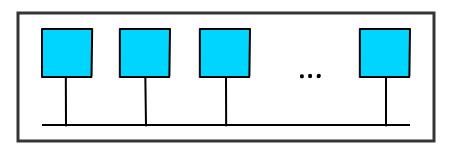
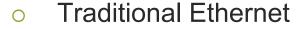

Media Access Protocols

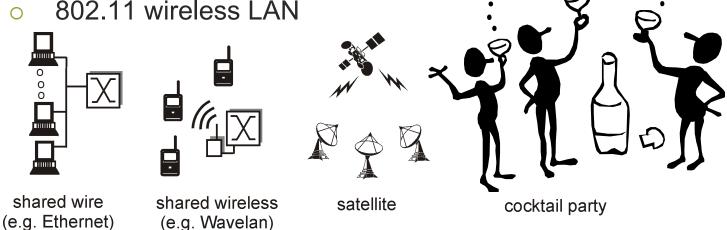
Where are We?


you are here

© CS 438 Staff, University of Illinois here

Multiple Access Media

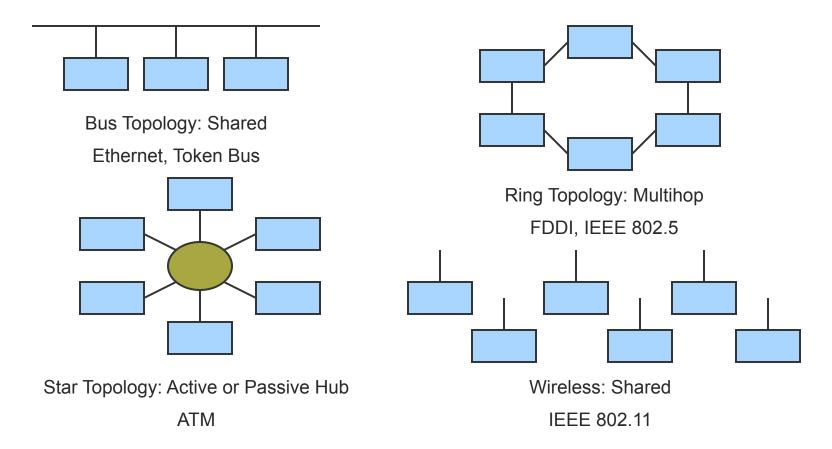

- Multiple senders on some media
 - Buses (Ethernet)
 - Radio, Satellite
 - Token Ring
- Need methods to mediate access
 - Fair arbitration
 - Good performance



Point-to-Point vs. Broadcast Media

- Point-to-point: dedicated pairwise communication
 - Long-distance fiber link
 - Point-to-point link between Ethernet switch and host
- Broadcast: shared wire or medium

802.11 wireless I AN



Spring 2015

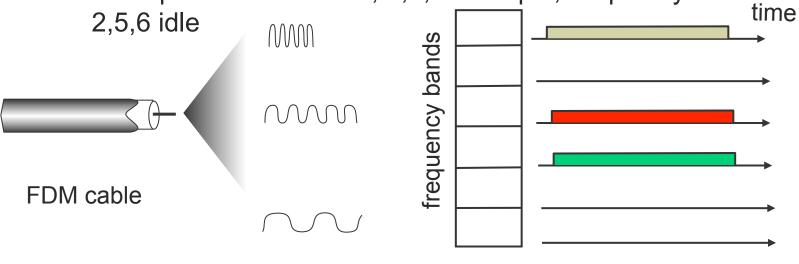
© CS 438 Staff, University of Illinois

Types of Shared Link Networks

Multiple Access Algorithm

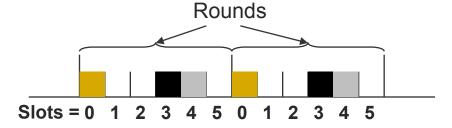
- Single shared broadcast channel
 - Must avoid having multiple nodes speaking at once
 - Otherwise, collisions lead to garbled data
 - Need distributed algorithm for sharing the channel
 - Algorithm determines which node can transmit
- Typical assumptions
 - Communication needs vary
 - Over time
 - Between hosts
 - Network is not fully utilized

Multiple Access Media

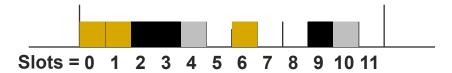

- Which kind of multiplexing is best?
 - Channel partitioning: divide channel into pieces
 - Frequency-division multiplexing (FDM, separate bands)
 - Taking turns: scheme for trading off who gets to transmit
 - Time-division multiplexing (TDM, synchronous time slots)
 - Statistical time-division multiplexing (STDM, time slots on demand)
 - Random access: allow collisions, and then recover

Channel Partitioning: FDMA

- FDMA: Frequency Division Multiple Access
 - Channel spectrum divided into frequency bands
 - Each station assigned fixed frequency band
 - Unused transmission time in frequency bands go idle

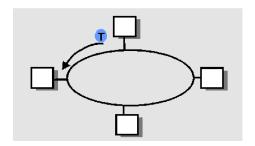

Example: 6-station LAN, 1,3,4 have pkt, frequency bands.

Channel Partitioning: TDMA


- TDMA: Time Division Multiple Access
 - Access to channel in "rounds"
 - Each station gets fixed length slot in each round
 - Time-slot length is packet transmission time
 - Unused slots go idle
 - Example: 6-station LAN with slots 0, 3, and 4

Channel Partitioning: STDMA

- STDMA: Statistical Time Division Multiple Access
 - Access to channel as needed
 - Each station gets fixed length on transmission
 - Time-slot length is packet transmission time
 - Unused slots go idle only if no station has data to send
 - Example



Channel Partitioning: Taking Turns

- Polling
 - Master node "invites" slave nodes to transmit in turn
- master
 Concerns
 Polling overhead
 Latency
 Single point of failure (master)

- Token passing
 - Control token passed from one node to next sequentially
- Node must have token to send
- Concerns
 - Token overhead
 - Latency
 - At mercy of any node

Multiple Access Media: Random Access

- Random access
 - Optimize for the common case (no collision)
 - Don't avoid collisions, just recover from them....
- When node has packet to send
 - Transmit at full channel data rate
 - No a priori coordination among nodes
- Two or more transmitting nodes ⇒ collision
 - Data lost
- Random access MAC protocol specifies
 - How to detect collisions
 - How to recover from collisions

Multiple Access Media to Discuss

- Two solutions (of many)
 - Carrier sense multiple access with collision detection (CSMA/CD)
 - Send only if medium is idle
 - Stop sending immediately if collision detected
 - Carrier sense multiple access with collision Avoidance (CSMA/CA)
 - Send only if medium is idle
 - Design send algorithm to avoid collisions
- Tanenbaum Sec. 4.2 covers many others

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Used by Ethernet

- Xerox and IEEE 802.3 (10Mbps standards)
- IEEE 802.3u (Fast Ethernet, 100Mbps standard)
- IEEE 802.3z,ab (1Gbps Ethernet)
- IEEE 802.3-2005/8 (10 Gbps Ethernet, no shared bus)

Outline

- Historical development
- Topologies and components
- MAC algorithm
- Collision detection limitations
- Lessons learned

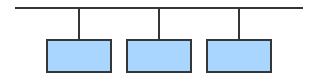
Aloha, Networking!

- Aloha Packet Radio Network
 - Norm Abramson left
 Stanford to surf
 - Set up first data communication system for Hawaiian islands
 - Hub at U. Hawaii, Oahu
 - Two radio channels:
 - Random access: for sites sending data
 - Broadcast for hub rebroadcasting data

From Aloha comes Ethernet

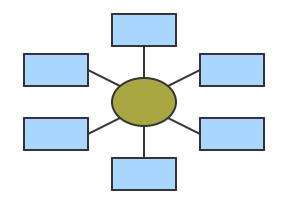
- Ethernet
 - Developed by Xerox PARC, 1974
 - Standardized by Xerox, DEC and Intel in 1978
 - Later, IEEE 802.3 standard
 - Fast Ethernet (100 Mbps) IEEE
 802.3u standard
 - Switched Ethernet now popular
- Numerous standards with increasing bandwidth over the years
 - 10 Mbps 100 Mbps 1 Gbps 10 Gbps

Xerox Alto, first machine networked with ethernet



Ethernet - CSMA/CD

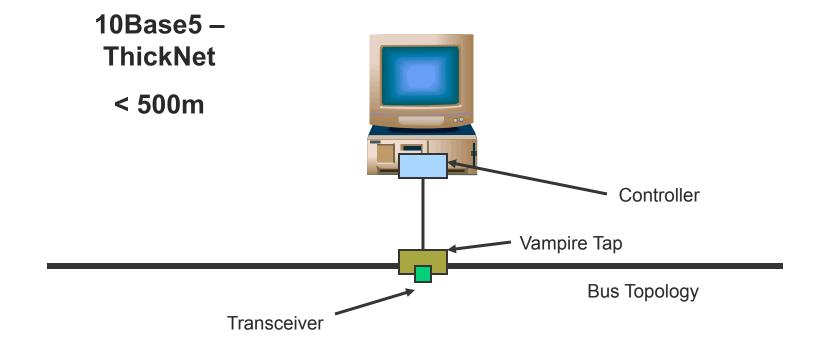
- CS Carrier Sense
 - Nodes can distinguish between an idle and a busy link
- MA Multiple Access
 - A set of nodes send and receive frames over a shared link
- CD Collision Detection
 - Nodes listen during transmission to determine if there has been interference


Ethernet Topologies

Bus Topology: Shared

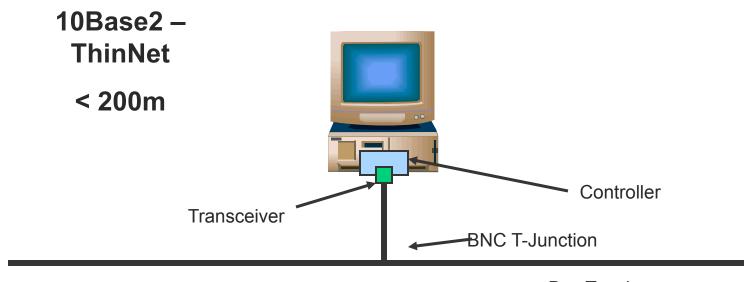
All nodes connected

to a wire

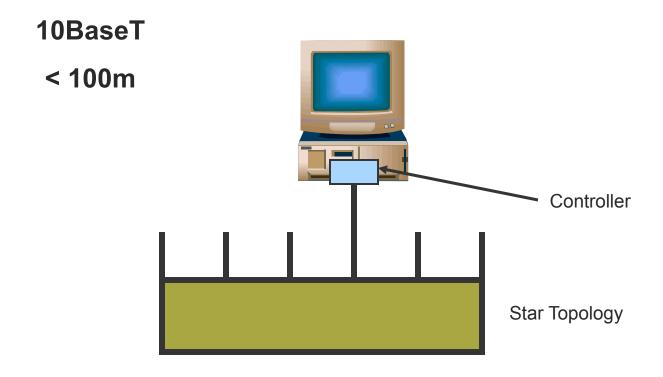


Star Topology:

All nodes connected to a central repeater



Ethernet Connectivity

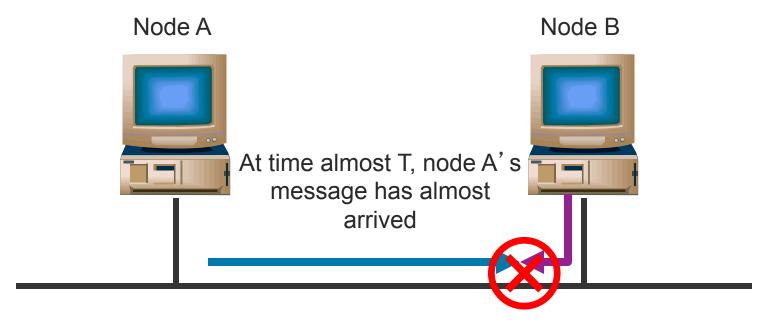

Ethernet Connectivity

Bus Topology

Ethernet Connectivity

Ethernet Specifications

- Coaxial Cable
 - o up to 500m
- Taps
 - > 2.5m apart
- Transceiver
 - Idle detection
 - Sends/Receives signal
- Repeater
 - Joins multiple Ethernet segments
 - < 5 repeaters between any two hosts</p>
- < 1024 hosts</p>



10Mb Ethernet Specifications

- Broadcast
- Encoding
 - Manchester
 - o 10 Mbps ⇒ Transmission at 20Mhz
 - Faster Ethernet standards use more efficient encodings
- Framing
 - Preamble marks beginning, sentinel marks end of frame
 - Bit oriented (similar to HDLC)
 - Data-dependent length
- Error Detection
 - 32-bit CRC

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

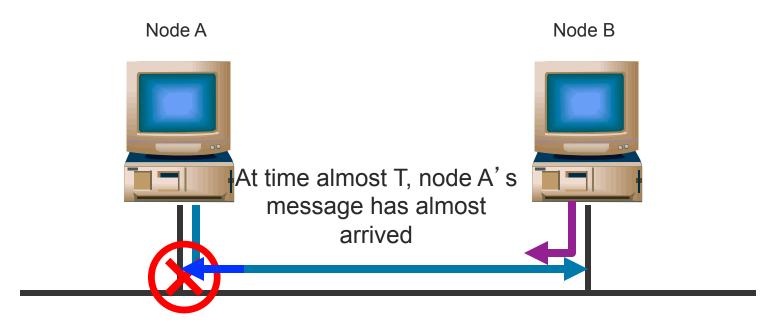
How can we ensure that A knows about the collision?

Collision Detection

Problem

How can A detect a collision?

Solution


A must still be transmitting when it receives B's transmission!

Example

- Node A's message reaches node B at time T
- Node B's message reaches node A at time 2T
- For node A to detect a collision, node A must still be transmitting at time 2T

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

At time 2T, A is still transmitting and notices a collision

Collision Detection

- IEEE 802.3
 - 2T is bounded to 51.2μs
 - At 10Mbps 51.2 μ s = 512b or 64 = 512b or 64B
 - Packet length ≥ 64B
- Jam after collision
 - Ensures that all hosts notice the collision

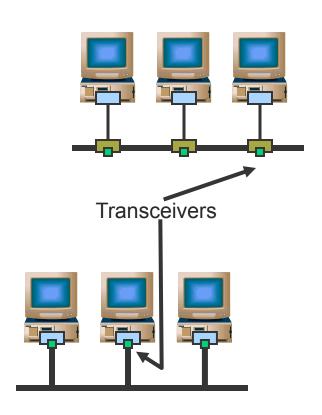
Ethernet MAC Algorithm

- Sender/Transmitter
 - If line is idle (carrier sensed)
 - Send immediately
 - Send maximum of 1500B data (1527B total)
 - Wait 9.6 µs before sending again
 - If line is busy (no carrier sense)
 - Wait until line becomes idle
 - Send immediately (1-persistent)
 - If collision detected
 - How do we do this?
 - Stop sending and jam signal
 - Try again later

How do we do this?

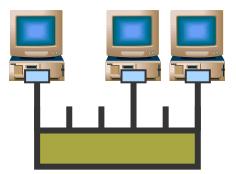
Why have a max size?

Want to prevent one node from taking over completely


Why 9.6 μs?

Too long: wastes time Too short: doesn't allow other nodes to transmit (fairness)

-Collision Detection Techniques: Bus Topology

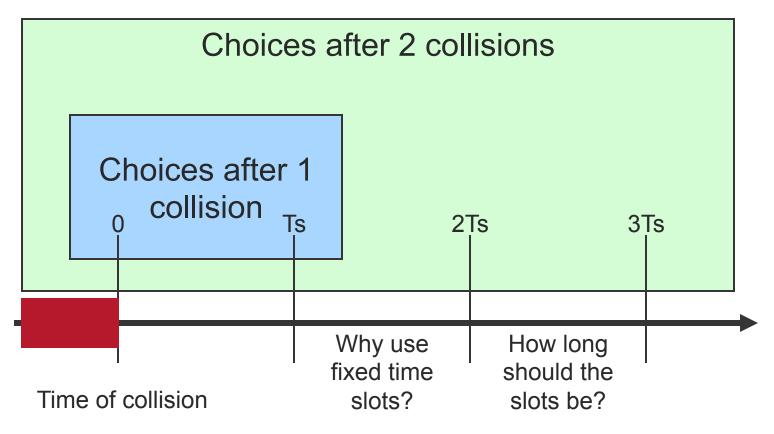

- Transceiver handles
 - Carrier detection
 - Collision detection
 - Jamming after collision
- Transceiver sees sum of voltages
 - Outgoing signal
 - Incoming signal
- Transceiver looks for
 - Voltages impossible for only outgoing

Collision Detection Techniques: Hub Topology

- Controller/Card handles
 - Carrier detection
- Hub handles
 - Collision detection
 - Jamming after collision
- Need to detect activity on all lines
 - If more than one line is active
 - Assert collision to all lines
 - Continue until no lines are active

Frame Reception

- Sender handles all access control
- Receiver simply pulls the frame from the network
- Ethernet controller/card
 - Sees all frames
 - Selectively passes frames to host processor
- Acceptable frames
 - Addressed to host
 - Addressed to broadcast
 - Addressed to multicast address to which host belongs
 - Anything (if in promiscuous mode)
 - Need this for packet sniffers/TCPDump



Retransmission

- How long should a host wait to retry after a collision?
- What happens if the host waits too long?
 - Wasted bandwidth
- What happens if the host doesn't wait long enough?
 - More collisions
- **Ethernet Solution**
 - Binary exponential backoff
 - Maximum backoff doubles with each failure
 - After N failures, pick an N-bit number

Binary Exponential Backoff

Binary Exponential Backoff

- For IEEE 802.3, $T = 51.2 \mu s$
- Consider the following
 - o k hosts collide
 - Each picks a random number from 0 to 2^(N-1)
 - If the minimum value is unique
 - All other hosts see a busy line
 - Note: Ethernet RTT < 51.2 μs</p>
 - If the minimum value is not unique
 - Hosts with minimum value slot collide again!
 - Next slot is idle
 - Consider the next smallest backoff value

Binary Exponential backoff algorithm

- When collision first occurs
 - Send a jamming signal to prevent further data being sent
- Resend a frame
 - After either 0 or T seconds, chosen at random
- If resend fails, resend the frame again
 - After either 0, T, 2T, or 3T seconds.
 - o In other words, send after kT seconds, where k is a random integer with $0 \le k < 2^2$
- If that still doesn't work, resend the frame again
 - After kT, where k is a random number with $0 \le k < 2^3$
- In general, after the n^{th} failed attempt, resend the frame after kT, where k is a random number and $0 \le k < 2^n$

- Two nodes are ready to send a packet at the same time a third ends transmission
- *i*th round
 - Each nodes wait $[0, 1, ..., 2^{(i-1)} 1]$ slots until next attempt
 - 1st round choices: 0
 - 2nd round choices: 0, 1
 - 3rd round choices: 0, 1, 2, 3
 - All 2^{*i*-1} choices have equal probability
- $q_i = P[collision in the ith round]$
 - Assuming collisions in all the previous i 1 rounds

- Find q_i as a function of *i* for all $i \ge 1$
 - There are 2⁽ⁱ⁻¹⁾ slots to chose from
 - Station A selects a slot with probability 1/2⁽ⁱ⁻¹⁾
 - Station B selects a slot with probability 1/2⁽ⁱ⁻¹⁾
 - And the same slot is chosen with probability $1/2^{(i-1)}$
 - This probability doesn't depend on the slot the first station selected, so the unconditional probability is

$$q_i = 2^{-(i-1)}$$

Find the probability p_i that exactly i rounds are needed for the first success

$$p_i = q_1 q_2 q_3 \dots q_{i-1} (1 - q_i)$$

Compute p_1 , p_2 , p_3 , p_4 and p_5

o
$$p_1 = 1 - q_1 = 0$$

o
$$p_2 = q_1 \times (1 - q_2) = 1 \times (1 - \frac{1}{2})$$

o
$$p_3 = q_1 \times q_2 \times (1 - q_3) = 1 \times \frac{1}{2} \times (1 - \frac{1}{4})$$

o
$$p_4 = q_1 \times q_2 \times q_3 \times (1 - q_4) = 1 \times \frac{1}{2} \times \frac{1}{4} \times (1 - \frac{1}{8})$$

o
$$p_5 = q_1 \times q_2 \times q_3 \times q_4 \times (1 - q_5) = 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times (1 - \frac{1}{16})$$

- Give an upper bound on the probability it takes more that 20 ms until the first success
- Slot duration is 51.2μs
 - 20 ms = 390 slots
- Maximum probability → smallest number of collisions
 - Both stations must wait maximum amount of time
 - Delay for eight collisions =
 1 + 2+ 4 + 8 + 16 + 32 + 64 + 128 = 255
 - Delay for nine collisions =
 1 + 2+ 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511

- Give an upper bound on the probability it takes more that 20 ms until the first success
- At least 8 collisions → delay >= 20 ms
- P(delay >= 20 ms) = $q_1q_2q_3q_4q_5q_6q_7q_8 = 2^{-(0+1+2+3+4+5+6+7)}$

Name	Cable	Advantages	Max. Segment Length	Max Nodes on Segment
10Base5	Thick Coaxial (10mm)	Good for backbones	500m	100
10Base2	Thin Coaxial (5mm)	Cheapest system	200m	30
10BaseT	Twisted Pair (0.5mm)	Easy Maintenance	100m	1 (to hub)
10BaseFP	Fiber (0.1mm)	Best between buildings	500m	33

Extended segments may have up to 4 repeaters (total of 2.5km)

Name	Cable	Advantages	Max. Segment Length	Max Nodes on Segment
10Base5	Thick Coaxial	Good for backbones	500m	100
10Base2	The fixed T defines the maximum		200m	30
10BaseT	(0.5mm) Maintenance		100m	1 (to hub)
10BaseFP	Fiber (0.1mm)	Best between buildings	500m	33
Extended segments may have up to 4 repeaters (total of 2 5km)				

Extended segments may have up to 4 repeaters (total of 2.5km)

Name	Cable	Max. Segment Length	Advantages
100BaseT4	4 Twisted Pair	100m	Cat 3, 4 or 5 UTP
100BaseTX	Twisted Pair	100m	Full duplex on Cat 5 UTP
100BaseFX	Fiber Pair	100m	Full duplex, long runs

All hub based. Other types not allowed. Hubs can be shared or switched

Name		Cable	Max. Segment Length	Advantages
100BaseT4		4 Twisted Pair	100m	Cat 3, 4 or 5 UTP
100Bas		er distances, e protocol!	100m	Full duplex on Cat 5 UTP
100BaseFX		Fiber Pair	100m	Full duplex, long runs

All hub based. Other types not allowed. Hubs can be shared or switched

..and beyond

- Gigabit ethernet common in PCs
- 100 GB ethernet standard ratified in June 2010

Ethernet in Practice

- Number of hosts
 - Limited to 200 in practice, standard allows 1024
- Range
 - Typically much shorter than 2.5km limit in standard
- Round Trip Time
 - Typically 5 or 10 μs, not 50
- Flow Control
 - Higher level flow control limits load (e.g. TCP)
- Topology
 - Star easier to administer than bus
 - Even better: exclusive access rather than shared!

