Direct Link Networks – Error Detection and Correction

Reading: Peterson and Davie, Chapter 2

- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Error detection validates correctness of each frame

Error Detection

Adds redundant information that checks for errors

- \circ And potentially fix them
- \circ If not, discard packet and resend
- Occurs at many levels
	- \circ Demodulation of signals into symbols (analog)
	- Bit error detection/correction (digital)—our main focus
		- Within network adapter (CRC check)
		- **Notainal IP layer (IP checksum)**
		- \blacksquare Within some applications

Error Detection

- Analog Errors
	- Example of signal distortion
- Hamming distance
	- Parity and voting
	- **Hamming codes**
- **n** Error bits or error bursts?
- Digital error detection
	- Two-dimensional parity
	- o Checksums
	- Cyclic Redundancy Check (CRC)

Analog Errors

- Consider RS-232 encoding of character 'Q'
- Assume idle wire (-15V) before and after signal

RS-232 Encoding of 'Q'

Encoding isn't perfect

Example with bandwidth $=$ baud rate

Encoding isn't perfect

Example with bandwidth $=$ baud rate/2

Symbols

possible binary voltage encoding symbol neighborhoods and erasure neighborhoods in green; all region possible QAM symbol other space results in erasure

$$
\lceil \rceil
$$

Digital error detection and correction

Input: decoded symbols

- ¡ Some correct
- ¡ Some incorrect
- **•** Some erased
- Output:
	- Correct blocks (or codewords, or frames, or packets)
	- o Erased blocks

Error Detection Probabilities

Definitions

- P_b : Probability of single bit error (BER)
- P_1 : Probability that a frame arrives with no bit errors
- \circ P_{2} : While using error detection, the probability that a frame arrives with one or more undetected errors
- \circ P_3 : While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors

Error Detection Probabilities

\blacksquare F = Number of bits per frame

Error Detection Process

Transmitter

- \circ For a given frame, an error-detecting code (check bits) is calculated from data bits
- \circ Check bits are appended to data bits
- **Receiver**
	- \circ Separates incoming frame into data bits and check bits
	- \circ Calculates check bits from received data bits
	- \circ Compares calculated check bits against received check bits
	- ¡ Detected error occurs if mismatch

Parity

- Parity bit appended to a block of data
- **Even parity**
	- Added bit ensures an even number of 1s
- Odd parity
	- Added bit ensures an odd number of 1s
- **Example**
	- ¡ 7-bit character 1110001
	- ¡ Even parity 1110001 **0**
	- ¡ Odd parity 1110001 **1**

Parity: Detecting Bit Flips

- 1-bit error detection with parity
	- Add an extra bit to a code to ensure an even (odd) number of 1s
	- Every code word has an even (odd) number of 1s

Voting: Correcting Bit Flips

1-bit error correction with voting

- Every codeword is transmitted n times
- Codeword is 3 bits long

Voting: 2-bit Erasure **Correction**

Every code word is copied 3 times

2-erasure planes in green remaining bit not ambiguous

cannot correct 1-error and 1-erasure

Hamming Distance

- The Hamming distance between two code words is the minimum number of bit flips to move from one to the other
	- Example:
	- ¡ 00101 and 00010
	- Hamming distance of 3

Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
	- Minimum Hamming Distance for parity n 2
	- **Minimum Hamming Distance for voting** n 3

Coverage

N-bit error detection

- No code word changed into another code word
- Requires Hamming distance of N+1
- N-bit error correction
	- \circ N-bit neighborhood: all codewords within N bit flips
	- No overlap between N-bit neighborhoods
	- \circ Requires hamming distance of 2N+1

- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2-bit errors
- Can correct up to 1-bit errors

Construction

- \circ number bits from 1 upward
- \circ powers of 2 are check bits
- all others are data bits
- \circ Check bit *j*: XOR of all *k* for which (*j* AND *k*) = *j*

Example:

 \circ 4 bits of data, **3 check bits**

Construction

- \circ number bits from 1 upward
- \circ powers of 2 are check bits
- all others are data bits
- \circ Check bit *j*: XOR of all *k* for which (*j* AND *k*) = *j*

Example:

 \circ 4 bits of data, **3 check bits**

Construction

- \circ number bits from 1 upward
- \circ powers of 2 are check bits
- all others are data bits
- \circ Check bit *j*: XOR of all *k* for which (*j* AND *k*) = *j*

Example:

 \circ 4 bits of data, **3 check bits**

What are we trying to handle?

Worst case errors

- \circ We solved this for 1 bit error
- \circ Can generalize, but will get expensive for more bit errors
- \blacksquare Probability of error per bit
	- \circ Flip each bit with some probability, independently of others
- Burst model
	- \circ Probability of back-to-back bit errors
	- \circ Error probability dependent on adjacent bits
	- \circ Value of errors may have structure
- Why assume bursts?
	- \circ Appropriate for some media (e.g., radio)
	- \circ Faster signaling rate enhances such phenomena

Digital Error Detection **Techniques**

Two-dimensional parity

- \circ Detects up to 3-bit errors
- Good for burst errors
- IP checksum
	- \circ Simple addition
	- \circ Simple in software
	- Used as backup to CRC
- Cyclic Redundancy Check (CRC)
	- ¡ Powerful mathematics
	- \circ Tricky in software, simple in hardware
	- \circ Used in network adapter

Two-Dimensional Parity

- Use 1-dimensional parity
	- \circ Add one bit to a 7-bit code to ensure an even/odd number of 1s
- Add 2nd dimension
	- \circ Add an extra byte to frame
		- Bits are set to ensure even/odd number of 1s in that position across all bytes in frame
- **Comments**
	- \circ Catches all 1-, 2- and 3-bit and most 4-bit errors

Two-Dimensional Parity

What happens if…

What about 2-bit errors?

What about 2-bit errors?

Could be the dotted pair or the dashed pair. Can't correct 2-bit error.

What about 3-bit errors?

Can detect the three-bit error

What about 4-bit errors?

Are there any 4-bit errors this scheme *can* detect?

What about 4-bit errors?

Can you think of a 4-bit error this scheme can't detect?

Internet Checksum

Idea

- \circ Add up all the words
- \circ Transmit the sum
- \circ Use 1's complement addition on 16bit codewords

o Example

- n Codewords: -5 -3
- n 1's complement binary: 1010 1100
- n 1's complement sum 1000

Comments

- \circ Small number of redundant bits
- \circ Easy to implement
- \circ Not very robust
- \circ Eliminated in IPv6

IP Checksum

```
u_short cksum(u_short *buf, int count) {
   register u_long sum = 0;
   while (count--) {
      sum += *buf++;
      if (sum & 0xFFFF0000) {
      /* carry occurred, so wrap around */
             sum &= 0xFFFF;
             sum++;
      }
   }
   return ~(sum & 0xFFFF);
} What could cause this check to fail?
```


Main Goal: Check the Data!

$$
38\,
$$

Main Goal: Check the Data!

- In any code, what fraction of codewords are valid?
	- ¡ 1/2*^k*
- Ideal (random) hash function:
	- \circ Any change in input produces an output that's essentially random
	- \circ So any error would be detected with probability 1 – 2*-k*
- Checksum: not close to ideal
- CRC: better

Simplified CRC-like protocol using regular integers

Basic idea

- Both endpoints agree in advance on divisor value *C = 3*
- \circ **Sender** wants to send message $M = 10$
- ¡ Sender computes *X* such that *C* divides *10M + X*
- ¡ Sender sends codeword *W = 10M + X*
- ¡ Receiver receives *W* and checks whether *C* divides *W*
	- If so, then probably no error
	- If not, then error

Simplified CRC-like protocol using regular integers

Intuition

- If C is large, it's unlikely that bits are flipped exactly to land on another multiple of *C*.
- \circ CRC is vaguely like this, but uses polynomials instead of numbers

Cyclic Redundancy Check (CRC)

Given

- ¡ Message *M* = 10011010
- ¡ Represented as Polynomial *M(x)*
	- $= 1 \cdot x^7 + 0 \cdot x^6 + 0 \cdot x^5 + 1 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 0$ $= x^{7} + x^{4} + x^{3} + x^{4}$
- Select a divisor polynomial $C(x)$ with degree *k*
	- Example with $k = 3$:
		- $C(x) = x^3 + x^2 + 1$
		- Represented as 1101
- Transmit a polynomial $P(x)$ that is evenly divisible by *C(x)*

$$
P(x) = M(x) * x^k + k \text{ check bits}
$$

How can we determine these k bits?

Properties of Polynomial Arithmetic

- Coefficients are modulo 2 $(x^3 + x) + (x^2 + x + 1) = ...$ $x^3 + x^2 + 1$ $(x^3 + x) - (x^2 + x + 1) = ...$ $x^3 + x^2 + 1$ also!
- Addition and subtraction are both xor!
- Need to compute *R* such that $C(x)$ divides $P(x) =$ $M(x) \cdot x^k + R(x)$
- So $R(x)$ = remainder of $M(x) \cdot x^k / C(x)$
	- \circ Will find this with polynomial long division

Polynomial arithmetic

Divisor

¡ Any polynomial *B(x)* can be divided by a polynomial *C(x)* if *B(x)* is of the same or higher degree than *C(x)*

Remainder

 \circ The remainder obtained when $B(x)$ is divided by $C(x)$ is obtained by subtracting *C(x)* from *B(x)*

Subtraction

- ¡ To subtract *C(x)* from *B(x)*, simply perform an XOR on each pair of matching coefficients
- For example: $(x^3+1)/(x^3+x^2+1)$ =

CRC - Sender

Given

- \circ *M(x)* = 10011010 = $x^7 + x^4 + x^3 + x^4$
- \circ $C(x) = 1101$ $=$ $x^3 + x^2 + 1$

n Steps

- σ $T(x) = M(x) * x^k$ (add zeros to increase deg. of $M(x)$ by k)
- ¡ Find remainder, *R(x)*, from *T(x)/C(x)*
- \circ $P(x) = T(x) R(x) \Rightarrow M(x)$ followed by $R(x)$

n Example

- σ $T(x) = 10011010000$
- \circ $R(x) = 101$
- $P(x) = 10011010101$

CRC - Receiver

- ⁿ Receive Polynomial *P(x) + E(x)*
	- *E(x)* represents errors
	- \circ $E(x) = 0$, implies no errors
- Divide $(P(x) + E(x))$ by $C(x)$
	- \circ If result = 0, either
		- No errors $(E(x) = 0)$, and $P(x)$ is evenly divisible by *C(x)*)
		- $P(x) + E(x)$ is exactly divisible by $C(x)$, error will not be detected
	- \circ If result = 1, errors.

CRC – Example Encoding

CRC – Example Decoding – No Errors

CRC – Example Decoding – with Errors

CRC Error Detection

Properties

- ¡ Characterize error as *E(x)*
- ¡ Error detected unless *C(x)* divides *E(x)*
	- \blacksquare (*i.e.*, $E(x)$ is a multiple of $C(x)$)

Example of Polynomial Multiplication

Multiply ¡ 1101 by 10110 $x^3 + x^2 + 1$ by $x^4 + x^2 + x$

On Polynomial Arithmetic

- The use of polynomial arithmetic is a fancy way to think about addition with no carries. It also helps in the determination of a good choice of C(x)
	- A non-zero vector is not detected if and only if the error polynomial $E(x)$ is a multiple of $C(x)$
- **Implication**
	- Suppose $C(x)$ has the property that $C(1) = 0$ (i.e. $(x + 1)$ is a factor of $C(x)$)
	- \circ If E(x) corresponds to an undetected error pattern, then it must be that $E(1) = 0$
	- \circ Therefore, any error pattern with an odd number of error bits is detected

CRC Error Detection

What errors can we detect?

- \circ All single-bit errors, if x^k and x⁰ have non-zero coefficients
- \circ All double-bit errors, if $C(x)$ has at least three terms
- \circ All odd bit errors, if C(x) contains the factor (x + 1)
- Any bursts of length $\leq k$, if $C(x)$ includes a constant term
- \circ Most bursts of length $\geq k$

Common Polynomials for C(x)

Error Detection vs. Error **Correction**

Detection

- Pro: Overhead only on messages with errors
- Con: Cost in bandwidth and latency for retransmissions

Correction

- Pro: Quick recovery
- Con: Overhead on all messages
- What should we use?
	- Correction if retransmission is too expensive
	- Correction if probability of errors is high
	- Detection when retransmission is easy and probability of errors is low