
Spring 2019 © CS 438 Staff 1

DNS

Host Names vs. IP addresses

n Host names
¡ Mnemonic name appreciated by humans
¡ Variable length, full alphabet of characters
¡ Provide little (if any) information about physical location
¡ Examples: www.cnn.com and bbc.co.uk

n IP addresses
¡ Numerical address appreciated by routers
¡ Fixed length, binary number
¡ Hierarchical, related to host location
¡ Examples: 64.236.16.20 and 212.58.224.131

Spring 2019 © CS 438 Staff 2

Separating Naming and
Addressing

n Names are easier to remember
¡ cnn.com vs. 64.236.16.20 (but not

shortened urls)
n Addresses can change underneath

¡ Move www.cnn.com to 4.125.91.21
¡ e.g., renumbering when changing

providers

Spring 2019 © CS 438 Staff 3

Separating Naming and

Addressing

n Name could map to multiple IP addresses

¡ www.cnn.com may refer to multiple (8) replicas

of the Web site

¡ Enables

n Load-balancing

n Reducing latency by picking nearby servers

n Tailoring content based on requester�s

location/identity

n Multiple names for the same address

¡ e.g., aliases like www.cnn.com and cnn.com
Spring 2019 © CS 438 Staff 4

Scalable (Name « Address)
Mappings

n Originally: per-host file
¡ Flat namespace
¡ /etc/hosts
¡ SRI (Menlo Park) kept master copy
¡ Downloaded regularly

Spring 2019 © CS 438 Staff 5

Scalable (Name « Address)
Mappings

n Why not centralize
DNS?
¡ Single point of failure
¡ Traffic volume
¡ Distant centralized

database
¡ Maintenance

n Doesn�t scale!

n Root name server
¡ Contacted by local

name server that can
not resolve name

¡ Contacts authoritative
name server if mapping
not known

¡ Gets mapping and
returns it to local name
server

Spring 2019 © CS 438 Staff 6

Domain Name Service (DNS)

n Large scale dynamic, distributed application
¡ Replaced Network Information Center (NIC)

n RFC 1034 and 1035
n Name space

¡ Set of possible names
n Bindings

¡ Maps internet domain names into IP addresses
n Name server

¡ Resolution mechanism
Spring 2019 © CS 438 Staff 7

Applications� use of DNS

n Local DNS server (�default name server�)
¡ Usually near the endhosts that use it
¡ Local hosts configured with local server (e.g.,

/etc/resolv.conf) or learn server via DHCP
n Client application

¡ Extract server name (e.g., from the URL)
¡ Do getaddrinfo() to trigger resolver code, sending

message to server
n Server application

¡ Extract client IP address from socket
¡ Optional getnameinfo() to translate into name

Spring 2019 © CS 438 Staff 8

DNS Root

n Located in Virginia, USA
n How do we make the root scale?

Spring 2019 © CS 438 Staff 9

Verisign, Dulles, VA

DNS Root Servers

n 13 root servers (see http://www.root-servers.org/)
¡ Labeled A through M

n Does this scale?

Spring 2019 © CS 438 Staff 10

B USC-ISI Marina del
Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software

Consortium
Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

TLD and Authoritative Servers

n Top-level domain (TLD) servers
¡ Responsible for com, org, net, edu, etc, and all top-level

country domains uk, fr, ca, jp.
n Network Solutions maintains servers for com TLD
n Educause for edu TLD

n Authoritative DNS servers
¡ Organization�s DNS servers
¡ Provide authoritative hostname to IP mappings for

organization�s servers (e.g., Web, mail).
¡ Can be maintained by organization or service provider

Spring 2019 © CS 438 Staff 11

Local Name Server

n One per ISP (residential ISP, company,
university)
¡ Also called �default name server�

n When host makes DNS query, query is sent
to its local DNS server
¡ Acts as proxy, forwards query into hierarchy
¡ Reduces lookup latency for commonly searched

hostnames

Spring 2019 © CS 438 Staff 12

Spring 2019 © CS 438 Staff 13

Distributed, Hierarchical
Database

n Client wants IP for www.amazon.com
¡ Client queries a root server to find com DNS server
¡ Client queries com DNS server to get amazon.com DNS server
¡ Client queries amazon.com DNS server to get IP address for

www.amazon.com

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

uiuc.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

DNS – Name Server

n Host at cs.uiuc.edu
¡ Wants IP address for

gaia.cs.umass.edu
n Recursive query

¡ Ask server to get answer
for you

¡ e.g., request 1 and
response 8

n Iterated query
¡ Contacted server

replies with name of
server to contact

¡ �I don�t know this
name, but ask this
server�Spring 2019 © CS 438 Staff 14

requesting host
cs.uiuc.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.uiuc.edu

1

2
3

4

5

6
authoritative
DNS server

78

TLD DNS
server

dns.cs.umass.edu

But how did it know the
root server IP?

n Hard-coded
n What if it changes?

Spring 2019 © CS 438 Staff 15

DNS: Caching

n Performing all these queries takes time
¡ And all this before actual communication takes place
¡ e.g., 1-second latency before starting Web download

n Caching can greatly reduce overhead
¡ The top-level servers very rarely change
¡ Popular sites (e.g., www.cnn.com) visited often
¡ Local DNS server often has the information cached

Spring 2019 © CS 438 Staff 16

DNS: Caching

n How DNS caching works
¡ DNS servers cache responses to queries
¡ Responses include a �time to live� (TTL) field

n Once (any) name server learns mapping, it caches
mapping
¡ Cache entries timeout (disappear) after some time
¡ TLD servers typically cached in local name servers

n Thus root name servers not often visited

Spring 2019 © CS 438 Staff 17

DNS Resource Records
DNS: distributed DB storing resource records (RR)

n Type=NS

¡ name is domain (e.g. foo.com)

¡ value is hostname of authoritative

name server for this domain

n Type=PTR

¡ name is reversed IP quads

n e.g. 78.56.34.12.in-addr.arpa

¡ value is corresponding

hostname

RR format: (name, value, type, ttl)

n Type=A

¡ name is hostname

¡ value is IP address

n Type=CNAME

¡ name is alias name for some

�canonical� name

¡ e.g., www.cs.mit.edu is really

eecsweb.mit.edu
¡ value is canonical name

n Type=MX

¡ value is name of mailserver

associated with name

¡ Also includes a weight/preference

Spring 2019 18© CS 438 Staff

DNS Protocol
DNS protocol: query and reply messages, both with same

message format
n Message header
n Identification

¡ 16 bit # for query, reply to
query uses same #

n Flags
¡ Query or reply
¡ Recursion desired
¡ Recursion available
¡ Reply is authoritative

n Plus fields indicating size
(0 or more) of optional
header elements

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Spring 2019 19© CS 438 Staff

Reliability

n DNS servers are replicated
¡ Name service available if at least one replica is up
¡ Queries can be load-balanced between replicas

n Usually, UDP used for queries
¡ Need reliability: must implement this on top of UDP
¡ Spec supports TCP too, but not always implemented

n Try alternate servers on timeout
¡ Exponential backoff when retrying same server

n Same identifier for all queries
¡ Don�t care which server responds

20Spring 2019 © CS 438 Staff

Inserting Resource Records
into DNS

n Example: just created startup �FooBar�
n Get a block of address space from ISP

¡ Say 212.44.9.128/25
n Register foobar.com at Network Solutions (say)

¡ Provide registrar with names and IP addresses of your
authoritative name server (primary and secondary)

¡ Registrar inserts RR pairs into the com TLD server:
n (foobar.com, dns1.foobar.com, NS)
n (dns1.foobar.com, 212.44.9.129, A)

n Put in your (authoritative) server dns1.foobar.com:
¡ Type A record for www.foobar.com
¡ Type MX record for foobar.com

21Spring 2019 © CS 438 Staff

Setting up foobar.com

n In addition, need to provide reverse PTR bindings
¡ e.g., 212.44.9.129® dns1.foobar.com

n Normally, these go in 9.44.212.in-addr.arpa
n Problem

¡ You can�t run the name server for that domain. Why not?
¡ Because your block is 212.44.9.128/25, not

212.44.9.0/24
¡ Whoever has 212.44.9.0/25 won�t be happy with you

owning their PTR records
n Solution: ISP runs it for you

¡ Now it�s more of a headache to keep it up-to-date :-(
22Spring 2019 © CS 438 Staff

DNS Measurements
(MIT data from 2000)

n What is being looked up?
¡ ~60% requests for A records
¡ ~25% for PTR records
¡ ~5% for MX records
¡ ~6% for ANY records

n How long does it take?
¡ Median ~100msec (but 90th percentile ~500msec)
¡ 80% have no referrals; 99.9% have fewer than four

n Query packets per lookup: ~2.4
23Spring 2019 © CS 438 Staff

DNS Measurements
(MIT data from 2000)

n Top 10% of names accounted for ~70% of lookups
¡ Caching should really help!

n 9% of lookups are unique
¡ Cache hit rate can never exceed 91%

n Cache hit rates ~ 75%
¡ But caching for more than 10 hosts doesn�t add much

24Spring 2019 © CS 438 Staff

DNS Measurements
(MIT data from 2000)

n Does DNS give answers?
¡ ~23% of lookups fail to elicit an answer!
¡ ~13% of lookups result in NXDOMAIN (or similar)

n Mostly reverse lookups

¡ Only ~64% of queries are successful!
n How come the web seems to work so well?

n ~ 63% of DNS packets in unanswered queries!
¡ Failing queries are frequently retransmitted
¡ 99.9% successful queries have ≤2 retransmissions

25Spring 2019 © CS 438 Staff

Moral of the Story

n If you design a highly resilient system,
many things can be going wrong
without you noticing it!

26Spring 2019 © CS 438 Staff

Security Analysis of DNS

n What security issues does the design & operation of
the Domain Name System raise?

27

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Spring 2019 © CS 438 Staff

Security Problem #1:
Starbucks (and China…)

n As you sip your latte and surf the Web, how does your laptop
find google.com?

n Answer: it asks the local name server per Dynamic Host
Configuration Protocol (DHCP) …
¡ … which is run by Starbucks or their contractor
¡ … and can return to you any answer they please
¡ … including a �man in the middle� site that forwards your query

to Google, gets the reply to forward back to you, yet can change
anything they wish in either direction

n How can you know you’re getting correct data?
¡ Today, you can�t. (Though if site is HTTPS, that helps)
¡ One day soon: DNSSEC extensions to DNS

28Spring 2019 © CS 438 Staff

;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:
www.foobar.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:
foobar.com. 600 IN NS dns1.foobar.com.
foobar.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:
google.com. 5 IN A 212.44.9.155

Security Problem #2: Cache
Poisoning
n Suppose you are a Bad Guy and you control the

name server for foobar.com. You receive a
request to resolve www.foobar.com and reply:

29
A foobar.com machine, not google.com

Evidence of the attack
disappears 5 seconds later!

Spring 2019 © CS 438 Staff

Cache Poisoning

n Okay, but how do you get the victim to look up
www.foobar.com in the first place?

n Perhaps you connect to their mail server and send
¡ HELO www.foobar.com
¡ Which their mail server then looks up to see if it

corresponds to your source address (anti-spam measure)
n Note, with compromised name server we can also lie about

PTR records (address ® name mapping)
¡ e.g., for 212.44.9.155 = 155.44.9.212.in-

addr.arpa return google.com (or whitehouse.gov,
or whatever)
n If our ISP lets us manage those records as we see fit,

or we happen to directly manage them

30Spring 2019 © CS 438 Staff

Cache Poisoning

n Suppose Bad Guy is at Starbucks and they can sniff (or even
guess) the identification field the local server will use in its
next request.

n They:
¡ Ask local server for a (recursive) lookup of google.com
¡ Locally spoof subsequent reply from correct name server

using the identification field
¡ Bogus reply arrives sooner than legit one

n Local server duly caches the bogus reply!
¡ Now: every future Starbucks customer is served the bogus

answer out of the local server�s cache
n In this case, the reply uses a large TTL

31Spring 2019 © CS 438 Staff

Summary

n Domain Name System (DNS)
¡ Distributed, hierarchical database
¡ Distributed collection of servers
¡ Caching to improve performance

n DNS currently lacks authentication
¡ Can�t tell if reply comes from the correct source
¡ Can�t tell if correct source tells the truth
¡ Malicious source can insert extra (mis)information
¡ Malicious bystander can spoof (mis)information
¡ Playing with caching lifetimes adds extra power to attacks

32Spring 2019 © CS 438 Staff

