
TCP
CS/ECE 438: Spring 2014

Instructor: Matthew Caesar

http://courses.engr.illinois.edu/cs438/



2

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux 
and demux 



Last time: Components of a 
solution for reliable transport

• Checksums (for error detection) 

• Timers (for loss detection) 

• Acknowledgments 

• cumulative 

• selective

• Sequence numbers (duplicates, windows)

• Sliding Windows (for efficiency)

• Go-Back-N (GBN)

• Selective Replay (SR)



What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 



5

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed 
over header 
and data



What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 

• Sequence numbers are byte offsets 



TCP: Segments and 
Sequence Numbers



TCP “Stream of Bytes” Service…

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B
B

yte 8 0

B
yte 8 0



… Provided Using TCP “Segments”

B
y
te

 0
B

y
te

 1
B

y
te

 2
B

y
te

 3

B
y
te

 0
B

y
te

 1
B

y
te

 2
B

y
te

 3

Host A

Host B

B
y
te

 8
0

TCP Data

TCP Data

B
y
te

 8
0

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out



TCP Segment

• IP packet
• No bigger than Maximum Transmission Unit (MTU)

• E.g., up to 1500 bytes with Ethernet

• TCP packet
• IP packet with a TCP header and data inside

• TCP header ≥ 20 bytes long

• TCP segment
• No more than Maximum Segment Size (MSS) bytes

• E.g., up to 1460 consecutive bytes from the stream

• MSS = MTU – (IP header) – (TCP header)

IP Hdr

IP Data

TCP HdrTCP Data (segment)



Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number  

= 1st byte in 
segment = ISN + 

k

k bytes



Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number  

= 1st byte in 
segment = ISN + 

k

k



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte 
offset of data
carried in this
segment



What does TCP do?

Most of our previous tricks, but a few 
differences
• Checksum 

• Sequence numbers are byte offsets 

• Receiver sends cumulative acknowledgements (like 
GBN)



ACKing and Sequence Numbers

• Sender sends packet 

• Data starts with sequence number X

• Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK

•  If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)

• If highest in-order byte received is Y s.t. (Y+1) < X

• ACK acknowledges Y+1

• Even if this has been ACKed before



Normal Pattern

• Sender: seqno=X, length=B

• Receiver: ACK=X+B

• Sender: seqno=X+B, length=B

• Receiver: ACK=X+2B

• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field



17

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives seqno just 
beyond highest 
seqno received in 
order
(“What Byte 
    is Next”)



What does TCP do?

Most of our previous tricks, but a few 
differences
• Checksum 

• Sequence numbers are byte offsets 

• Receiver sends cumulative acknowledgements (like 
GBN)

• Receivers can buffer out-of-sequence packets (like SR)



Loss with cumulative ACKs

• Sender sends packets with 100B and 
seqnos.:

• 100, 200, 300, 400, 500, 600, 700, 800, 900, …

• Assume the fifth packet (seqno 500) is lost, 
but no others

• Stream of ACKs will be:

• 200, 300, 400, 500, 500, 500, 500,…



What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 

• Sequence numbers are byte offsets 

• Receiver sends cumulative acknowledgements (like GBN)

• Receivers may not drop out-of-sequence packets (like SR)

• Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission



Loss with cumulative ACKs

• “Duplicate ACKs” are a sign of an isolated loss

• The lack of ACK progress means 500 hasn’t been delivered

• Stream of ACKs means some packets are being delivered

• Therefore, could trigger resend upon receiving k duplicate 
ACKs

• TCP uses k=3

• But response to loss is trickier….



Loss with cumulative ACKs

• Two choices:

• Send missing packet and increase W by the 
number of dup ACKs

• Send missing packet, and wait for ACK to 
increase W

• Which should TCP do?



What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 

• Sequence numbers are byte offsets 

• Receiver sends cumulative acknowledgements (like GBN)

• Receivers do not drop out-of-sequence packets (like SR)

• Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

• Sender maintains a single retransmission timer (like GBN) and 
retransmits on timeout



Retransmission Timeout

• If the sender hasn’t received an ACK by 
timeout, retransmit the first packet in the 
window

• How do we pick a timeout value?



Timing Illustration

1

1

Timeout too long  
inefficient

1

1

Timeout too short  
duplicate packets 

RTT

Timeout

Timeout

RTT



Retransmission Timeout

• If haven’t received ack by timeout, 
retransmit the first packet in the window

• How to set timeout?

• Too long: connection has low throughput

• Too short: retransmit packet that was just 
delayed

• Solution: make timeout proportional to RTT

• But how do we measure RTT?



RTT Estimation

• Use exponential averaging of RTT 
samples

E
st

im
at

e d
R

T
T

Time

SampleRTT

SampleRTT= AckRcvdTime− SendPacketTime

EstimatedRTT = α × EstimatedRTT + (1−α)× SampleRTT

0 < α ≤1



Exponential Averaging 
Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT

Assume RTT is constant  SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)



Problem: Ambiguous Measurements

• How do we differentiate between the real ACK, 
and ACK of the retransmitted packet?

ACK

Retransmission

Original Transmission

S
a
m

p
le

R
T
T

Sender Receiver

ACK
Retransmission

Original Transmission

S
a
m

p
le

R
T
T

Sender Receiver



Karn/Partridge Algorithm

• Measure SampleRTT only for original transmissions

• Once a segment has been retransmitted, do not use it for any further 
measurements

• Computes EstimatedRTT using α = 0.875

• Timeout value (RTO)  = 2 × EstimatedRTT

• Employs exponential backoff

• Every time RTO timer expires, set RTO ← 2·RTO

• (Up  to maximum ≥ 60 sec)

• Every time new measurement comes in (= successful original transmission), 
collapse RTO back to 2 × EstimatedRTT



Karn/Partridge in action

from Jacobson and Karels, SIGCOMM 1988



Jacobson/Karels Algorithm

• Problem: need to better capture variability in RTT

• Directly measure deviation

• Deviation = | SampleRTT – EstimatedRTT | 

• EstimatedDeviation: exponential average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation



With Jacobson/Karels



What does TCP do?

Most of our previous ideas, but some key differences
• Checksum 

• Sequence numbers are byte offsets 

• Receiver sends cumulative acknowledgements (like GBN)

• Receivers do not drop out-of-sequence packets (like SR)

• Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

• Sender maintains a single retransmission timer (like GBN) and 
retransmits on timeout



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte 
words in TCP 
header;
5 = no options



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG 
flag to indicate 
urgent data (not 
discussed further)



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



TCP Connection Establishment and Initial 
Sequence Numbers



Initial Sequence Number (ISN)

• Sequence number for the very first byte

• Why not just use ISN = 0?

• Practical issue

• IP addresses and port #s uniquely identify a connection

• Eventually, though, these port #s do get used again

• … small chance an old packet is still in flight

• TCP therefore requires changing ISN

• Hosts exchange ISNs when they establish a 
connection



Establishing a TCP Connection

• Three-way handshake to establish connection

• Host A sends a SYN (open; “synchronize sequence numbers”) to host B

• Host B returns a SYN acknowledgment (SYN ACK)

• Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells its 
ISN to the other 

host.



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG



Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…



Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags



Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data



Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()
listen()



What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost

• Packet is lost inside the network, or:

• Server discards the packet (e.g., it’s too busy)

• Eventually, no SYN-ACK arrives

• Sender sets a timer and waits for the SYN-ACK

• … and retransmits the SYN if needed

• How should the TCP sender set the timer?

• Sender has no idea how far away the receiver is

• Hard to guess a reasonable length of time to wait

• SHOULD (RFCs 1122 & 2988) use default of 3 seconds

• Some implementations instead use 6 seconds



SYN Loss and Web Downloads

• User clicks on a hypertext link

• Browser creates a socket and does a “connect”

• The “connect” triggers the OS to transmit a SYN

• If the SYN is lost…

• 3-6 seconds of delay: can be very long

• User may become impatient

• … and click the hyperlink again, or click “reload”

• User triggers an “abort” of the “connect”

• Browser creates a new socket and another “connect”

• Essentially, forces a faster send of a new SYN packet!

• Sometimes very effective, and the page comes quickly



Tearing Down the 
Connection



Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes

• FIN occupies one byte in the sequence space

• Other host acks the byte to confirm

• Closes A’s side of the connection, but not B’s

• Until B likewise sends a FIN

• Which A then acks

SY
N

SY
N

 A
C

K

A
C

K
D

at
a

FI
N

A
C

K

A
C

K

time
A

B

FIN

A
C

K

TIME_WAIT:

Avoid reincarnation

B will retransmit FIN 
if ACK is lost

Connection
now half-closed

Connection
now closed



Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
C

K

A
C

K
D

at
a

FI
N

FIN
 +

 A
C

K

A
C

K

time
A

B

A
C

K

Connection
now closed

TIME_WAIT:
Avoid reincarnation

Can retransmit
FIN ACK if ACK lost



Abrupt Termination

• A sends a RESET (RST) to B

• E.g., because application process on A crashed

• That’s it

• B does not ack the RST

• Thus, RST is not delivered reliably

• And: any data in flight is lost

• But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
C

K

A
C

K
D

at
a

R
ST

A
C

K

time
A

B

D
ata R

ST



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG



TCP State Transitions

Data, ACK 
exchanges 
are in here



An Simpler View of the Client Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

SYN (Send)

Rcv. 
SYN+ACK,
 Send ACK

Send FINRcv. ACK,
 Send Nothing

Rcv. FIN, 
Send ACK



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to negotiate
use of additional
features 
(details in section)



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Recap: Sliding Window (so far)

• Both sender & receiver maintain a window 

• Left edge of window:

• Sender: beginning of unacknowledged data

• Receiver: beginning of undelivered data

• Right edge: Left edge + constant

• constant only limited by buffer size in the transport layer



Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte 
can send

TCP

Last byte written
Previously

ACKed bytes

Buffer size (B)



Sliding Window at Receiver (so far)

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Received and 
ACKed

Buffer size (B)

Sender might overrun 
the receiver’s buffer



Solution: Advertised Window (Flow Control)

• Receiver uses an “Advertised Window” (W) to 
prevent sender from overflowing its window

• Receiver indicates value of W in ACKs

• Sender limits number of bytes it can have in flight <= W



Sliding Window at Receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Buffer size (B)

W= B - (LastByteReceived - LastByteRead)



Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte 
can send

TCP

Last byte written
W



Sliding Window w/ Flow Control

• Sender: window advances when new data ack’d

• Receiver: window advances as receiving process 
consumes data

• Receiver advertises to the sender where the 
receiver window currently ends (“righthand edge”)

• Sender agrees not to exceed this amount



Advertised Window Limits Rate

• Sender can send no faster than W/RTT bytes/sec

• Receiver only advertises more space when it has 
consumed old arriving data

• In original TCP design, that was the sole protocol 
mechanism controlling sender’s rate

• What’s missing?



Taking Stock (1)

• The concepts underlying TCP are simple 

• acknowledgments (feedback)

• timers

• sliding windows 

• buffer management

• sequence numbers



Taking Stock (1)

• The concepts underlying TCP are simple

• But tricky in the details 

• How do we set timers? 

• What is the seqno for an ACK-only packet? 

• What happens if advertised window = 0?

• What if the advertised window is ½ an MSS?

• Should receiver acknowledge packets right away?

• What if the application generates data in units of 0.1 MSS?

• What happens if I get a duplicate SYN? Or a RST while I’m in 
FIN_WAIT, etc., etc., etc. 



Taking Stock (1)

• The concepts underlying TCP are simple

• But tricky in the details 

• Do the details matter?



Sizing Windows for 
Congestion Control

• What are the problems?

• How might we address them?



Taking Stock (2)

• We’ve covered: K&R 3.1, 3.2, 3.3, 3.4, 3.5

• Next lecture (congestion control)

• K&R 3.6 and 3.7

• The midterm will cover all the above (K&R Ch. 3)

• The next topic (Naming) will not be on the midterm


	Slide 1
	TCP Header
	Last time: Components of a solution for reliable transport
	What does TCP do?
	TCP Header
	What does TCP do?
	Slide 7
	TCP “Stream of Bytes” Service…
	… Provided Using TCP “Segments”
	TCP Segment
	Sequence Numbers
	Sequence Numbers
	TCP Header
	What does TCP do?
	ACKing and Sequence Numbers
	Normal Pattern
	TCP Header
	What does TCP do?
	Loss with cumulative ACKs
	What does TCP do?
	Loss with cumulative ACKs
	Loss with cumulative ACKs
	What does TCP do?
	Retransmission Timeout
	Timing Illustration
	Retransmission Timeout
	RTT Estimation
	Exponential Averaging Example
	Problem: Ambiguous Measurements
	Karn/Partridge Algorithm
	Karn/Partridge in action
	Jacobson/Karels Algorithm
	With Jacobson/Karels
	What does TCP do?
	TCP Header: What’s left?
	TCP Header: What’s left?
	TCP Header: What’s left?
	Slide 38
	Initial Sequence Number (ISN)
	Establishing a TCP Connection
	TCP Header
	Step 1: A’s Initial SYN Packet
	Step 2: B’s SYN-ACK Packet
	Step 3: A’s ACK of the SYN-ACK
	Timing Diagram: 3-Way Handshaking
	What if the SYN Packet Gets Lost?
	SYN Loss and Web Downloads
	Slide 48
	Normal Termination, One Side At A Time
	Normal Termination, Both Together
	Abrupt Termination
	TCP Header
	TCP State Transitions
	An Simpler View of the Client Side
	TCP Header
	TCP Header
	Recap: Sliding Window (so far)
	Sliding Window at Sender (so far)
	Sliding Window at Receiver (so far)
	Solution: Advertised Window (Flow Control)
	Sliding Window at Receiver
	Sliding Window at Sender (so far)
	Sliding Window w/ Flow Control
	Advertised Window Limits Rate
	Taking Stock (1)
	Taking Stock (1)
	Taking Stock (1)
	Sizing Windows for Congestion Control
	Taking Stock (2)

