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Direct Link Networks – Error 
Detection and Correction

Reading: Peterson and Davie, 
Chapter 2
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Error Detection

n Encoding translates symbols to signals
n Framing demarcates units of transfer
n Error detection validates correctness of 

each frame

digital data
(a string of 
symbols)

digital data
(a string of 
symbols)

modulator demodulator

a string
of signals



Error Detection

n Adds redundant information that checks for errors
¡ And potentially fix them
¡ If not, discard packet and resend

n Occurs at many levels
¡ Demodulation of signals into symbols (analog)
¡ Bit error detection/correction (digital)—our main focus

n Within network adapter (CRC check)
n Within IP layer (IP checksum)
n Within some applications
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Error Detection

n Analog Errors
¡ Example of signal distortion

n Hamming distance
¡ Parity and voting
¡ Hamming codes

n Error bits or error bursts?
n Digital error detection

¡ Two-dimensional parity 
¡ Checksums
¡ Cyclic Redundancy Check (CRC)



Analog Errors

n Consider RS-232 encoding of 

character �Q�

n Assume idle wire (-15V) before and 

after signal
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RS-232 Encoding of 'Q'
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Encoding isn’t perfect
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Encoding isn’t perfect
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Symbols
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Digital error detection
and correction

n Input: decoded symbols
¡ Some correct
¡ Some incorrect
¡ Some erased

n Output:
¡ Correct blocks (or codewords, or frames, 

or packets)
¡ Erased blocks
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Error Detection Probabilities

n Definitions
¡ Pb : Probability of single bit error (BER)
¡ P1 : Probability that a frame arrives with no bit 

errors
¡ P2 : While using error detection, the probability 

that a frame arrives with one or more undetected 
errors

¡ P3 : While using error detection, the probability 
that a frame arrives with one or more detected 
bit errors but no undetected bit errors
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Error Detection Probabilities

n With no error detection

n F = Number of bits per frame
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Error Detection Process

n Transmitter
¡ For a given frame, an error-detecting code (check bits) is 

calculated from data bits
¡ Check bits are appended to data bits

n Receiver
¡ Separates incoming frame into data bits and check bits
¡ Calculates check bits from received data bits
¡ Compares calculated check bits against received check 

bits
¡ Detected error occurs if mismatch
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Parity

n Parity bit appended to a block of data

n Even parity

¡ Added bit ensures an even number of 1s

n Odd parity

¡ Added bit ensures an odd number of 1s

n Example

¡ 7-bit character 1110001

¡ Even parity 1110001 0
¡ Odd parity 1110001 1
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Parity: Detecting Bit Flips

n 1-bit error detection with parity
¡ Add an extra bit to a code to ensure an 

even (odd) number of 1s
¡ Every code word has an even (odd)  

number of 1s
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Voting: Correcting Bit Flips

n 1-bit error correction with voting
¡ Every codeword is transmitted n times
¡ Codeword is 3 bits long

000

111
Voting:

White – correct to 1

Blue - correct to 0
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Voting: 2-bit Erasure 
Correction

n Every code word is copied 3 times

2-erasure planes in green
remaining bit not 
ambiguous

cannot correct 1-error and 
1-erasure
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Hamming Distance

n The Hamming distance between two 
code words is the minimum number of 
bit flips to move from one to the other
¡ Example:
¡ 00101 and 00010 

¡ Hamming distance of 3
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Minimum Hamming Distance

n The minimum Hamming distance of a 
code is the minimum distance over all 
pairs of codewords
¡ Minimum Hamming Distance for parity

n 2
¡ Minimum Hamming Distance for voting

n 3
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Coverage

n N-bit error detection
¡ No code word changed into another code word
¡ Requires Hamming distance of N+1

n N-bit error correction
¡ N-bit neighborhood: all codewords within N bit 

flips

¡ No overlap between N-bit neighborhoods
¡ Requires hamming distance of 2N+1



Hamming Codes

n Linear error-correcting code
n Named after Richard Hamming
n Simple, commonly used in RAM (e.g., 

ECC-RAM)
n Can detect up to 2-bit errors
n Can correct up to 1-bit errors

Spring 2019 © CS 438 Staff, University of Illinois 21



Spring 2019 © CS 438 Staff, University of Illinois 22

Hamming Codes

n Construction
¡ number bits from 1 upward
¡ powers of 2 are check bits
¡ all others are data bits
¡ Check bit j: XOR of all k for which (j AND k) = j

n Example: 
¡ 4 bits of data, 

3 check bits C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7
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Hamming Codes
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What are we trying to handle?

n Worst case errors

¡ We solved this for 1 bit error

¡ Can generalize, but will get expensive for more bit errors

n Probability of error per bit

¡ Flip each bit with some probability, independently of others

n Burst model

¡ Probability of back-to-back bit errors

¡ Error probability dependent on adjacent bits

¡ Value of errors may have structure

n Why assume bursts?

¡ Appropriate for some media (e.g., radio)

¡ Faster signaling rate enhances such phenomena
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Digital Error Detection 
Techniques

n Two-dimensional parity
¡ Detects up to 3-bit errors
¡ Good for burst errors

n IP checksum
¡ Simple addition
¡ Simple in software
¡ Used as backup to CRC

n Cyclic Redundancy Check (CRC)
¡ Powerful mathematics
¡ Tricky in software, simple in hardware
¡ Used in network adapter



Spring 2019 © CS 438 Staff, University of Illinois 28

Two-Dimensional Parity

n Use 1-dimensional parity
¡ Add one bit to a 7-bit code to 

ensure an even/odd number of 1s

n Add 2nd dimension
¡ Add an extra byte to frame

n Bits are set to ensure even/odd 
number of 1s in that position 
across all bytes in frame

n Comments
¡ Catches all 1-, 2- and 3-bit and 

most 4-bit errors

1

0

1

1

1

0

1111011 0

Parity 
Bits

Parity 
Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data
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Two-Dimensional Parity

0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0



What happens if…
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0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
Can also correct it!



Spring 2019 © CS 438 Staff, University of Illinois 31

What about 2-bit errors?

0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1
Can detect the two-bit error

0
Can�t detect a problem here

Can�t tell 
which bits 
are 
flipped, 
so can�t 
correct
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What about 2-bit errors?

0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

If these 
four parity 
bits don�t 
match
Which bits 
could be 
in error?

Could be the dotted pair or the dashed pair.
Can�t correct 2-bit error.
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What about 3-bit errors?

0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the three-bit error

0 0
But you 
can�t 
correct (eg 
if dashed 
bits got
flipped 
instead of 
the dotted 
ones)



What about 4-bit errors?
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0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

Are there any 4-bit errors this scheme *can* detect?



What about 4-bit errors?
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0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

1

1

0

Can you think of a 4-bit error this scheme can�t detect?



Internet Checksum

n Idea
¡ Add up all the words
¡ Transmit the sum
¡ Use 1�s complement addition on 16bit codewords

¡ Example
n Codewords: -5 -3
n 1�s complement binary: 1010 1100
n 1�s complement sum 1000

n Comments
¡ Small number of redundant bits
¡ Easy to implement

¡ Not very robust 
¡ Eliminated in IPv6
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IP Checksum

u_short cksum(u_short *buf, int count) {
register u_long sum = 0;
while (count--) {

sum += *buf++;
if (sum & 0xFFFF0000) {
/* carry occurred, so wrap around */

sum &= 0xFFFF;
sum++;

}
}
return ~(sum & 0xFFFF);

} What could cause this check to fail?



Main Goal: Check the Data!
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Hash function

n data bits

k pseudorandom
check bits



Main Goal: Check the Data!

n In any code, what fraction of  
codewords are valid?
¡ 1/2k

n Ideal (random) hash function:
¡ Any change in input produces an 

output that�s essentially random

¡ So any error would be detected 
with probability 1 – 2-k

n Checksum: not close to ideal

n CRC: better
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Hash function

n data bits

k pseudorandom
check bits



Simplified CRC-like protocol
using regular integers

n Basic idea
¡ Both endpoints agree in advance on divisor 

value C = 3
¡ Sender wants to send message M = 10
¡ Sender computes X such that C divides 10M + X
¡ Sender sends codeword W = 10M + X
¡ Receiver receives W� and checks whether C 

divides W�
n If so, then probably no error
n If not, then error
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Simplified CRC-like protocol
using regular integers

n Intuition
¡ If C is large, it�s unlikely that bits are flipped 

exactly to land on another multiple of C.
¡ CRC is vaguely like this, but uses polynomials 

instead of numbers
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Cyclic Redundancy Check 
(CRC)

n Given
¡ Message M = 10011010
¡ Represented as Polynomial  M(x)

= 1 *x7 + 0 *x6 + 0 *x5 + 1 *x4 + 1 *x3 + 0 *x2 + 1 *x + 0
= x7 + x4 + x3 + x

n Select a divisor polynomial C(x) with degree k
¡ Example with k = 3: 

n C(x) = x3 + x2 + 1
n Represented as 1101

n Transmit a polynomial P(x) that is evenly divisible 
by C(x)
¡ P(x) = M(x)* xk + k check bits How can we determine 

these k bits?
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Properties of Polynomial 
Arithmetic

n Coefficients are modulo 2
(x3 + x) + (x2 + x + 1) = …
…x3 + x2 + 1
(x3 + x) – (x2 + x + 1) = …
…x3 + x2 + 1 also!

n Addition and subtraction are both xor!
n Need to compute R such that C(x) divides P(x) = 
M(x)•xk + R(x)

n So R(x) = remainder of M(x)•xk / C(x)
¡ Will find this with polynomial long division



Polynomial arithmetic

n Divisor
¡ Any polynomial B(x) can be divided by a polynomial C(x) if 

B(x) is of the same or higher degree than C(x)

n Remainder
¡ The remainder obtained when B(x) is divided by C(x) is 

obtained by subtracting C(x) from B(x)

n Subtraction
¡ To subtract C(x) from B(x), simply perform an XOR on 

each pair of matching coefficients

n For example: (x3+1)/(x3+x2+1) = x2
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CRC - Sender

n Given
¡ M(x) = 10011010 = x7 + x4 + x3 + x
¡ C(x) = 1101 = x3 + x2 + 1

n Steps
¡ T(x) = M(x) * xk (add zeros to increase deg. of  M(x) by k)
¡ Find remainder, R(x), from T(x)/C(x)
¡ P(x) = T(x) – R(x) Þ M(x) followed by R(x)

n Example
¡ T(x) = 10011010000
¡ R(x) = 101
¡ P(x) = 10011010101
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CRC - Receiver

n Receive Polynomial P(x) + E(x)
¡ E(x) represents errors
¡ E(x) = 0, implies no errors

n Divide (P(x) + E(x)) by C(x)
¡ If result = 0, either

n No errors (E(x) = 0, and P(x) is evenly 
divisible by C(x))

n (P(x) + E(x)) is exactly divisible by C(x), error 
will not be detected

¡ If result = 1, errors.
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CRC – Example Encoding

1001
1101

1000
1101

1011
1101

1100
1101

1000
1101

1101

k + 1 bit check 
sequence c, 

equivalent to a 
degree-k 

polynomial

101
1101Remainder

m mod c

10011010000 Message plus k 
zeros

Result:

Transmit message 
followed by 
remainder:

10011010101

C(x) = x3 + x2 + 1 = 1101 Generator
M(x) = x7 + x4 + x3 + x = 10011010 Message
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CRC – Example Decoding –
No Errors

1001
1101

1000
1101

1011
1101

1100
1101

1101
1101

1101

k + 1 bit check 
sequence c, 

equivalent to a 
degree-k 

polynomial

0
1101Remainder

m mod c

10011010101 Received 
message, no 

errors

Result:

CRC test is passed

C(x) = x3 + x2 + 1 = 1101 Generator
P(x) = x10 + x7 + x6 + x4 + x2 + 1 = 10011010101 Received Message
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CRC – Example Decoding –
with Errors

1000
1101

1011
1101

1101
1101

1101

k + 1 bit check 
sequence c, 

equivalent to a 
degree-k 

polynomial

0101
1101

Remainder

m mod c

10010110101 Received 
message

Result:

CRC test failed

Two bit errors

C(x) = x3 + x2 + 1 = 1101 Generator
P(x) = x10 + x7 + x5 + x4 + x2 + 1 = 10010110101 Received Message
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CRC Error Detection

n Properties
¡ Characterize error as E(x)
¡ Error detected unless C(x) divides E(x)

n (i.e., E(x) is a multiple of C(x))
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Example of Polynomial 
Multiplication

n Multiply 
¡ 1101 by 10110
¡ x3 + x2 + 1 by x4 + x2 + x

1011
10110
1101

1101
1101

00011111110

This is a multiple of c, 
so that if errors occur 

according to this 
sequence, the CRC test 

would be passed
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On Polynomial Arithmetic

n The use of polynomial arithmetic is a fancy way to 
think about addition with no carries.  It also helps in 
the determination of a good choice of C(x)
¡ A non-zero vector is not detected if and only if the error 

polynomial E(x) is a multiple of C(x)

n Implication
¡ Suppose C(x) has the property that C(1) = 0 (i.e. (x + 1) is 

a factor of C(x))
¡ If E(x) corresponds to an undetected error pattern, then it 

must be that E(1) = 0
¡ Therefore, any error pattern with an odd number of error 

bits is detected
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CRC Error Detection

n What errors can we detect?
¡ All single-bit errors, if xk and x0 have non-zero coefficients

¡ All double-bit errors, if C(x) has at least three terms

¡ All odd bit errors, if C(x) contains the factor (x + 1)

¡ Any bursts of length < k, if C(x) includes a constant term

¡ Most bursts of length ³ k
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Common Polynomials for C(x)

CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + x1 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +
x4 + x2 + x1 + 1
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Error Detection vs. Error 
Correction

n Detection
¡ Pro: Overhead only on messages with errors
¡ Con: Cost in bandwidth and latency for 

retransmissions
n Correction

¡ Pro: Quick recovery
¡ Con: Overhead on all messages

n What should we use?
¡ Correction if retransmission is too expensive
¡ Correction if probability of errors is high
¡ Detection when retransmission is easy and 

probability of errors is low


