Performance Analysis

Metrics, Analysis, and Examples

Performance Metrics and Analysis

Metrics

- Traditional and extensions
- Sources of delay
- Optimizing communication systems
- Measuring systems
- Basic queueing theory
 - Distributions and processes
 - Single, memoryless queues

- Traditional metrics
 - End-to-end latency/RTT
 - Measures time delay
 - Across all layers of network
 - Often abbreviated to "latency" (even for RTT)
 - Bandwidth/throughput
 - Measures data sent per unit time
 - Across all layers of network

- Sources of delay
 - Latency: three main components
 - DMA from sending/to receiving host memory
 - Propagation delay in network
 - Queueing delay in routers
 - Overhead: also three main components
 - Data copy between buffers (e.g., into kernel memory)
 - Protocol (TCP, IP, etc.) processing
 - PIO to write description of frame
 - Note that overhead has fixed and per-byte costs

- Optimizing communication systems
 - Optimize the common case
 - Send/receive usually more important than connection setup/teardown
 - TCP header changes little between segments
 - Often only a few connections at end hosts
 - Minimize context switches
 - Minimize copying of data

- Optimizing communication systems
 - General rule of thumb
 - Most (80-90%) messages are short
 - Most data (80-90%) travel in long messages
 - Focus on bottlenecks
 - Reduce overhead to improve short message performance
 - Reduce number of copies to improve long message performance
 - Thus, CPU speed is often more important than network speed

- Optimizing communication systems
 - Maximize network utilization
 - Use large packets when possible
 - Fill delay-bandwidth pipe
 - Avoid timeouts
 - Set timers conservatively
 - Use "smarter" receiver (e.g., with selective ACK's)
 - Avoid congestion rather than recovering from it

- Measuring communication systems
 - Latency
 - Measure RTT for 0-byte (or 1-byte) messages
 - Also report variability
 - Bandwidth
 - Measure RTT for range of long messages
 - Divide by number of bytes sent
 - Report as graph or as value in asymptotic limit
 - Overhead
 - Time multiple N-byte message send operations
 - Be careful of flow control and aggregation

Modeling and Analysis

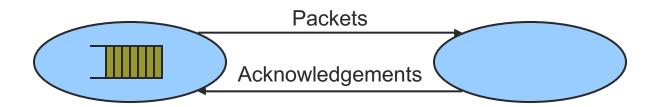
- Problem
 - The inputs to a system (i.e., number of packets and their arrival times) and the exact resource requirements of these packets cannot be predetermined in advance exactly
- But, we can probabilistically characterize these quantities
 - On average, 100 packets arrive per second
 - On average, packets are 500KB
- So, given a probabilistic characterization of these quantities
 - Can we draw some intelligent conclusions about the performance of the system

Delay

- Link delay consists of four components
 - Processing delay
 - From when the packet is correctly received to when it is put on the queue
 - Queueing delay
 - From when the packet is put on the queue to when it is ready to transmit
 - Transmission delay
 - From when the first bit is transmitted to when the last bit is transmitted
 - Propagation delay
 - From when the last bit is transmitted to when the last bit is received

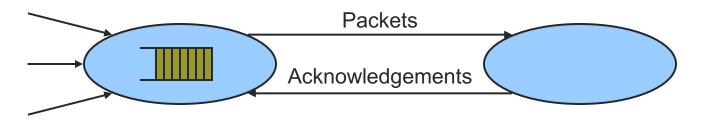
Delay Models

- Consider a data link using stop-and-wait ARQ
 - What is the throughput?
 - Given
 - MSS = packet payload size
 - C = raw link data rate
 - RTT = round trip time (for one bit)
 - p = probability a packet is successful



Delay Models

- Calculate the maximum throughput for stop-andwait
 - Max throughput = packetlength/(RTT + (packetlength/C))
 - Could also multiply by (payload/packetlength) and
 p = probability of correct reception
- But what about the delay incurred?
 - There may be multiple bursty data sources



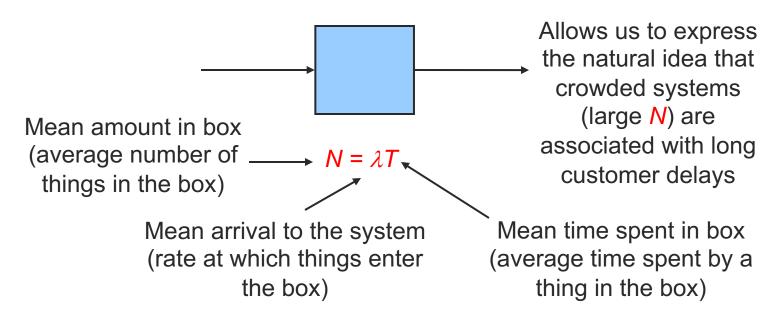
Basic Queueing Theory

- Elementary notions
 - Things arrive at a queue according to some probability distribution
 - Things leave a queue according to a second probability distribution
 - Averaged over time
 - Things arriving and things leaving must be equal
 - Or the queue length will grow without bound
 - Convenient to express probability distributions as average rates

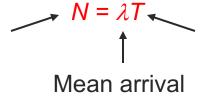
Goal

- Estimate relevant values
 - Average number of customers in the system
 - The number of customers either waiting in queue or receiving service
 - Average delay per customer
 - The time a customer spends waiting plus the service time
- In terms of known values
 - Customer arrival rate
 - The number of customers entering the system per unit time
 - Customer service rate
 - The number of customers the system serves per unit time

 For any box with something steady flowing through it



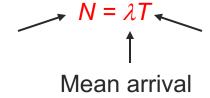
Mean amount in box



Mean time spent in box

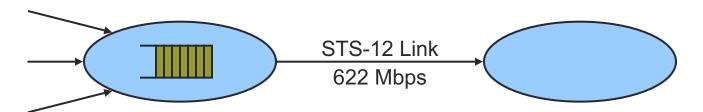
- Example
 - Suppose you arrive at a busy restaurant in a major city
 - Some people are waiting in line, while other are already seated (i.e., being served)
 - You want to estimate how long you will have to wait to be seated if you
 join the end of the line
- Do you apply Little's Law? If so
 - What is the box?
 - \circ What is N?
 - What is λ ?
 - \circ What is T?

Mean amount in box



Mean time spent in box

- Box
 - Include the people seated (i.e., being served)
 - o Include the people waiting in line (i.e., in the queue)
- Let N =the number of people seated (say 150 seated + 50 in line)
- Let T = mean amount of time a person waits and then eats (say 90 min)
- Conclusion
 - Arrivals (and departures) = 200/90 = 2.22 persons per minute

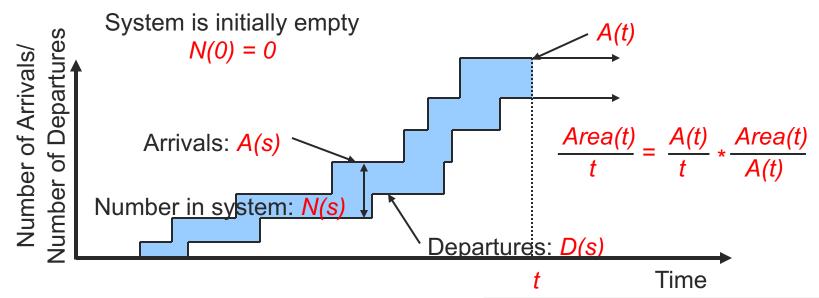


- Suppose data streams are multiplexed at an output link with speed 622 Mbps
- Question
 - If 200 50 B packets are queued on average, what is the average time in the system?
- Answer
 - \circ $T = N/\lambda$
 - T = 200 * 50 * 8 / 622M
 - o T = 0.128 ms

Variables

- N(t) = number of customers in the system at time t
- A(t) = number of customers who arrived in the interval [0,t]
- $T_i = time spent in the system by the$ *i*th customer
- \[
 \lambda_t = average arrival rate over the interval \[
 [0,t]
 \]

Proof of Little's Law



- But this is $N_t = \lambda_t t_t$
 - With time averaging over [0,t]
- Let *t* tend to infinity: $N = \lambda t$

- \circ N(t) = number of customers
- A(t) = number of customers who arrived in the interval [0,t]
- o T_i = time spent in the system by the i^{th} customer
 - $\lambda_{\rm t}$ = average arrival rate over the interval [0,t]

Memoryless Distributions/ Poisson Arrivals

- Goal for easy analysis
 - Want processes (arrival, departure) to be independent of time
 - i.e., likelihood of arrival should depend neither on earlier nor on later arrivals
- In terms of probability distribution in time (defined for t > 0),

$$f(t) = \frac{f(t+\Delta t)}{\int_{\Delta t}^{\infty} f(t') dt'}$$
 for all $\Delta t \ge 0$

Memoryless Distributions/ Poisson Arrivals

solution is:

what is λ ?

•it's the rate of events

 note that the average time until the next event is

$$f(t) = \lambda e^{-\lambda t}$$

$$\int_0^\infty f(t) t dt = \left(t e^{-\lambda t} \right)_0^\infty + \int_0^\infty e^{-\lambda t} dt$$

$$= \left(-\frac{1}{\lambda}e^{-\lambda t}\right]_0^{\infty}$$

$$=\frac{1}{\lambda}$$

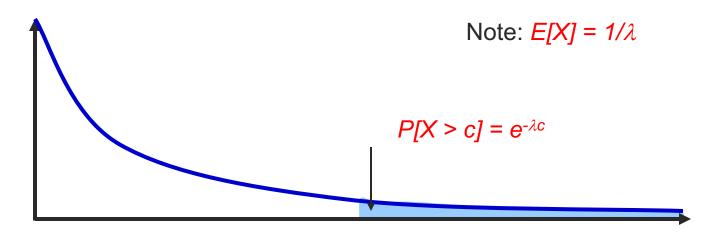
Plan

- Review exponential and Poisson probability distributions
- Discuss Poisson point processes and the M/M/1 queue model

Exponential Distribution

A random variable X has an exponential distribution with parameter λ if it has a probability density function

$$f(x) = \lambda e^{-\lambda x}, \text{ for } x \ge 0$$



Exponential Distribution

- Suppose a waiting time X is exponentially distributed with parameter $\lambda = 2/\text{sec}$
 - Mean wait time is ½ sec
- What is
 - P[X>2]?
 - P[X>6]?
 - o P[X>6 | X>4]?

Exponential Distribution

```
■ Remember: \lambda = 2

■ P[X>2]

○ = e^{-2\lambda} = 0.183

■ P[X>6]

○ = e^{-6\lambda} = 6.14 \times 10^{-6}

■ P[X>6|X>4]

○ = P[X>6,X>4]/P[X>4]

○ = P[X>6]/P[X>4]

○ = e^{-6\lambda}/e^{-4\lambda}

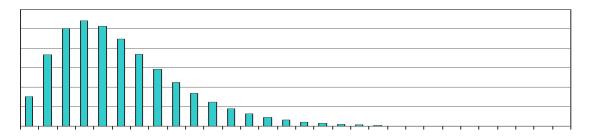
○ = e^{-2\lambda}

○ = 0.183!
```

 Note: this demonstrates the memoryless property of exponential distributions

Poisson Distribution

- The random variable X has a Poisson distribution with mean λ , if for non-negative integers i:
 - $P[X = i] = (\lambda^i e^{-\lambda})/i!$
- Facts
 - $\circ \quad E[X] = \lambda$
 - If there are many independent events,
 - The k^{th} of which has probability p_k (which is small) and
 - λ = the sum of the p_k is moderate
 - Then the number of events that occur has approximately the Poisson distribution with mean λ



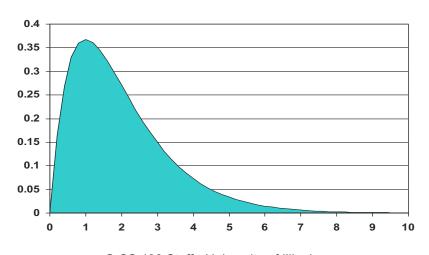
Poisson Distribution

- Example
 - Consider a CSMA/CD like scenario
 - There are 20 stations, each of which transmits in a slot with probability 0.03.
 What is the probability that exactly one transmits?

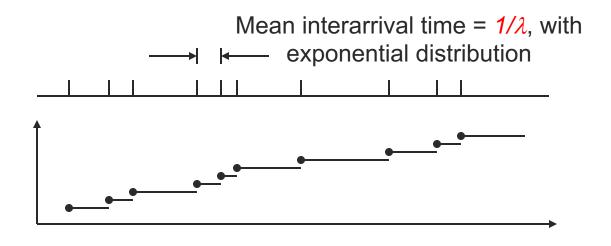
Poisson Distribution

- Exact answer
 - 0 20 * (0.03) * (1 0.03)¹⁹ = 0.3364
- Poisson approximation
 - $O \qquad Use P[X = i] = (\lambda^i e^{-\lambda})/i!$
 - With i = 1 and $\lambda = 20 * (0.03) = 0.6$
 - Approximate answer = λe^{λ} = 0.3393

There are 20 stations, each of which transmits in a slot with probability 0.03. What is the probability that exactly one transmits?

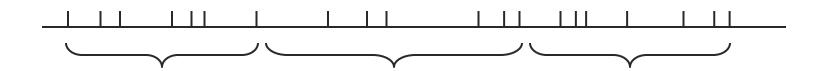


- Definition
 - A Poisson point process with parameter A
 - A point process with interpoint times that are independent and exponentially distributed with parameter λ .



Equivalently

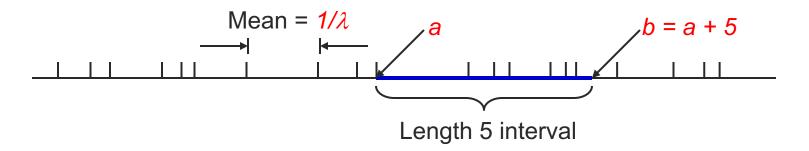
 The number of points in disjoint intervals are independent, and the number of points in an interval of length t has a Poisson distribution with mean λt



Shown are three disjoint intervals. For a Poisson point process, the number of points in each interval has a Poisson distribution.

Exercise

Given a Poisson point process with rate
 ¹ = 0.4, what is the probability of NO arrivals in an interval of length 5?



Try to answer two ways, using two equivalent descriptions of a Poisson process

Given a Poisson point process with rate $\lambda = 0.4$, what is the probability of NO arrivals in an interval of length 5?

N = number of points in interval

(Poisson with mean 5λ)

Solution 1: $P[X > 5] = e^{-5\lambda} = 0.1353$

Solution 2: $P[N = 0] = e^{-5\lambda} = 0.1353$

(remember: $P[N = i] = (5\lambda)^i * (e^{-5\lambda}) / i!$, for i = 0)

Simple Queueing Systems

- Classify by
 - "arrival pattern/service pattern/number of servers"
 - Interarrival time probability density function
 - The service time probability density function
 - The number of servers
 - The queueing system
 - The amount of buffer space in the queues
 - Assumptions
 - Infinite number of customers

Simple Queueing Systems

Terminology

- M = Markov (exponential probability density)
- D = deterministic (all have same value)
- G = general (arbitrary probability density)

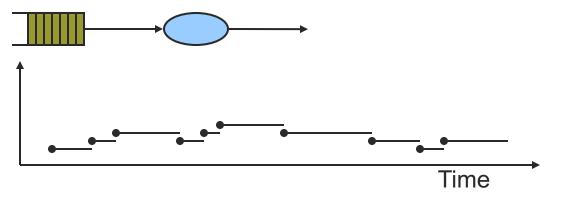
Example

- M/D/4
 - Markov arrival process
 - Deterministic service times
 - 4 servers

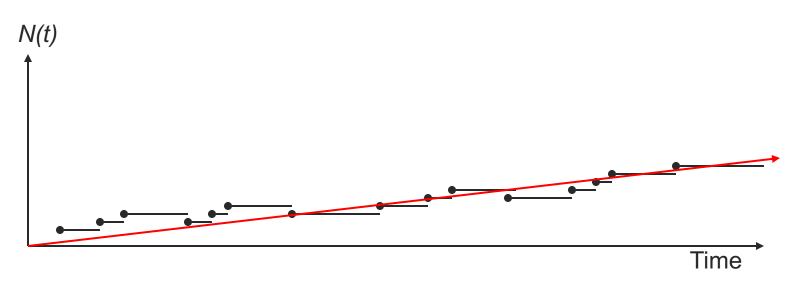
M/M/1 System

- Goal
 - Describe how the queue evolves over time as customers arrive and depart
- An M/M/1 system with arrival rate λ and departure rate μ has
 - Poisson arrival process, rate *λ*
 - \circ Exponentially distributed service times, parameter μ
 - One server

N(t) = number in system (system = queue + server)



- If the arrival rate λ is greater then the departure rate μ
 - \circ N(t) drifts up at rate λ μ



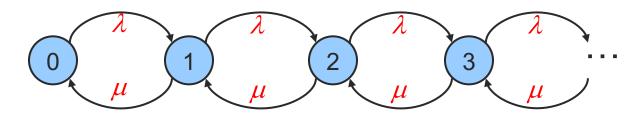
- On the other hand,
 - o if $\lambda < \mu$, expect an equilibrium distribution.
- The state of the queue is completely described by the number of customers in the queue
 - Due to the memoryless property of exponential distributions, N is described by a single state transition diagram
 - N is a Markov process, meaning past and future are independent given present

States of the queue

- N is a discrete random variable
 - p_k = probability that there are k customers in the queue
 - Equivalently,
 - p_k = probability that queue is in state k

States of the queue

- Goal
 - Find the steady state (long run) probabilities of the queue being in state *i*,
 i = 0, 1, 2, 3, ...
- Transitions occur only when
 - A customer finishes service
 - A customer arrives
- Birth-death process
 - Transition from state *i* to state *i+1* on arrival
 - Transition from state *i* to state *i-1* on departure

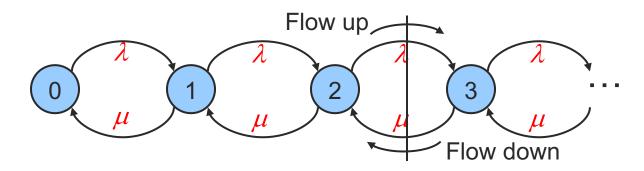


M/M/1: Transition rates

- If the queue is in state i with probability p_i
 - Then equivalently, the queue is in state i a fraction of p_i of the time
- The number of transitions/second out of state *i* onto state *i+1* is given by
 - (fraction of time queue is in state i) * (arrival rate)
 - $o p_i * \lambda$
- The number of transitions/second out of state *i* onto state *i-1* is given by
 - (fraction of time queue is in state i) * (departure rate)
 - \circ $p_i * \mu$

M/M/1: Steady State

- Claim
 - For the steady state to exist, # of transitions/sec from state i to state i+1
 must equal # of transitions/sec from state i+1 to state i
- Result
 - Net flow across boundary between states must be zero
- Basic idea (not a real proof)
 - Otherwise, in the long run, the net flow of the system would always drift to the higher state with probability 1



- Given that we must balance flow across all boundaries,
 - $\lambda p_i = \mu p_{i+1}$ for all $i \ge 0$
- Balance Equations

$$\lambda p_0 = \mu p_1 \qquad \Rightarrow p_1 = (\lambda/\mu) p_0$$

$$\lambda p_1 = \mu p_2 \qquad \Rightarrow p_2 = (\lambda/\mu) p_1 \qquad \Rightarrow p_2 = (\lambda/\mu)^2 p_0$$

$$\lambda p_2 = \mu p_3 \qquad \Rightarrow p_3 = (\lambda/\mu) p_2 \qquad \Rightarrow p_3 = (\lambda/\mu)^3 p_0$$

$$\dots \qquad \dots$$

$$\lambda p_i = \mu p_{i+1} \qquad \Rightarrow p_{i+1} = (\lambda/\mu) p_i \qquad \Rightarrow p_{i+1} = (\lambda/\mu)^{i+1} p_0$$

- Problem
 - To solve the balance equations, we need one more equation:

$$\sum_{i=0}^{\infty} p_i = 1$$

Thus

$$\sum_{i=0}^{\infty} p_i = 1 \tag{2}$$

Plugging 1 into 2, we get

$$\sum_{i=0}^{\infty} p_0 * (\lambda/\mu)^i = 1$$

Result (for $\lambda < \mu$)

So What?

• We now know the probability that there are 0, 1, 2, 3, ... customers in the queue (p_i)

Define N_{avg}

- = average # of customers in queue
- = expected value of the # of customers in the queue

N_{avg}

- \circ = $\sum_{all \ possible \ \# \ of \ cust} i * P[i \ customers]$
- $= \sum_{i=0}^{\infty} i * p_i = \sum_{i=0}^{\infty} (1 \lambda / \mu) * (\lambda / \mu)^i * i$
- $= (\lambda/\mu)/(1 \lambda/\mu)$

- Define Q_{avg}
 - = average # of customers in waiting area of the queue
- lacksquare Q_{avg}
 - $=\sum_{all\ possible\ \#\ of\ cust\ in\ waiting\ area}i*P[i\ customers\ in\ waiting\ area]$
 - \circ = $\sum_{i=0}^{\infty} i * P[i+1 customers in queue]$
 - $= \sum_{i=0}^{\infty} (1 \lambda/\mu) * (\lambda/\mu)^{i+1} * i$
 - $= (\lambda/\mu)/(1 \lambda/\mu) \lambda/\mu$
 - \circ = $N_{avg} \lambda/\mu$

Utilization

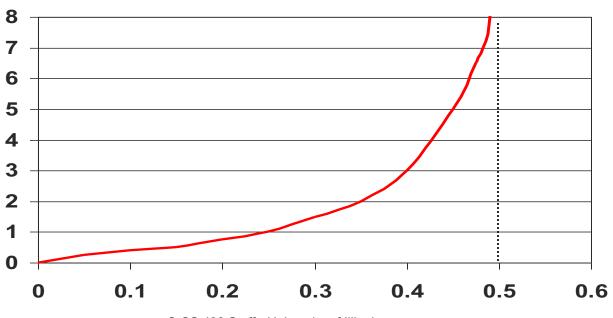
- The fraction of time the server is busy
- o = P[server is busy]
- o = 1 − P[server is NOT busy]
- = 1 − P[zero customers in queue]
- $\circ = 1 p_0$
- $\circ = 1 (1 \lambda/\mu)$
- $\circ = \lambda/\mu$
- Since utilization cannot be greater then 1,
 - Utilization = $min(1.0, \lambda/\mu)$

- Utilization example
 - Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
 - Each packet requires 2 seconds to transmit on average (exponentially distributed)
 - What are N_{avg} , Q_{avg} and ρ ?

Utilization example

- Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
- Each packet requires 2 seconds to transmit on average (exponentially distributed)
- $N_{avg} = (\lambda/\mu)/(1 \lambda/\mu) = 0.1*2/(1 0.1*2) = 0.25$
- $Q_{avg} = N_{avg} \lambda/\mu = 0.25 0.1*2 = 0.05$
- $\rho = \lambda/\mu = 0.2$

Intuitively, as the number of packets arriving per second (¹) increases, the number of packets in the queue should increase

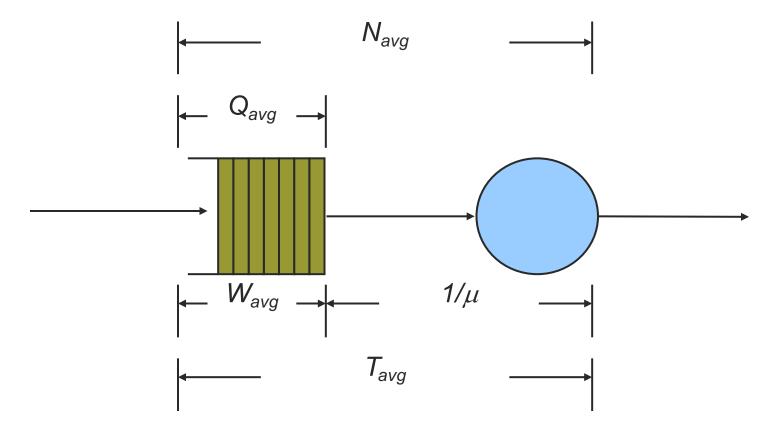


- Normalized Traffic Parameter (p)
 - o Note that N_{avg} and Q_{avg} only depend on the ratio λ/μ
 - \circ Define ρ
 - = (avg arrival rate * avg service time)
 - \blacksquare = λ * $1/\mu$ = λ/μ
 - o Intuitively, if we scale both arrival rate and service time by a constant factor, N_{avq} and Q_{avq} should remain the same
 - Note
 - If $\lambda > \mu$ (i.e. $\lambda/\mu > 1$), then more packets are arriving per second than can be serviced
 - Thus, N_{avg} and Q_{avg} are unbounded when $\rho \geq 1$!

M/M/1 System – Time Delays

- Given $\{p_0, p_1, p_2, ...\}$, we can derive N_{avg} and Q_{avg}
- We may also want to know the following
 - T_{avg} = average time from when a packet arrives until it completes transmission
 - W_{avg} = average time from when a packet arrives until it starts transmission

M/M/1 System – Time Delays



M/M/1 System – Little's Law

Now we can use Little's Law to relate N_{avg} and Q_{avg} to T_{avg} and W_{avg}

$$O N_{avg} = \lambda T_{avg}$$

$$\Rightarrow T_{avg} = N_{avg}/\lambda$$

$$\circ$$
 $Q_{avg} = \lambda W_{avg}$

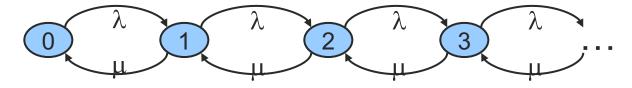
$$\Rightarrow W_{avg} = Q_{avg}/\lambda$$

• Also note: $W_{avg} + 1/\mu = T_{avg}$

- Packets arrive with the following parameters
 - $\circ \lambda = 2$ packets per second
 - $0.1/\mu = 1/4$ sec per packets
 - $\rho = 0.5$
- Utilization = $\rho = \lambda/\mu = 2/4 = 0.5$
- $N_{avg} = \rho/(1 \rho) = 0.5/1-0.5 = 1$ packet ○ ⇒ $T_{avg} = N_{avg}/\lambda = \frac{1}{2} = 0.5$ sec
- $Q_{avg} = N_{avg} \rho = 1 0.5 = 0.5$ $Q_{avg} = N_{avg} \rho = 1 0.5 = 0.5$ $Q_{avg} = N_{avg} \rho = 1 0.5 = 0.5$

M/M/1 System - Summary

1. Draw state diagram



- 2. Write down balance equations flow "up" = flow "down"
- 3. Solve balance equations using

$$\sum_{i=0}^{\infty} p_i = 1 \text{ for } \{p_0, p_1, p_2, \ldots\}$$

- 4. Compute N_{avg} and Q_{avg} from $\{p_i\}$
- 5. Compute T_{avg} and W_{avg} using Little's Theorem

- Packets arrive ant an output link according to a Poisson process
 - The mean total data rate is 80Kbps (including headers)
 - The mean packet length is 1500
 - The link speed is 100Kbps

Questions

- What assumptions can we make to fit this situation to the M/M/1 model?
- Under these assumptions, what is the mean time needed for queueing and transmission of a packet?

- Answer Part 1:
 - "Customers"
 - Packets
 - o "Server"
 - The transmitter
 - Service times
 - The transmission times
 - Packets sizes
 - Variable lengths, with a exponential distribution
 - Packet lengths are independent of each other and independent of arrival time

- Remember
 - The mean total data rate is 80Kbps
 - The mean packet length is 1500
 - The link speed is 100Kbps
- Answer Part 2: Find λ, μ and T
 - Need to convert from bit rates to packet rates
 - λ = 80Kbps/12Kb = 6.66 packets/sec
 - μ = 100 Kbps/12Kb = 8.33 packets/sec
 - So, T = mean time for queueing and transmission
 - $T = 1/(\mu \lambda) = 1/1.67 = 0.6 \text{ sec}$

Also

- The mean transmission time is
 - $-1/\mu = 0.12 \text{ sec},$
- So the mean time spent in queue is
 - $W = T 1/\mu = 0.6 0.12 = 0.48$ sec
- The mean number of packets is
 - $N = \rho/(1 \rho) = 0.8/(1 0.8) = 4$ packets

M/M/1 System in Practice

- The assumptions we made are often not realistic
- We still get the correct qualitative behavior
- Simple formulas for predictive delay are useful for provisioning resources in a network and setting controls
- Real traffic seems to have bursty behavior on multiple time scales
 - This is not true for Poisson processes

