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Routing
Chicago

Danville

Indianapolis

Effingham

St. Louis

Springfield
Champaign

A tourist appears and
grunts, �Chicago?�

Which way do you point? 



Network Routing
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Constructing and maintaining
forwarding information in hosts or routers

FIB

IF 1

IF 2

RIB

Protocol daemon
Control
Plane
(routing)

Data
Plane
(forwarding)

12.0.0.0/8 à IF 1

12.0.0.0/8 à IF 1

12.0.0.0/8
Update

IF 3

IF 4
Interconnection network

12.10.2.3

Data packet



Routing

n Goals
¡ Capture the notion of �best� routes
¡ Propagate changes effectively
¡ Require limited information exchange

n Conceptually
¡ A network can be represented as a graph 

where each host/router is a node and 
each physical connection is a link
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Routing: Ideal Approach

n Maintain information about each link
n Calculate fastest path between each 

directed pair

A

CB

D

G

F

E

For each 
direction, 
maintain:

•Bandwidth

•Latency

•Queueing 
delay
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Routing: Ideal Approach

n Problems
¡ Unbounded amount of information
¡ Queueing delay can change rapidly
¡ Graph connectivity can change rapidly

n Solution
¡ Dynamic

n Periodically recalculate routes
¡ Distributed

n No single point of failure
n Reduced computation per node

¡ Abstract Metric
n �Distance� may combine many factors
n Use heuristics
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Routing Overview

n Algorithms
¡ Static shortest path algorithms

n Bellman-Ford
¡ Based on local iterations

n Dijkstra�s algorithm
¡ Build tree from source

¡ Distributed, dynamic routing algorithms
n Distance vector routing

¡ Distributed Bellman-Ford
n Link state routing

¡ Implement Dijkstra�s algorithm at each node



Spring 2019 © CS 438 Staff, University of Illinois 8

Bellman-Ford Algorithm

n Concept
¡ Static centralized algorithm

n Given
¡ Directed graph with edge costs and destination 

node
n Finds

¡ Least cost path from each node to destination
n Multiple nodes

¡ To find shortest paths for multiple destination 
nodes, run entire Bellman-Ford algorithm once 
per destination
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Bellman-Ford Algorithm

n Based on repetition of iterations
¡ For every node A and every neighbor B of A

n Is the cost of the path (A ® B ®®® destination) 
smaller than the currently known cost from A to 
destination?

n If YES
¡ Make B the successor node for A

¡ Update cost from A to destination

¡ Can run iterations synchronously or all at once
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Bellman-Ford Algorithm

A

D

B

E

C

Destination
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1         Dest

5        Dest

¥ 3 C 1         Dest

7 E 5        Dest

8 D 3 C 1         Dest

7 E 4 B
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6 E 4 B

7 D 3 C 1         Dest

6 E 4 B

5
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6
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1

2

1
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Distance Vector Routing

n Distributed dynamic version of Bellman-Ford
n Each node maintains a table of

¡ <destination, distance, successor>
n Information acquisition

¡ Assume nodes initially know cost to immediate 
neighbor

¡ Nodes send <destination, distance> vectors to 
all immediate neighbors
n Periodically – seconds, minutes
n Whenever vector changes – triggered update
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Distance Vector Routing

n When a route changes
¡ Local failure detection

n Control message not acknowledged
n Timeout on periodic route update

¡ Current route disappears
¡ Newly advertised route is shorter than previous route

n Used in
¡ Original ARPANET (until 1979)
¡ Early Internet: Routing Information Protocol (RIP)
¡ Early versions of DECnet and Novell IPX



Distance vector: 
update propagation
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B D

C E

A F

(F,0)

(F,0)

(F,1)

(F,1)

(F,1) (F,1)(F,2)(F,2)

(F,2)

(F,2)

F tells D: I am F, and 
I can reach F via 0 hops

D tells B: I am D, and 
I can reach F via 1 hop

Dest NextHop Dist
F F 1

D�s forwarding table

Dest NextHop Dist
F D 2

B�s forwarding table

source destination
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Example - Initial Distances

Info at
node

A
B
C
D

A B C

0 7 ~
7 0 1
~ 1 0
~ ~ 2

Distance to node

D

~
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2
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8
~
2
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7

1
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2

28
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E Receives D�s Routes

Info at
node
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E Updates Cost to C

A

B

E
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D
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node
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2
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A Receives B�s Routes

Info at
node

A
B
C
D

A B C

0 7 ~
7 0 1
~ 1 0
~ ~ 2
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2
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8
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A Updates Cost to C

A

B
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C
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A Receives E�s Routes

Info at
node

A
B
C
D

A B C

0 7 8
7 0 1
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~ ~ 2
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D
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~
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A Updates Cost to C and D

A

B

E

C

D

7

1

1

2

28

Info at
node

A
B
C
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0 7 5
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3
~
2
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1
8
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2
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Final Distances

Info at
node

A
B
C
D

A B C

0 6 5
6 0 1
5 1 0
3 3 2

Distance to node

D

3
3
2
0

E 1 5 4 2

1
5
4
2
0

E

A

B C

D

7

1

1

2

28

E
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Final Distances After Link 
Failure

Info at
node

A
B
C
D

A B C

0 7 8
7 0 1
8 1 0
10 3 2

Distance to node

D

10
3
2
0

E 1 8 9 11

1
8
9
11
0

E

A

B C

D

7

1

1

2

28

E
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View From a Node

dest

A
B
C
D

A B D

1 14 5

7 8 5
6 9 4
4 11 2

Next hop

E�s routing table

A

B

E

C

D

7

1

1

2

28
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What happens after a failure?

A B

C

1

14 1

dest cost
B 1
C 2

dest cost
A 1
C 1

dest cost
A 2
B 1



Count-to-Infinity Problem
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A B

C

1

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1



Count-to-Infinity Problem
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A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1



Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~
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Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

A 2

Spring 2019 28© CS 438 Staff, University of Illinois



Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~A 2 3
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Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~A 3 3
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Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

A 3

3

4

Really through B
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Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

A 4

3

4
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Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~A 4 3

4

5

Also 
called the 
bouncing 

effect
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Distance Vector Routing

n Problem
¡ Node X notices that its link to Y is broken 
¡ Other nodes believe that the route 

through X is still good
¡ Mutual deception!
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How Are These Loops 
Caused?

n Observation 1:
¡ B�s metric increases

n Observation 2:
¡ C picks B as next hop to A
¡ But, the implicit path from C to A includes 

itself!
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Solution 1: Holddowns

n If metric increases, delay propagating 
information
¡ in our example, B delays advertising 

route
¡ C eventually thinks B�s route is gone, 

picks its own route
¡ B then selects C as next hop

n Adversely affects convergence
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Heuristics for breaking loops

n Set infinity to 16
¡ Small limit allows fast completion of �counting to 

infinity�
¡ Limits the size of the network

n Split horizon
¡ Avoid counting to infinity by solving �mutual 

deception� problem
n Split horizon with poisoned reverse

¡ �Poison� the routes sent to you by your 
neighbors

n Sequence numbers on delay estimates
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Split Horizon

n Avoid counting to infinity by solving �mutual 
deception� problem

n Distance Vector with split horizon:
¡ when sending an update to node X, do not include 

destinations that you would route through X
¡ If X thinks route is not through you, no effect
¡ If X thinks route is through you, X will timeout route

A
25 1

B
C



Spring 2019 © CS 438 Staff, University of Illinois 39

Split Horizon and Poisoned 
Reverse

n Distance Vector with Split Horizon and Poisoned 
Reverse:
¡ When sending update to node X, include destinations that 

you would route through X with distance set to infinity
¡ Don�t need to wait for X to timeout

n Problem: 
¡ still doesn�t fix loops of 3+ hops!

A
25 1

B
C



A
C D

B

1

11
1
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Split Horizon

n Split Horizon (with or without poisoned reverse) 
may still allow some routing loops and counting to 
infinity
¡ guarantees no 2-node loops
¡ can still be fooled by 3-node (or larger) loops

n Consider link failure from C to D

¥
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Split Horizon

n Initial routing table entries for route to D:
A 2 via C
B 2 via C
C 1

n C notices link failure and changes to infinity
n Now C sends updates to A and B:

¡ to A: infinity
¡ to B: infinity

A
C D

B

1

11
¥

D = ¥

D = ¥
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Split Horizon

n Suppose update to B is lost
n New tables:

A unreachable
B 2 via C
C unreachable

A
C D

B

1

11
¥

D = ¥

D = ¥

Ä
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Split Horizon

n Suppose update to B is lost
n New tables:

A unreachable
B 2 via C
C unreachable

n Now B sends its periodic routing update:
¡ to C: infinity (poisoned reverse)
¡ to A: 2

A
C D

B

1

11
¥

D = ¥

D
 =

 2
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Split Horizon

n New tables for route to D:
A 3 via B
B 2 via C
C unreachable

n Finally A sends its periodic routing update:
¡ to B: infinity (poisoned reverse)
¡ to C: 3

A
C D

B

1

11
¥

D = 3

D
 =

 ¥
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Split Horizon

n New tables for route to D:
A 3 via B
B 2 via C
C 4 via A

n A, B and C will still continue to count to infinity

A
C D

B

1

11
¥



Spring 2019 © CS 438 Staff, University of Illinois 47

Avoiding the Counting to 
Infinity Problem

n Select loop-free paths
n One way of doing this:

¡ Each route advertisement carries entire 
path instead of just distance

¡ If router sees itself in path, reject route
¡ Þ called Path-Vector routing

n BGP does it this way
n Space proportional to diameter
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Loop Freedom at Every 
Instant

n Have we now avoided all loops?
¡ No! Transient loops are still possible
¡ Why? Implicit path information may be stale

n Many approaches to fix this
¡ Maintain backup paths in case you get stuck
¡ Use multiple paths
¡ Source routing
¡ Keep packets flowing or queued during convergence
¡ …and much more current research
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Distance Vector in Practice

n RIP and RIP2
¡ uses split-horizon/poison reverse

n BGP/IDRP
¡ propagates entire path
¡ path also used for affecting policies

n AODV
¡ �on-demand� protocol for wireless networks
¡ Only maintain distance vectors along paths to 

destinations that you need to reach
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Routing So Far …

n Problem
¡ Information propagates slowly

n One period per hop for new routes
n Count to infinity to detect lost routes
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Dijkstra�s Algorithm

n Given
¡ Directed graph with edge weights 

(distances)
n Calculate

¡ Shortest paths from one node to all 
others
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Dijkstra�s Algorithm

n Greedily grow set C of confirmed least cost paths
n Initially C = {source}
n Loop N-1 times

¡ Determine the node M outside C that is closest to the 
source

¡ Add M to C and update costs for each node P outside C
n Is the path (source ®® … ® M ® P) better than the 

previously known path for (source ® P)?
n If YES

¡ Update cost to reach P
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Dijkstra�s Algorithm

1

1

2
9

7

4

33

3

4

22

6

62

3

1

8
10

7

2

22

1

7

6

6

4

9

7

11

11

1513

12
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~

A F

B

D E

C2

2

2

3

1

1

1
3

5

5

B C D E F
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~

A F

B

D E

C2

2

2

3

1

1

1
3

5

5

B C D E F
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Example

A F

B

D E

C2

2

2

3

1

1

1
3

5

5

B C D E F
step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)

0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E

A F

B

D E

C2

2

2

3

1

1

1
3

5

5

B C D E F
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E
4 ADEBC 4, E

A F

B

D E

C2

2

2

3

1

1

1
3

5

5

B C D E F
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E
4 ADEBC 4, E

A F

B

D E

C2

2

2

3

1

1

1
3

5

5

B C D E F



Spring 2019 © CS 438 Staff, University of Illinois 60

Link State Routing

n Strategy
¡ Send all nodes information about directly connected links
¡ Status of links is flooded in link state packets (LSPs)

n Each LSP carries
¡ ID of node that created the LSP
¡ Vector of <neighbor, cost of link to neighbor> pairs for the 

node that created the LSP
¡ Sequence number
¡ Time-to-live (TTL)

n Each node maintains a list of (ideally all) LSP�s and 
runs Dijkstra�s algorithm on the list



Link state: update propagation

B D

C E

A FEach node maintains
a �topology database�
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[E,F]

Link state: update propagation

B D

C E

A F

[E,F]

[E,F]

[E,F]

[E,F] [E,F][E,F][E,F]

[E,F]

[E,F]

F tells all routers: 
there is a link 
between F and E
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[D,F]

[D,F]

[D,F]

[D,F]

[D,F] [D,F][D,F][D,F]

[D,F]

[D,F]

Link state: update propagation

B D

C E

A F
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Link state: update propagation

B D

C E

A F

[C,A]

[C,A]

[C,A]

[C,A]

[C,A] [C,A][C,A][C,A]

[C,A]

[C,A]
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Link state: update propagation

B D

C E

A F

[C,E]

[C,E]

[C,E]

[C,E]

[C,E] [C,E][C,E][C,E]

[C,E]

[C,E]
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Link state: update propagation

B D

C E

A F

[C,B]

[C,B]

[C,B]

[C,B]

[C,B] [C,B][C,B][C,B]

[C,B]

[C,B]
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Link state: update propagation

B D

C E

A F

[A,B]

[A,B]

[A,B]

[A,B]

[A,B] [A,B][A,B][A,B]

[A,B]

[A,B]
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Link state: update propagation

B D

C E

A F

[B,D]

[B,D]

[B,D]

[B,D]

[B,D] [B,D][B,D][B,D]

[B,D]

[B,D]
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Link state: update propagation

B D

C E

A F

[D,E]

[D,E]

[D,E]

[D,E]

[D,E] [D,E][D,E][D,E]

[D,E]

[D,E]
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Link state: route computation

B D

C E

A F
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-Each router 
- Computes shortest path tree, 
rooted at that router
- Determines next-hop to each 
dest, publishes to forwarding table Operators can 

assign link 
costs to 

control path 
selection



Link-state: packet forwarding

B D

C E

A FIP packet
source destination
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Link-state: packet forwarding

B D

C E

A F
source destination

IP packet
Downsides of link-state:
- Less policy control (certain routes can�t be 
filtered), more cpu
- Increased visibility (bad for privacy, but 
good for diagnostics) 
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Link State Routing

n LSP must be delivered to all nodes
n Information acquisition via reliable flooding

¡ Create local LSP periodically with increasing sequence 
number

¡ Send local LSP to all immediate neighbors
¡ Forward new LSP out on all other links

n What does �new� mean?
¡ New sequence number 
¡ TTL accounts for wrapped sequence numbers

n Decrement TTL for stored nodes
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Basic Steps

n Each node assumed to know state of 
links to its neighbors

n Step 1: Each node broadcasts its state 
to all other nodes

n Step 2: Each node locally computes 
shortest paths to all other nodes from 
global state
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Reliable Flooding

n When i receives LSP from j:
¡ If LSP is the most recent LSP from j that 

i has seen so far
n i saves it in database and forwards a copy on 

all links except link LSP was received on

¡ Otherwise, discard LSP



Link State Routing

n At each router, perform a forward search algorithm
¡ Variation of Dijkstra�s
¡ Variants to improve performance

n e.g., incremental Dijkstra�s

n Router maintains two lists
¡ Tentative
¡ Confirmed

n Each list contains triplets
¡ <destination, cost, nexthop>
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Link State Routing

B

D

A C
11

2

3

10

5

Find paths from D 
to all other nodes
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Link State Routing 

B

D

A C
11

2

3
10

5

Step Confirmed Tentative
1.
2.

3.

4.

Step Confirmed Tentative
5

6

7
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Link State Routing 

B

D

A C
11

2

3
10

5

Step Confirmed Tentative

1. (D,0,-)

2. (D,0,-) (B,11,B)

(C,2,C)

3. (D,0,-)

(C,2,C)

(B,11,B)

4. (D,0,-)

(C,2,C)

(B,5,C)

(A,12,C)

Step Confirmed Tentative

5 (D,0,-)

(C,2,C)

(B,5,C)

(A,12,C)

6 (D,0,-)

(C,2,C)

(B,5,C)

(A,10,C)

7 (D,0,-)

(C,2,C)

(B,5,C)

(A,10,C)
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Link State Characteristics

n With consistent LSDBs, all nodes compute 
consistent loop-free paths

n Limited by Dijkstra computation overhead, 
space requirements

n Can still have transient loops

A

B

C

D

1
3

5 2

1



Link State Characteristics

n How could this cause loops?
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A

B

C

D

1
3

5 2

1

Packet from C->A

may loop around BDC



Source Routing

n Variant of link state routing
¡ Like link state, distribute network 

topology and compute shortest paths at 
source

¡ …but only at source, not every hop!
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Link State Routing

n Pros
¡ Stabilizes quickly, does not generate 

much traffic, responds to topology 
changes or node failures

n Cons
¡ Amount of information stored at each 

node is large



Link State Routing in the Wild

n Intermediate System-
Intermediate System 
(IS-IS)
¡ Designed for DECnet
¡ Adopted by ISO for 

connectionless network 
layer protocol (CNLP)

¡ Used in NSFNET 
backbone

¡ Used in some digital 
cellular systems

n ARPANET
¡ Bad heuristics brought 

down the network in 
1981

n Internet
¡ Open shortest path first 

(OSPF)
¡ Defined in RFC 5340
¡ Used in some ISPs
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OSPF

n Authentication of routing messages
¡ Encrypted communication between routers

n Additional hierarchy
¡ Domains are split into areas
¡ Routers only need to know how to reach every 

node in a domain
¡ Routers need to know how to get to the right 

area
¡ Load balancing

n Allows traffic to be distributed over multiple routes



OSPF - Hierarchical routing
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OSPF - Hierarchical routing
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Tradeoffs of hierarchical 

routing

n Advantages: scalability

¡ Reduce size of link-state database

¡ Isolate rest of network from changes/faults

n Disadvantages

¡ Complexity

n Extra configuration effort 

n Requires tight coupling with address assignment

¡ Inefficiency

n One link change may affect multiple path costs

n Summarization hides shorter paths
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LS vs. DV

n DV 
¡ Send everything you know to your neighbors

n LS 
¡ Send info about your neighbors to everyone

n Message size
¡ Small with LS
¡ Potentially large with DV

n Message exchange
¡ LS: O(nE)
¡ DV: only to neighbors
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LS vs. DV

n Convergence speed
¡ LS: fast

¡ DV: fast with triggered updates

n Space requirements
¡ LS maintains entire topology
¡ DV maintains only neighbor state



LS vs. DV: Robustness

n LS can broadcast incorrect/corrupted LSP

¡ localized problem

n DV can advertise incorrect paths to all 

destinations

¡ incorrect calculation can spread to entire 

network

n Soft-state vs. Hard-state approaches

¡ Should we periodically refresh? Or rely on 

routers to locally maintain their state correctly?
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LS vs. DV

n LS 
¡ Nodes must compute consistent routes 

independently
¡ Must protect against LSDB corruption

n DV 
¡ Routes are computed relative to other nodes

n Bottom line
¡ No clear winner, but we see more frequent use 

of LS in the Internet



LS vs. DV

n LS typically used within ISPs because
¡ Faster convergence (usually)
¡ Simpler troubleshooting

n DV typically used between ISPs 
because
¡ Can support more flexible policies
¡ Can avoid exporting routes
¡ Can hide private regions of topology
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Metrics



Traffic engineering with routing 
protocols

n Load balancing 
¡ Some hosts/networks/paths are more popular 

than others
¡ Need to shift traffic to avoid overrunning 

capacity
n Avoiding oscillations

¡ What if metrics are a function of offered load?
¡ Causes dependencies across paths
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Importance of Cost Metric

n Choice of link cost defines traffic load
¡ Low cost = high probability link belongs to 

SPT
¡ Will attract traffic, which increases cost

n Main problem: convergence
¡ Avoid oscillations
¡ Achieve good network utilization
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Metrics

n Capture a general notion of distance

n A heuristic combination of
¡ Distance

¡ Bandwidth

¡ Average traffic

¡ Queue length

¡ Measured delay
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Metric Choices

n Static metrics (e.g., hop count)
¡ Good only if links are homogeneous
¡ Definitely not the case in the Internet

n Static metrics do not take into account
¡ Link delay
¡ Link capacity
¡ Link load (hard to measure)

n But, can improve stability



Original ARPANET (1969)

n Distance vector routing
¡ Routing tables exchanged every 2/3 seconds

n Use queue length as distance
¡ Number of packets waiting to use a link
¡ Instantaneous queue length as delay estimator
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Original ARPANET Algorithm

n Light load
¡ Delay dominated by the constant part (transmission and 

propagation delay)
n Medium load

¡ Queuing delay no longer negligible
¡ Moderate traffic shifts to avoid congestion

n Heavy load
¡ Very high metrics on congested links
¡ Busy links look bad to all of the routers
¡ All routers avoid the busy links
¡ Routers may send packets on longer paths
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Original ARPANET

n Uniform 56 Kbps lines
¡ Bandwidth equal on every line
¡ Latency relatively unimportant

n Problems
¡ Uniform bandwidth became an invalid 

assumption
¡ Latency comparable to 1 KB transmission delay 

on 1.544 Mbps link
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New ARPANET(1979)

n Switch to link-state routing
n Routing updates only contain link cost 

information
n Link metric is measured delay
n Max time between updates = 50 sec



New ARPANET(1979)

n Averaging of link metric over time
¡ Old: Instantaneous delay fluctuates a lot
¡ New: Averaging reduces the fluctuations

n Link-state protocol instead of DV
¡ Old: DV led to loops
¡ New: Flood metrics and let each router compute shortest 

paths
n Reduce frequency of updates

¡ Old: Sending updates on each change is too much
¡ New: Send updates if change passes a threshold
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Problem #2: Load balancing

n Conventional static metrics:
¡ Proportional to physical distance
¡ Inversely proportional to link capacity

n Conventional dynamic metrics:
¡ Tune weights based on the offered traffic
¡ Network-wide optimization of link-weights
¡ Directly minimizes metrics like maximum link 

utilization
Spring 2019 © CS 438 Staff, University of Illinois 104



Spring 2019 © CS 438 Staff, University of Illinois 105

Metrics: New Arpanet

n Captured delay, bandwidth and latency
n Queue delay

¡ Timestamp packet arrival time (AT)
¡ Also timestamp packet departure time (DT)
¡ Only calculate when ACK received
¡ Average DT- AT over packets and time

n Used fixed (per-link) measurements
¡ Transmission time (bandwidth)
¡ Latency

n Add three terms to find �distance� metric
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Metrics: New ARPANET

n Assumption 
¡ Measured delay = expected delay

n Worked well under light load
¡ Static factors dominated cost

n Oscillated under heavy load
¡ Heavily loaded link advertises high proce
¡ All traffic moves off
¡ Then link advertises light load
¡ All traffic returns
¡ Repeat cycle
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Specific problems

n Range is too wide
¡ 9.6 Kbps highly loaded link  can appear 127 

times costlier than 56 Kbps lightly loaded link.
¡ Can make a 127-hop path look better than 1-

hop.
n No limit in reported delay variation
n All nodes calculate routes simultaneously

¡ Triggered by link update
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Example
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Example

Net X Net Y

B

A

After everyone re-calculates routes:

.. Oscillations!
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Consequences

n Low network utilization (50% in example)
n Congestion can spread elsewhere
n Routes could oscillate between short and 

long paths
n Large swings lead to frequent route updates

¡ More messages
¡ Frequent SPF re-calculation
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Some Considerations

n Delay as absolute measure of path 
length

n Greedy approach to route selection
¡ Each node chooses shortest path without 

regards for how it affects others
n Instead, routing should provide good 

path to average node
¡ Some nodes get longer routes
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Metrics: Revised ARPANET

n Measure link utilization
n Feed measurement through function to 

restrict dynamic range
n Specific function chosen carefully based on 

bandwidth and latency
n Aspects of class of functions

¡ Cost is constant at low to moderate utilization
¡ Link cost is no more than 3 times idle link coast
¡ Maximum cost (over all links) is no more than 7 

times minumum cost (over all links)
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Reality of the Modern Internet

n Hierarchical routing used 
¡ Between different Autonomous Systems (e.g., a 

provider network), a standard protocol
¡ Within each AS

n Up to AS administrator
n Usually a variant of link-state or distance-vector

n What metrics are really used?
¡ Nothing involving load
¡ Just too unstable



Application to AT&T�s 
backbone network

n Performance of the optimized weights
¡ Search finds a good (approximate) solution within a few 

minutes

¡ Much better than link capacity or physical distance

n How AT&T changes the link weights
¡ Maintenance from Midnight to 6am ET

¡ Predict effects of removing links from network

¡ Reoptimize links to avoid congestion

¡ Configure new weights before disabling equipment 
(costing-out)
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