DNS and HTTP

Finally, the application layer!

- We have learned about:
 - Signals being sent on wires
 - Frames carried over dumb local networks
 - Packets carried over the entire internet
 - Making communication useably reliable + efficient

WHAT'S THE POINT?

Today's Example

Campus Announcements

Colleges	8	Schools	
----------	---	---------	--

- · Make sure your bike is counted in the Campus Bicycle Census April 9 Campus Town Hall - Archive Video
- . New website to minimize paperwork for researchers

GIVE to ILLINOIS

- Alumni Parents
- Resources For: Future Students Current Students 3 >

- campaign finance > Money and politics following the Supreme Court's McCutcheon ruling 2
 - Ruby Mendenhall, expert on poverty and social mobility How the Earned Income Tax Credit relieves poverty

HERE & NOW: Images of Illinois

Videos • Photos • Submit 💽 +> 🕩

Faculty & Staff Visitors

Hypertext Transfer Protocol

To understand HTTP, let's first look at HTML.

<html><head>

...

```
<title>Matthew Caesar</title>
<script text="text/javascript" src="jquery.min.js"></script>
<script text="text/javascript" src="data.gatherer.js"></script>
</head>
<body>
<img alt="" src="matt.jpg" style="width: 188px;" align="left"
hspace="20" vspace="20">
<h2 align="left">Matthew Caesar</h2>
Assistant Professor <br>
```

HTTP Performance

- What determines page load time?
 - Download time (large objects)
 - Latency (small objects)
 - Complex HTML structure
 - Early HTTP's poor optimization
- How can we optimize these?

HTTP Optimizations

- Saving download time
 - Caching
 - If-Modified-Since
 - Caching proxies
- Saving round trips
 - Parallel connections
 - Supposed to be max 2 ☺
 - Reusing TCP connections ("Persistent TCP")
 - SPDY: parallel HTTP without the parallel TCP

Statelessness, and the hacks to undo it

A vanilla HTTP server's FSM:

They asked for cats.html

Give them cats.html

They asked for cats.jpg Give them cats.jpg <u>They asked for morecats.jpg</u> Give them morecats.jpg

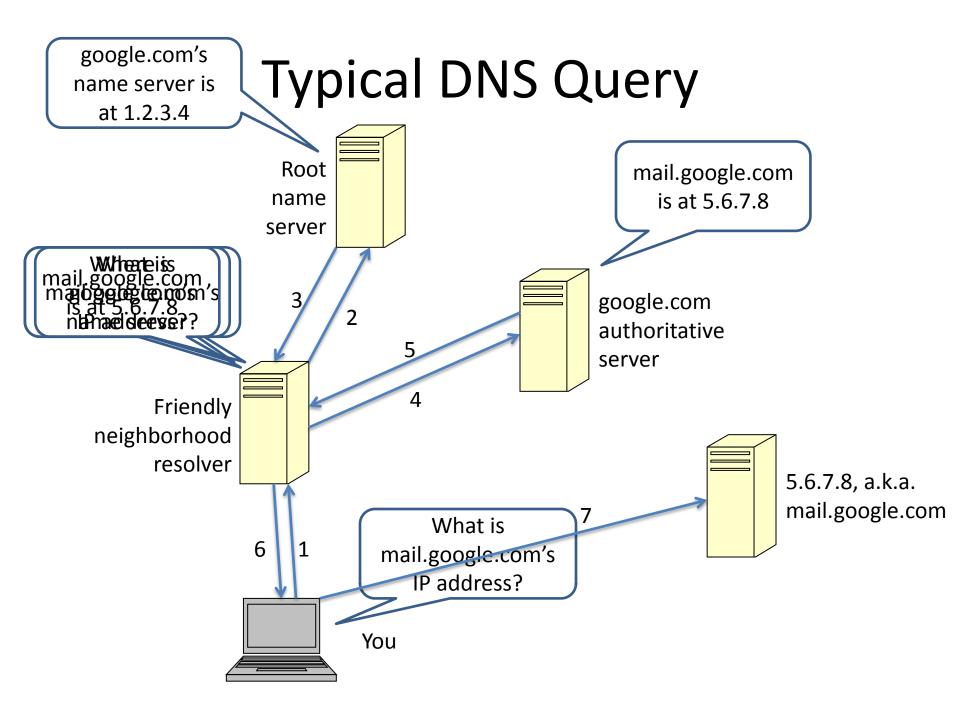
- Sounds like your Amazon shopping cart, right?
- The work-arounds
 - Javascript and pals, backend databases
 - Cookies
 - URL Parameters
 - Filtering http://www.newegg.com/Internal-SSDs/SubCategory/ID-636
 - <u>http://www.newegg.com/Product/ProductList.aspx?Submit=ENE&N=</u> 100008120%204027%204017&IsNodeId=1&name=%24100%20-%20%24200
- Our needs are clearly beyond HTTP's original intent. Time to move on? (see "Embassies: Radically Refactoring the Web", best paper NSDI 2013)

DNS – A simple goal

<u>www.cs.illinois.edu</u> → 128.174.252.83

What's in a domain name?

www.cs.illinois.edu


mail.google.com

- Hierarchical names
- Hierarchical ownership (what makes it not flat)
 - Right to decide what IP a name resolves to
 - Right to delegate subdomains
 - Responsibility to help with resolution
 - Return IP address
 - Return next name server

DNS Roles

- Root name servers
 - Responsible for all the TLDs
 - Knows the addresses of every domain's name servers
- Authoritative name servers
 - Responsible for a domain (google.com)
 - For all subdomains, it knows either
 - an IP address
 - the subdomain's name server
- Recursive resolver
 - Handles lookups for many end hosts
 - Caches IP addresses and name server addresses
- End host
 - Talks to a resolver
 - Caches IP addresses

Web Browser Summary

- Browser resolves domain name -> IP address
 - Contacts a DNS resolver...
 - Who contacts possibly multiple other servers...
 - Caching
- Browser retrieves page from server
 - HTTP GET
 - Caching, or else server replies
 - POST methods
- HTTP Optimizations:
 - parallel connections
 - persistent HTTP
 - SPDY

DNS – Main concepts

- Domains
 - Top Level Domains (com, edu, uk, mil, gov, ...)
 - Subdomains (com \rightarrow example.com \rightarrow www.example.com)
- Name servers
 - Authoritative (tells you the IP for example.com)
 - Root (tells you where example.com's name server is)
 - Iterative vs. recursive
- Caching
 - Resolver and host cache end-host IP addresses
 - Resolver caches name server IP addresses
 - Entries expire after a TTL