
Spring 2019 © CS 438 Staff - University of Illinois 1

Reliable Transmission

Spring 2019 © CS 438 Staff - University of Illinois 2

Reliable Transmission

Hello!

My

computer�s

name

is

Alice.

Hello!

Alice.

Alice Bob

Spring 2019 © CS 438 Staff - University of Illinois 3

Reliable Transmission

Hello!

My

Computer�
s

name

is

Alice.

My

name

is

Alice.Alice Bob

Spring 2019 © CS 438 Staff - University of Illinois 4

Reliable Transmission

n Suppose error protection identifies
valid and invalid packets
¡ How?

n Can we make the channel appear
reliable?
¡ Insure packet delivery
¡ Maintain packet order
¡ Provide reliability at full link capacity

Reliable Transmission Outline

n Fundamentals of Automatic Repeat reQuest
(ARQ) algorithms
¡ A family of algorithms that provide reliability

through retransmission
n ARQ algorithms (simple to complex)

¡ stop-and-wait
¡ concurrent logical channels
¡ sliding window

n go-back-n
n selective repeat

n Alternative: forward error correction (FEC)

Spring 2019 © CS 438 Staff - University of Illinois 5

Spring 2019 © CS 438 Staff - University of Illinois 6

Terminology

n Acknowledgement (ACK)
¡ Receiver tells the sender when a frame is

received
n Selective acknowledgement (SACK)

¡ Specifies set of frames received
n Cumulative acknowledgement (ACK)

¡ Have received specified frame and all previous
n Negative acknowledgement (NAK)

¡ Receiver refuses to accept frame now,
e.g., when out of buffer space

Spring 2019 © CS 438 Staff - University of Illinois 7

Terminology

n Timeout (TO)
¡ Sender decides the frame (or ACK) was

lost
¡ Sender can try again

Spring 2019 © CS 438 Staff - University of Illinois 8

Stop-and-Wait

n Basic idea
1. Send a frame

2. Wait for an ACK or TO
3. If TO, go to 1

4. If ACK, get new frame, go to 1

Spring 2019 © CS 438 Staff - University of Illinois 9

Stop-and-Wait: Success

Sender

Frame

ACK

Ti
m

eo
ut

Ti
m

e
Receiver

RTT

What can go
wrong?

How will it affect
our protocol?

How long should
the timeout be?

Spring 2019 © CS 438 Staff - University of Illinois 10

Stop-and-Wait: Lost Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Frame

ACK

Frame
Ti

m
eo

ut
RTT

Spring 2019 © CS 438 Staff - University of Illinois 11

Stop-and-Wait: Lost ACK

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Frame

ACK

Ti
m

eo
ut

Frame

ACK
RTT

Spring 2019 © CS 438 Staff - University of Illinois 12

Stop-and-Wait: Delayed
Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

Frame

ACK

Frame

ACK
RTT

How can receiver
distinguish between

two frames?

How many bits do you
need for sequence

numbers?

Spring 2019 © CS 438 Staff - University of Illinois 13

Stop-and-Wait

n Goal
¡ Guaranteed, at-most-once delivery

n Protocol Challenges
¡ Dropped frame/ACK
¡ Duplicate frame/ACK

n Requirements
¡ 1-bit sequence numbers (if physical network

maintains order)
n sender tracks frame ID to send
n receiver tracks next frame ID expected

Spring 2019 © CS 438 Staff - University of Illinois 14

Stop-and-Wait State Diagram

Expect: ?

Send: ?

Send: 1

Expect: 0

Expect: 1

Send: 0

Send: 1

Expect: 1

Receive frame
0

Receive frame
1

Receive
ACK 1

Receive
ACK 0

Receive ACK 1

Receive frame
0

Expect: 0

Send: 0

Receiver

Sender

Spring 2019 © CS 438 Staff - University of Illinois 15

Stop-and-Wait

n We have achieved
¡ Frames delivered reliably and in order
¡ Is that enough?

n Problem
¡ Only allows one outstanding frame

n Does not keep the pipe full
¡ Example

n 100ms RTT
n One frame per RTT = 1KB
n 1024x8x10 = 81920 kbps
n Regardless of link bandwidth!

Spring 2019 © CS 438 Staff - University of Illinois 16

Concurrent Logical Channels

n Used in ARPANET IMP-IMP protocol
n Idea

¡ Multiplex logical channels over a physical link
n Include channel ID in header

¡ Use stop-and-wait for each channel
n Result

¡ Each channel is limited to stop-and-wait
bandwidth

¡ Aggregate bandwidth uses full physical channel
¡ Supports multiple communicating processes
¡ Can use more than one channel per process

Spring 2019 © CS 438 Staff - University of Illinois 17

Concurrent Logical Channels

n Problem
¡ Bandwidth

n Use of a single channel per process may
waste BW

¡ Ordering
n Use of multiple channel per process does not

maintain packet ordering across channels!
n If application has n channels, and one needs

a retransmission, it will always be one packet
behind the other channels

Spring 2019 © CS 438 Staff - University of Illinois 18

ARQ: Where are We?

n Goals for reliable transmission
¡ Make channel appear reliable
¡ Maintain packet order (usually)
¡ Impose low overhead/allow full use of link

n Stop-and-Wait
¡ Provides reliable in-order delivery
¡ Sacrifices performance

n Concurrent Logical Channels
¡ Provides reliable delivery at full link bandwidth
¡ Sacrifices packet ordering

n Sliding Window Protocol
¡ Achieves all three!

Spring 2019 © CS 438 Staff - University of Illinois 19

Sliding Window Protocol

n Most important and general ARQ algorithm
n Used by TCP
n Outline

¡ Concepts
¡ Terminology (from P&D)
¡ Details
¡ Code example
¡ Proof of eventual in-order delivery
¡ Classification scheme

n (go-back-n, selective repeat)

Spring 2019 © CS 438 Staff - University of Illinois 20

Keeping the Pipe Full

ReceiverSender

Frame

ACKTi
m

e

Frame
Frame
Frame

ReceiverSender

Frame

ACK

Ti
m

e

Frame

ACK
Frame

ACK
Frame

ACK

nAdvantages:
nMore frames in pipe
nLess time overall
nPiggybacked ACKs

Stop-and-Wait Goal

Spring 2019 © CS 438 Staff - University of Illinois 21

Concepts

n Consider an ordered stream of data frames
n Stop-and-Wait

¡ Window of one frame
¡ Slides along stream over time

Time

Spring 2019 © CS 438 Staff - University of Illinois 22

Concepts

n Sliding Window Protocol
¡ Multiple-frame send window
¡ Multiple frame receive window

Time

Spring 2019 © CS 438 Staff - University of Illinois 23

Sliding Window

n Send Window
¡ Fixed length
¡ Starts at earliest unacknowledged frame
¡ Only frames in window are active

Time

Sent and
acknowledged

Sent and not
acknowledged

Available, outside
send window Unavailable

Spring 2019 © CS 438 Staff - University of Illinois 24

Sliding Window

n Receive Window
¡ Fixed length (unrelated to send window)

¡ Starts at earliest frame not received
¡ Only frames in window accepted

Received and
acknowledged

Received and not
acknowledged

Received, outside
receive window Not yet received

Time

Spring 2019 © CS 438 Staff - University of Illinois 25

Sliding Window Terminology

n Sender Parameters
¡ Send Window Size (SWS)
¡ Last Acknowledgement Received (LAR)
¡ Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Invariant: LFS – LAR £ SWS

Spring 2019 © CS 438 Staff - University of Illinois 26

Sliding Window Terminology

n Receiver Parameters
¡ Receive Window Size (RWS)
¡ Next Frame Expected (NFE)
¡ Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9 Invariant: LFA – NFE + 1 £ RWS

2 3 5 7 10 11 12 13

Time

4 6 8 9

Spring 2019 © CS 438 Staff - University of Illinois 27

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Receive ACK 16

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details

n Sender Tasks
¡ Assign sequence numbers
¡ On ACK Arrival

n Advance LAR
n Slide window

Spring 2019 © CS 438 Staff - University of Illinois 28

Sliding Window Details

n Receiver Tasks
¡ On Frame Arrival (N)

n Silently discard if outside of window
¡ N < NFE (NACK possible, too)
¡ N >= NFE + RWS

n Send cumulative ACK if within window
RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7

Spring 2019 © CS 438 Staff - University of Illinois 29

Sliding Window Details

n Receiver Tasks
¡ On Frame Arrival (N)

n Silently discard if outside of window
¡ N < NFE (NACK possible, too)
¡ N >= NFE + RWS

n Send cumulative ACK if within window
RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6

Spring 2019 © CS 438 Staff - University of Illinois 30

Sliding Window Details

n Sequence number space
¡ Finite number, so wrap around
¡ Need space larger than SWS

(outstanding frames)
n In fact, need twice as large

n Example
¡ 3-bit sequence numbers (0-7)
¡ RWS = SWS = 7

Sliding Window Details

n Is log2(SWS+1) bits enough?
¡ No. Example:
¡ 3-bit sequence numbers (0-7)
¡ RWS = SWS = 7
¡ Why isn’t 3 bits enough (can you think of

an example where it doesn’t work?)

Spring 2019 © CS 438 Staff - University of Illinois 31

Spring 2019 © CS 438 Staff - University of Illinois 32

Sliding Window Details

n Example of incorrect
behavior
¡ 3-bit sequence

numbers 0-7
¡ RWS = SWS = 7
¡ Sender transmits 0-6
¡ All arrive, but ACK�s

lost
¡ Sender retransmits
¡ Receiver accepts as

second incarnation of
0-6

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Timeout

Spring 2019 © CS 438 Staff - University of Illinois 33

Sliding Window Sequence
Numbers

n How many sequence numbers are
necessary?
¡ Key questions

n Where can the send window be?
n What frame can be received next?

Spring 2019 © CS 438 Staff - University of Illinois 34

Sliding Window Sequence

Numbers

n Assume SWS = RWS (simplest, and typical)

n Sender transmits full SWS

n Two extreme cases:

¡ None received (waiting for 0...SWS - 1)

¡ All received (waiting for SWS...2 SWS - 1)

n All possible packets must have unique sequence
numbers

Send WindowSend WindowSend WindowSend Window

Receive Window
NFE

Send Window

1 2 3 4 5 6 7 8 9 10 11 12

Spring 2019 © CS 438 Staff - University of Illinois 35

Sliding Window Sequence
Numbers

n Extreme Locations for SWS
n Requirements

¡ If a received packet is not in the receive window with no
wrap, then it must not be in the receive window with wrap!

n Correctness condition:
¡ Number of Sequence Numbers ³ SWS + RWS
¡ Alternates between two halves of the sequence number

space

Send Window Send Window

Receive Window
NFE

1 2 3 4 5 6 7 8 9 10 11 12

Spring 2019 © CS 438 Staff - University of Illinois 36

Sliding Window Sequence
Numbers

n Example
¡ If SWS = RWS = 8
¡ At least 16 sequence numbers are needed
¡ A 4-bit sequence number space is enough

n Warning
¡ P&D sometimes uses the variable Max_Seq_Num for the

number of sequence numbers and sometimes for the
maximum sequence number (these differ by one!)

¡ Use Num_Seq_Num for the number of sequence
numbers: 0, 1, …, Num_Seq_Num – 1

Window Sizes

n How big should we make SWS?
¡ Compute from delay x bandwidth

n How big should we make RWS?
¡ Depends on buffer capacity of receiver

Spring 2019 © CS 438 Staff - University of Illinois 37

Delay x Bandwidth Product -
Revisited

n Amount of data in �pipe�
¡ channel = pipe
¡ delay = length
¡ bandwidth = area of a cross section
¡ bandwidth x delay product = volume

Spring 2019 © CS 438 Staff - University of Illinois 38

Bandwidth

Delay

Delay x Bandwidth Product

n Bandwidth x delay product
¡ How many bits the sender must transmit before the first bit

arrives at the receiver if the sender keeps the pipe full
¡ Takes another one-way latency to receive a response

from the receiver

Spring 2019 © CS 438 Staff - University of Illinois 40

A B

4567891011 123

15 16 17 18 19 20 21 2212 13 14

Spring 2019 © CS 438 Staff - University of Illinois 41

Sliding Window Protocol Code
Example

n Parameters
¡ last acknowledgement received (LAR)
¡ last frame sent (LFS)
¡ next frame expected (NFE)
¡ last frame acceptable (LFA)

Spring 2019 © CS 438 Staff - University of Illinois 42

Sliding Window Protocol Code
Example

n Constants
¡ Rend/receive window size (SWS/RWS)
¡ Maximum sequence number

(MAX_SEQ_NO)
¡ Frame size (FRAME_SIZE, constant for

simplicity)

Spring 2019 © CS 438 Staff - University of Illinois 43

Sliding Window Protocol Code
Example

n Data structures
¡ Next frame expected (an integer)
¡ One frame buffer for each entry in receive

window
¡ One presence bit for each entry

n Receive window cycles through
¡ Sequence numbers
¡ Data structures (thus RWS must divide

MAX_SEQ_NO)

Spring 2019 © CS 438 Staff - University of Illinois 44

Sliding Window Protocol Code
Example
#define RWS 8 /* receive window size */
#define MAX_SEQ_NO 16 /* max. sequence number+1 */

/* (must be multiple of */
/* RWS for this code) */

#define FRAME_SIZE 1000 /* constant for simplicity*/

char buf[RWS][FRAME_SIZE]; /* RWS frame buffers */
int present[RWS]; /* are frame buffers full?*/

/* (initialized to 0�s) */
int NFE = 0; /* next frame expected */
extern void send_ack (int seq_no);
extern void pass_to_app (char* data);
void recv_frame (char* data, int seq_no);

Spring 2019 © CS 438 Staff - University of Illinois 45

Sliding Window Protocol Code
Example
void recv_frame (char* data, int seq_no)
{

int idx; /* index into data structures */
int i; /* loop index */

/* Map sequence numbers NFE...predecessor (NFE)
into 0...MAX_SEQ_NO - 1, then see if seq_no
falls within the receive window. */

if (((seq_no + (MAX_SEQ_NO - NFE)) % MAX_SEQ_NO)
< RWS) {

/* Frames outside the window */
/* are ignored. (but an ACK */
/* is sent; why?) */

if (seq_no - NFE)< RWS)

Spring 2019 © CS 438 Staff - University of Illinois 46

Sliding Window Protocol Code
Example

/* Calculate index into data structures. */
idx = (seq_no % RWS);

if (!present[idx]) {/* frame is not dup */
present[idx] = 1;/* mark received */
memcpy (buf[idx], data, FRAME_SIZE);

/* copy data into buf */

Spring 2019 © CS 438 Staff - University of Illinois 47

Sliding Window Protocol Code
Example

/* Got a new frame; pass frames up to host? */
for (i = 0; i < RWS; i++) {

idx = (i + NFE) % RWS; /* Re-use idx.*/
/* first missing frame becomes NFE */
/* after this loop terminates */
if (!present[idx]) break;

/* Frame is present—send it up! */
pass_to_app (buf[idx]);
present[idx] = 0; /* Mark buffer empty. */

}
/* Advance NFE to first missing frame. */
NFE = (NFE + i) % MAX_SEQ_NO;

}
NFE = NFE + i;

Spring 2019 © CS 438 Staff - University of Illinois 48

Sliding Window Protocol Code
Example

/* Frame handled (might have */
/* been duplicate). */

} /* (Send ACK for any frame received */

/* Now send acknowledgement for */
/* predecessor (NFE). */
send_ack ((NFE + MAX_SEQ_NO - 1) % MAX_SEQ_NO);

}
send_ack (NFE - 1);

Correctness

n Claim
¡ A sliding window protocol leads to in-order delivery of all

frames
n Assumptions

¡ All sequence numbers are different
¡ Frames can be lost
¡ Frames can be delayed an arbitrarily finite amount of time
¡ Frames are not reordered
¡ Frames can arrive with detectable errors

n Are these assumption adequate?

Spring 2019 © CS 438 Staff - University of Illinois 49

Spring 2019 © CS 438 Staff - University of Illinois 50

Sliding Window Protocol

Correctness

n Need one more assumption

¡ Any given frame is received without errors after

a finite number of retransmissions

n Proof in two steps

¡ Establish correctness assuming infinite

sequence number space

¡ Show that finite sequence number space does

not affect result as long as it has

>= 2 max (SWS, RWS) possible numbers

Spring 2019 © CS 438 Staff - University of Illinois 51

Sliding Window Protocol
Correctness

n Step 1: establish correctness assuming
infinite sequence number space
¡ Use induction on k with invariant
�the kth frame is eventually received�

n Step 2: show that finite sequence number
space does not affect result as long as it has
>= 2 max (SWS, RWS) possible numbers

RWS = 6

NFE = 4 LFA = 9 What frame can arrive next?

2 3 5 7 10 11 12 13

Time

4 6 8 9

Spring 2019 © CS 438 Staff - University of Illinois 52

ARQ Algorithm Classification

n Three Types:
¡ Stop-and-Wait: SWS = 1 RWS = 1

¡ Go-Back-N: SWS = N RWS = 1

¡ Selective Repeat: SWS = N RWS = M
n Usually M = N

Selective Repeat
Go-Back-N

Stop-And-Wait

Spring 2019 © CS 438 Staff - University of Illinois 53

Sliding Window Variations:

Go-Back-N

n SWS = N, RWS = 1

n Receiver only buffers one frame

n If a frame is lost, the sender may need to

retransmit up to N frames

¡ i.e., sender �goes back� N frames

n Variations

¡ How long is the frame timeout?

¡ Does receiver send NACK for out-of-sequence

frame?

Spring 2019 © CS 438 Staff - University of Illinois 54

Go-Back-N: Cumulative ACKs

Packet 0

A

B

Packet 1

AC
K

0

Packet 3

Packet 4

Packet 2
Packet 3

Packets 2,3,4,5
are

retransmitted

AC
K

1

Packet 2

loss
Packet 5

Packet 4

AC
K

1
AC

K
1

AC
K

1

Timeout for Packet 2

AC
K

3
AC

K
4

AC
K

5

Packet 5

AC
K

6

Spring 2019 © CS 438 Staff - University of Illinois 55

Sliding Window Variations:
Selective Repeat

n SWS = N, RWS = M
n Receiver buffer M frames
n If a frame is lost, sender must only resend

¡ Frames lost within the receive window
n Variations

¡ How long is the frame timeout?
¡ Use cumulative or per-frame ACK?
¡ Does protocol adapt timeouts?
¡ Does protocol adapt SWS and/or RWS?

Spring 2019 © CS 438 Staff - University of Illinois 56

Selective Repeat

Packet 0

A

B

Packet 1

AC
K

0

Packet 3

Packet 7

Packet 2
Packet 6

Packet 2 is
retransmitted

AC
K

1

Packet 2

loss
Packet 5

Packet 4

AC
K

3
AC

K
4

AC
K

5

AC
K

2
AC

K
6

AC
K

7

Packet 8

AC
K

8

Spring 2019 © CS 438 Staff - University of Illinois 57

Roles of a Sliding Window
Protocol

n Reliable delivery on an unreliable link
¡ Core function

n Preserve delivery order
¡ Controlled by the receiver

n Flow control
¡ Allow receiver to throttle sender

n Separation of Concerns
¡ Must be able to distinguish between different functions

that are sometimes rolled into one mechanism

Spring 2019 © CS 438 Staff - University of Illinois 58

Forward Error Correction
(FEC)

n Alternative to ARQ algorithms
n Idea

¡ Error correction instead of error detection
¡ Send extra information to avoid retransmission

(i.e., fix errors first/forward rather than
afterward/backward)

n Why
¡ Very high latency connections
¡ Difficult for retransmission

