Internet’s capacity

n Theoretical worms
¡ 1M hosts in 1.3 sec (2004)
¡ $50B+ damage (2004)

88Fall 2019 © CS 438 Staff - University of Illinois

Automated Compromise: Bots

n Big worms are flashy but rare …
n With the commercialization of malware, tool of

choice has shifted to the less noisy, more directly
controlled botnets

n When host is (automatically) compromised, don’t
continue propagation
¡ Instead install a command and control platform (a bot)

n Now can monetize malware: sell access to bots
¡ Spamming, phishing web sites, flooding attacks
¡ “Crook’s Google Desktop”: sell capability of searching the

contents of 100,000s of hosts
Fall 2019 © CS 438 Staff - University of Illinois 89

