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Security is a problem

n Networks are
¡ shared by many with differing goals and 

interests
n No security = potential compromise!

¡ Exposure of your information
¡ Encryption is not enough!
¡ Still need data integrity, originality, and 

timeliness!
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Basic Requirements for
Secure Communication

n Availability
¡ Will the network deliver data?
¡ Infrastructure compromise, DDoS

n Authentication
¡ Who is this person/machine?
¡ Spoofing, phishing

n Integrity
¡ Do messages arrive in original form?

Fall 2019 © CS 438 Staff - University of Illinois 3



Basic Requirements for
Secure Communication

n Confidentiality
¡ Can adversary read the data?
¡ Sniffing, man-in-the-middle

n Provenance
¡ Who is responsible for this data?
¡ Forging responses, denying responsibility
¡ Not who sent the data, but who created it
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Other Desirable Security 
Properties

n Authorization
¡ Is user/machine allowed to do this action?
¡ Access controls

n Accountability/Attribution
¡ Who did this activity?

n Audit/forensics
¡ What occurred in the past?
¡ A broader notion of accountability/attribution
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Other Desirable Security 
Properties

n Appropriate use
¡ Is action consistent with policy?
¡ e.g., no spam; no games during business hours; 

etc.
n Freedom from traffic analysis

¡ Can someone tell when I am sending and to 
whom?

n Anonymity
¡ can someone tell I sent this packet?
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Security in the internet

n Focus on basic requirements
n Simple cryptographic methods
n Cryptographic toolkit (Hash, Digital 

Signature, …)
n PKIs and HTTPS
n Compromises, worms, and underground 

market
n Dealing with DDoS

Fall 2019 © CS 438 Staff - University of Illinois 7



Basic Forms of Cryptography
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Confidentiality through 
Cryptography

n Cryptography
¡ Communication over insecure channel in the 

presence of adversaries
n Studied for thousands of years

¡ See Singh’s The Code Book for an excellent 
history

n Central goal
¡ How to encode information so that an adversary 

can’t extract it …but a friend can
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Confidentiality through 
Cryptography

n General premise
¡ A key is required for decoding
¡ Give it to friends, keep it away from attackers

n Two different categories of encryption
¡ Symmetric

n Efficient, requires key distribution
¡ Asymmetric (Public Key)

n Computationally expensive, but no key distribution 
problem
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Symmetric Key Encryption

n Same key for encryption and decryption
¡ Both sender and receiver know key
¡ But adversary does not know key

n For communication, problem is key distribution
¡ How do the parties (secretly) agree on the key?

n What can you do with a huge key? 
¡ One-time pad
¡ Huge key of random bits

n To encrypt/decrypt: just XOR with the key!
¡ Provably secure!    …. provided:

n You never reuse the key…and it really is random/unpredictable
¡ Spies actually use these
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Using Symmetric Keys 

n Both the sender and the receiver use the 
same secret keys
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Internet
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secret key

Plaintext Plaintext
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Asymmetric Encryption (Public 
Key)

n Idea 
¡ Use two different keys, one to encrypt (e) 

and one to decrypt (d)
¡ A key pair

n Crucial property
¡ knowing e does not give away d
¡ Therefore e can be public

n Everyone knows e!
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Asymmetric Encryption (Public 
Key)

n Alice wants to send to Bob
¡ Fetch Bob’s public key (say from Bob’s 

home page) 
¡ Encrypt message with Bob’s public key
¡ Alice can’t decrypt what she’s sending 

to Bob …
¡ …  but then, neither can anyone else 

(except Bob)
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Public Key / Asymmetric 
Encryption
n Sender uses receiver’s public key

¡ Advertised to everyone
n Receiver uses complementary private key

¡ Must be kept secret
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Works in Reverse Direction 
Too!
n Sender uses his own private key
n Receiver uses complementary public key
n Allows sender to prove he knows private key
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Realizing Public Key 
Cryptography

n Invented in the 1970s (probably even as early as 
the 1960s)
¡ Revolutionized cryptography

n How can we construct an encryption/decryption 
algorithm with public/private properties? 
¡ Answer: Number Theory

n Most fully developed approach: RSA
¡ Rivest / Shamir / Adleman, 1977; RFC 3447
¡ Based on modular multiplication of very large integers
¡ Very widely used (e.g., SSL/TLS for https)
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Cryptographic Toolkit

n Confidentiality: Encryption
n Integrity: ?
n Authentication: ?
n Provenance: ?
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Integrity: Cryptographic 
Hashes

n Sender computes a digest of message m, 
¡ i.e., H(m)
¡ H() is a publicly known hash function

n Send m in any manner
n Send digest d = H(m) to receiver in a secure way

¡ Using another physical channel
¡ Using encryption

n Receive m and d
¡ Receiver re-computes H(m) to see whether result agrees 

with d
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Operation of Hashing for 
Integrity
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Cryptographically Strong 
Hashes

n Hard to find collisions
¡ Adversary can’t find 

two inputs that 
produce same hash

¡ Hard to alter message 
without modifying 
digest

¡ Can succinctly refer to 
large objects
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Cryptographically Strong 
Hashes

n Hard to invert
¡ Given hash, adversary 

can’t find input that 
produces it

¡ Can refer obliquely to 
private objects (e.g., 
passwords)
n Send hash of object 

rather than object 
itself
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Cryptographic Toolkit

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: ?
n Provenance: ?
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Public Key Authentication

n Each party only knows the 
other’s public key
¡ No secret key need be 

shared
n A encrypts a nonce 

(random number) x using 
B’s public key

n B proves it can recover x
n A can authenticate itself to 

B in the same way
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Cryptographic Toolkit

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: Decrypting nonce
n Provenance: ?
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Digital Signatures

n Alice publishes public key KE
n Prove she is Alice!

¡ Send a message x encrypted 
with her private key KD

¡ Anyone w/ public key KE can 
recover x, verify that Alice 
must have sent the message

¡ It provides a digital signature
¡ Alice can’t deny later deny it 

Þ non-repudiation
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Our Crypto Toolkit

n Secure key distribution
¡ Symmetric ciphers (e.g., AES) offer fast, 

presumably strong confidentiality
n Public key cryptography 

¡ No need of secure key distribution
¡ But not as computationally efficient

n Often addressed by using public key crypto to exchange 
a session key then used for symmetric crypto 

¡ Not guaranteed secure 
n but major result if not
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Our Crypto Toolkit

n Cryptographically strong hash functions 
¡ Building block for integrity (e.g., SHA-1, SHA-2)
¡ As well as providing concise digests
¡ And providing a way to prove you know 

something (e.g., passwords) without revealing it 
(non-invertibility)

¡ But: worrisome recent results regarding their 
strength

n Public key also gives us signatures
¡ Including sender non-repudiation
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What is Missing?

n How can you relate a key to a person?
¡ Trust (PKIs)

n How do all these pieces fit together?
¡ SSL

n What about availability?
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Public Key Infrastructure (PKI)

n Public key crypto is very powerful
¡ But tying public keys to real world 

identities is quite hard
n PKI: Trust distribution mechanism

¡ Authentication via Digital Certificates
¡ Trust doesn’t mean someone is honest, 

just that they are who they say they are…
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Managing Trust

n The most solid level of trust is rooted in our 
direct personal experience
¡ E.g., Alice’s trust that Bob is Bob
¡ Clearly doesn’t scale to a global network!

n In its absence, we rely on delegation
¡ Alice trusts Bob’s identity because Charlie 

attests to it ….
¡ …. and Alice trusts Charlie
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Managing Trust, con’t

n Trust is not completely transitive
¡ Should Alice trust Bob because she trusts Charlie …
¡ … and Charlie vouches for Donna …
¡ … and Donna says Eve is trustworthy …
¡ … and Eve vouches for Bob’s identity?

n Two models of delegating trust
¡ Rely on your set of friends and their friends

n “Web of trust”, e.g., PGP
¡ Rely on trusted, well-known authorities (and their minions)

n “Trusted root”,  e.g., HTTPS
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PKI Conceptual Framework

n Trusted-Root PKI
¡ Basis: well-known public 

key serves as root of a 
hierarchy

¡ Managed by a Certificate 
Authority (CA)
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PKI Conceptual Framework

n Publishing a public key
¡ CA digitally signs 

statement indicating that 
they agree (“certify”) that it 
is indeed your key

¡ This bunch of bits is a 
certificate for your key
n Includes both your public 

key and the signed 
statement

¡ Anyone that knows CA’s 
public key can verify the 
signature
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PKI Conceptual Framework

n Delegation of trust to 
the CA
¡ They’d better not screw 

up (duped into signing 
bogus key)

¡ They’d better have 
procedures for dealing 
with stolen keys

¡ Note: can build up a 
hierarchy of signing
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Digital Certificate

n Binds an entity with its corresponding 
public key
¡ Signed by a recognized and trusted 

authority, i.e., Certification Authority (CA)
¡ Provide assurance that a particular public 

key belongs to a specific entity
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Digital Certificate

n Example: certificate of entity Y
Cert = E({nameY, KYpublic}, KCAprivate)
¡ KCAprivate: private key of Certificate Authority
¡ nameY: name of entity Y
¡ KYpublic: public key of entity Y

n In fact, they may sign whatever bits you give them

n Your browser has a bunch of CAs
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Certification Authority

n People, processes responsible for creation, delivery and 
management of digital certificates

n Organized in an hierarchy
¡ To verify signature chain, follow hierarchy up to root

n Need to trust the CA’s internal security
¡ Not always a good idea … http://goo.gl/84l3i

CA-1 CA-2

Root CA
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Registration Authority

n People & processes responsible for
¡ Authenticating the identity of new entities (users 

or computing devices), 
n e.g. by phone, or physical presence + ID

¡ Issuing requests to CA for certificates

n The CA must trust the Registration Authority
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Certificate Repository

n A database accessible to all users of a PKI
n Contains

¡ Digital certificates
¡ Policy information associated with certs
¡ Certificate revocation information 

n Vital to be able to identify certs that have 
been compromised

n Usually done via a revocation list
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Putting It All Together: HTTPS

n Steps after clicking on https://www.amazon.com
n https = “Use HTTP over SSL/TLS”

¡ SSL = Secure Socket Layer
¡ TLS = Transport Layer Security

n Successor to SSL, and compatible with it
¡ RFC 4346 

n Provides security layer (authentication, encryption) 
on top of TCP
¡ Fairly transparent to the app
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HTTPS Connection (SSL/TLS)
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n Browser (client) 
connects via TCP to 
Amazon’s HTTPS
server

n Client sends over list of 
crypto protocols it 
supports

n Server picks protocols 
to use for this session

n Server sends over its 
certificate

n (all of this is in the clear)

SYN

SYN ACK

ACK

Browser Amazon

Hello.  I support
(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
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Inside the Server’s Certificate

n Name associated with cert (e.g., Bank of America)
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Inside the Server’s Certificate

n Name associated with cert (e.g., Bank of America)
n BoA’s public key
n A bunch of auxiliary info (physical address, type of 

cert, expiration time)
n URL to revocation center to check for revoked keys
n Name of certificate’s signatory (who signed it)
n A public-key signature of a hash (MD5) of all this

¡ Constructed using the signatory’s private RSA key
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Validating Amazon’s Identity

n Browser retrieves cert belonging to the signatory
¡ These are hardwired into the browser

n If it can’t find the cert, then warns the user that site has not 
been verified
¡ And may ask whether to continue
¡ Note, can still proceed, just without authentication

n Browser uses public key in signatory’s cert to decrypt 
signature
¡ Compares with its own MD5 hash of Amazon’s cert

n Assuming signature matches, now have high confidence it’s 
indeed Amazon …
¡ … assuming signatory is trustworthy!
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HTTPS Connection (SSL/TLS)

n Browser constructs a random 
session key K

n Browser encrypts K using 
Amazon’s public key

n Browser sends E(K, KApublic) to 
server

n Browser displays
n All subsequent communication 

encrypted w/ symmetric cipher 
using key K
¡ e.g., client can authenticate 

using a password

Browser Amazon

Here’s my cert

~1 KB of data

E(K, KApublic)
K

K

E(password …, K)

E(response …, K)

Agreed
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Solutions for basic
security requirements

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: Decrypting nonce
n Provenance: Digital signature

¡ Human-level provenance: PKI

n Availability: ?
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Solutions for basic
security requirements

n Confidentiality: Encryption
n Integrity: Cryptographic Hash
n Authentication: Decrypting nonce
n Provenance: Digital signature

¡ Human-level provenance: PKI

n Availability: ?

Crypto lets us convert “messy 
failures” into “clean failures” [Dave 

Clark]

e.g., authentication failure becomes 
connection drop

OK, so what about availability?
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Protecting Availability
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Threats

50

10

Several questions were added based upon suggestions by respondents to a previous survey, or as a result of direct feedback
from one of the many polled network security or operations forums from which survey review was expressly solicited.

Arbor Networks intends to continue conducting this survey annually, and sharing the results with the global Internet security
and operations communities. Our goals are: 1) to continually refine the questionnaire in order to provide more timely, detailed
and relevant information in future editions; and 2) to increase the scope of the survey respondent pool to provide greater
representation of the global Internet network operations community.

Most Significant Operational Threats

Sixty-eight percent of respondents indicated that DDoS attacks toward end customers were a significant operational threat
encountered during this 12-month survey period (Figure 7). Interestingly, 61 percent also identified misconfigurations and/or
equipment failures as contributing to outages during the survey period. Botnets and their unwanted effects (including DDoS
attacks) were rated highly, as were DDoS attacks targeted at operators’ ancillary support services, such as DNS, Web portals
and email servers. Spam and VoIP-related attacks were also included in the “Other” category.

With regards to application-layer attacks (Figure 8, page 11), respondents listed HTTP, DNS and SMTP as the most-frequently
targeted applications, with SIP/VoIP and HTTP/S coming in at fourth and fifth place, respectively. Our anecdotal experience
working with operators over the last year indicates that: 1) attacks against the reputation of individual email senders, known as
“joe jobs,” are on the increase; and 2) both SMTP servers and commercial anti-spam systems have suffered serious losses of
availability due to these incidents.

Targeted applications in the “Other” category include SSH, online gaming, FTP, Telnet, RDP, SQL databases, IRC, PHP and
TCP port 123.

Worldwide Infrastructure Security Report, Volume VI

Most Significant Operational Threats

Infrastructure Outages Due to Failures 

DDoS Attacks Toward Infrastructure

DDoS Attacks Toward Services

Other

Zero-Day Exploits

Undercapacity for Bandwidth

Botted/Compromised Hosts on Network

New Vulnerabilities

DDoS Attacks Toward Customers

Infrastructure Outages Due to DDoS Attacks
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Figure 7
Source: Arbor Networks, Inc.

[Arbor Networks Security Report 2010]
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Threats to Availability

n Infrastructure compromise (e.g. BGP, DNS):
¡ Attack removes service from operation
¡ Design protocols to have limited Byzantine vulnerability
¡ Prevent outsiders from posing as infrastructure (crypto)

n Denial-of-Service Attacks
¡ Attack consumes service resources so legitimate users 

can’t get any
¡ What are they?
¡ How can we defend against them?

Fall 2019 51© CS 438 Staff - University of Illinois



Infrastructure compromise 
Example #1: BGP

n Any router can advertise any IP prefix to any other 
router
¡ Or, advertise fake path through attacker to legitimate 

owner
¡ Or, advertise anything …

n Once advertisement attracts incoming traffic…
¡ Just drop it (“black hole”): denial of service attack
¡ Eavesdrop
¡ Impersonate real destination
¡ Send spam using someone else’s IPs; then disappear…
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Infrastructure compromise 
Example #1: BGP

n No general-purpose automatic way of detecting 
suspicious or incorrect advertisements in BGP

n Eventual solution: secure variants of BGP 
incorporate cryptographic signatures
¡ Doesn’t fix all traffic attraction attacks
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Infrastructure compromise 
Example #2: DNS

n What security issues does the design & operation of 
the Domain Name System raise?

54

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits
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DNS attack summary

n DNS currently lacks authentication
¡ Can’t tell if reply comes from the correct source
¡ Can’t tell if correct source tells the truth
¡ Malicious source can insert extra (mis)information
¡ Malicious bystander can spoof (mis)information
¡ Playing with caching lifetimes adds extra power to attacks

n More importantly, example of how security was 
largely ignored in the original design of the Internet
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Denial of Service (DoS)

n Attacker prevents legitimate users from 
using something (network, server)

n Increased workload
¡ The overloaded component responds slowly or 

not at all to legitimate requests.
n Consider the following...
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Denial of Service

This slide is intended to demonstrate the concept of denial of 
service by placing useful information in the middle of a 
paragraph of drivel.  If you’ve gotten this far, you may want to 
jump to the middle or scan around, but you’re unlikely to find 
the important part before I skip to the next slide, simulating the 
fact that the garbage doesn’t stop coming in a denial of 
service attack.  In fact, in some cases you may get nothing but 
garbage.  If you recall how IP datagram services work, for 
example, then you can reason about the likelihood of 
legitimate requests spaced by increasingly long TCP timeouts 
finding an empty queue slot in a router fed from another input 
by a continuous stream of bogus packets.  When a slot opens 
up, it is quickly grabbed by the next bogus packets and rarely 
available for the real thing.
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Denial of Service

n So did you get the point?

Fall 2019 © CS 438 Staff - University of Illinois 62

read

n During a denial of service attack, 
do servers continue to receive 
client requests?



Denial of Service

This slide is intended to demonstrate the concept of denial of 
service by placing useful information in the middle of a 
paragraph of drivel.  If you’ve gotten this far, you may want to 
jump to the middle or scan around, but you’re unlikely to find 
the important part before I skip to the next slide, simulating the 
fact that the garbage doesn’t stop coming in a denial of 
service attack.  In fact, in some cases you may get nothing but 
garbage.  If you recall how IP datagram services work, for 
example, then you can reason about the likelihood of 
legitimate requests spaced by increasingly long TCP timeouts 
finding an empty queue slot in a router fed from another input 
by a continuous stream of bogus packets.  When a slot opens 
up, it is quickly grabbed by the next bogus packets and rarely 
available for the real thing.

Fall 2019 © CS 438 Staff - University of Illinois 63

In fact, in some cases you may get nothing but 
garbage.



Denial of Service (DoS)

n Attacker prevents legitimate users from 
using something (network, server)

n Motives?
¡ Retaliation
¡ Extortion (e.g., betting sites just before big 

matches)
¡ Commercial advantage (disable your competitor)
¡ Cripple defenses (e.g., firewall) to enable 

broader attack
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Denial of Service (DoS)

n Often done via some form of flooding
n Can be done at different semantic levels

¡ Network
n Clog a link or router with a huge rate of packets

¡ Transport
n Overwhelm victim’s ability to handle connections

¡ Application
n Overwhelm victim’s ability to handle requests
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How Does It Traditionally 
Work?

n Example: IP spoofing
¡ Remember the TCP SYN segment?

n Client sends SYN to server
n Server reserves queue entry
n Server sends back SYN

¡ Server sends back SYN to where?
n Client IP must be included in first SYN
n What if the client lies?
“Hi, please contact Riccardo’s computer.”
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IP Spoofing

n Pretending to be Riccardo’s computer
¡ It responds
¡ Queue resources freed up
¡ Not terribly effective

n Instead, pick a computer that probably 
won’t respond
¡ A random number works nicely
¡ Return SYN gets lost
¡ Server waits 75 seconds before freeing queue 

entry
n What are the key elements?
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Key Elements of Denial of 
Service Attacks

n Expansion in required work
¡ Easy for me, hard for you
¡ In spoofing,

n Creating and sending a SYN: a few microseconds
n Timing out a queue entry: 75 seconds

n Protocols that admit starvation
¡ IP routers

n Drop datagrams when output buffer full
n Independent of source input

¡ Result is that clients can be starved
¡ Painfully slow even without starvation
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What’s New about the Recent 
Attacks?

n Expansion factor allows attack by a few or 
one

n Alternative
¡ Attack by many
¡ Requires many resources distributed across 

Internet
¡ Benefits from expansion, too

n Attack software
¡ Probably installed indirectly
¡ Apparently resident for some time
¡ No significant trail remains
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What Changed to Make These 
Attacks Possible?

n Change of Internet character
¡ Many more machines
¡ Many more naive users
¡ Much more complex software

n Old Internet
¡ Very little interpretation of data (e.g., e-mail)
¡ Operating system bugs relative secure (by 

obscurity)
¡ Security-savvy administrator required

(so security breaches detected and repaired)
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Denial of Service Attacks in 
the New Internet

n New Internet
¡ Point-and-click network installation
¡ Very broad interfaces
¡ Even transparent code encapsulation
¡ And self-installing “plug-ins”!
¡ Public source operating systems, too
¡ (and frustrated security gurus writing tools to eliminate any 

remaining obscurity)
n Example of attack:

¡ Abuse bug in Internet Explorer to install flashing window 
telling owner to download patch

¡ What else might someone install instead?
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IP Spoofing Countermeasures

n IP spoofing
¡ Abuses TCP connection queue time expansion
¡ Considered unsolvable for quite some time
¡ Solved by ingenious use of cryptography

n Solution
¡ Return one-use key with response SYN 

segment
¡ Reserve no queue resources
¡ ACK to second SYN (third step of setup) must 

return the key
¡ IP spoofing never sends such an ACK



Denial of Service (DoS)

14

Worldwide Infrastructure Security Report, Volume VI

Sixty-five percent of respondents reported that the highest-bandwidth DDoS attack they experienced during this survey
period was directed at their end customers, while 26 percent reported that their own ancillary support services such as DNS
and Web portals were targeted (Figure 14). Eight percent indicated that their own network infrastructure was the target of
the highest-bandwidth attack they experienced.

As shown in Figure 15, 47 percent of respondents indicated that they experienced 1 to 10 DDoS attacks per month during
the survey period, while an additional 47 percent experienced 10 to 500 or more DDoS attacks per month.
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Figure 14
Source: Arbor Networks, Inc.
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Figure 15
Source: Arbor Networks, Inc.
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Denial of Service (DoS)

11

Top security concerns for the next twelve months (Figure 9) include attacks against end customers; attacks against operators’
ancillary support services such as DNS and Web portals; attacks directed at operators’ network infrastructure devices; botnet
activities, which include DDoS attacks; and, interestingly, new vulnerabilities.

Worldwide Infrastructure Security Report, Volume VI

Layer 7 DDoS Attacks
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Figure 8
Source: Arbor Networks, Inc.
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Infrastructure Outages Due to Failure
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Other

Figure 9
Source: Arbor Networks, Inc.
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DoS: Network Flooding

n Goal is to clog network link(s) leading to 
victim
¡ Either fill the link, or overwhelm their routers
¡ Users can’t access victim server due to 

congestion
n Attacker sends traffic to victim as fast as 

possible
¡ It will often use (many) spoofed source 

addresses
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DoS: Network Flooding

n Using multiple hosts (slaves, or zombies) 
yields a Distributed Denial-of-Service attack, 
aka DDoS

n Traffic can be varied (sources, destinations, 
ports, length) so no simple filter matches it

n If attacker has enough slaves, often doesn’t 
need to spoof - victim can’t shut them down 
anyway! :-(
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Distributed Denial-of-Service 
(DDoS)
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Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic directs 
slaves at victim

src = random
dst = victim

Slaves send streams of traffic 
(perhaps spoofed) to victim



Very Nasty DoS Attack: 
Reflectors

n Reflection
¡ Cause one non-compromised host to help flood another
¡ e.g., host A sends DNS request or TCP SYN with source 

V to server R. 
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n Reflection
¡ Cause one non-compromised host to help flood another
¡ e.g., host A sends DNS request or TCP SYN with source 

V to server R. 

Reflector (R)

Internet

Attacker (A)

V R

Victim (V)

Very Nasty DoS Attack: 
Reflectors
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Diffuse DDoS: Reflector Attack
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Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic 
directs slaves at 
victim & reflectors

Request: src = victim
dst = reflector

Reflectors send streams of 
non-spoofed but 
unsolicited traffic to victim

Reflector 1

Reflector 9

Reflector 4

Reflector 2

Reflector 3

Reflector 5

Reflector 6
Reflector 7

Reflector 11
Reflector 8

Reflector 10

Reply: src = reflector
dst = victim



Defending Against Network 
Flooding

n How do we defend against such floods?
n Answer: we don’t!  (not completely.)  

¡ Big problem today!
n Techniques exist to trace spoofed traffic 

back to origins
¡ Not useful in face of a large attack

n Techniques exist to filter traffic
¡ A well-designed flooding stream defies stateless 

filtering
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Defending Against Network 
Flooding

n Best solutions to date
¡ Overprovision - have enough raw capacity that 

it’s hard to flood your links
n Largest confirmed botnet  to date: 1.5 million hosts
n Floods seen to date: as high as 100 Gbps

¡ Distribute your services - force attacker to flood 
many points
n e.g., the root name servers
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Proposed Solutions

n Network-level attacks
¡ Capabilities: don’t let flows send without 

permission
¡ Shut-up message

n Application-level attacks
¡ Proof-of-work
¡ Ask clients to send more
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Hooray!

We solved security!
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…or not…It is a Big Bad 
World Out There…
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Host Compromise

n Tricking a host into executing on your behalf
n Can consider what is attacked (server or 

client) and the semantic level at which it is 
attacked

n Attacks on servers: client sends subversive 
requests
¡ Happens at attacker’s choosing
¡ Some hosts are servers unknowingly!
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Host Compromise

n Attacks on clients: server (attacker) waits for 
client to connect, sends it a subversive reply
¡ e.g., “drive-by” spyware
¡ e.g., 2006 study found 15% of popular P2P files 

infected by one of 52 different viruses
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Automated Compromise: 
Worms

n When attacker compromises a host, they can instruct it to do 
whatever they want

n Instructing it to find more vulnerable hosts to repeat the 
process creates a worm: a program that self-replicates across 
a network
¡ Often spread by picking 32-bit Internet addresses at random to 

probe …
¡ … but this isn’t fundamental

n As the worm repeatedly replicates, it grows exponentially fast 
because each copy of the worm works in parallel to find more 
victims
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Worms: Exponentially Fast …. 
and Big

n Morris Worm (1988): thousands?
n Code Red 1 (2001)

¡ 369K hosts in 10 hours
n Blaster (2003)

¡ 9M hosts in 9 days
¡ 25M hosts total

n Slammer (2003)
¡ 75K hosts … in < 10 minutes
¡ Peak scanning rate: 55M 

addresses/sec
n Limited by Internet’s capacity

n Theoretical worms
¡ 1M hosts in 1.3 sec (2004)
¡ $50B+ damage (2004)
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Automated Compromise: Bots

n Big worms are flashy but rare …
n With the commercialization of malware, tool of 

choice has shifted to the less noisy, more directly 
controlled botnets

n When host is (automatically) compromised, don’t 
continue propagation
¡ Instead install a command and control platform (a bot)

n Now can monetize malware: sell access to bots
¡ Spamming, phishing web sites, flooding attacks
¡ “Crook’s Google Desktop”: sell capability of searching the 

contents of 100,000s of hosts
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