
IP Data Plane
CS/ECE 438: Spring 2014

Instructor: Matthew Caesar

http://courses.engr.illinois.edu/cs438/

The IP layer

• So far, we’ve focused mostly on routing protocols
• how routers discover and select end-to-end paths

• part of a network’s control plane

• Today: the data plane
• what data packets look like at the IP layer (the IP header)

• how routers forward these IP packets

Recall from Lecture#3:
Layer Encapsulation

transport

network

link

application

User A User B

What is Designing IP?

• Syntax: format of packet
• Nontrivial part: packet “header”

• Rest is opaque payload (why opaque?)

• Semantics: meaning of header fields
• Required processing

Header Opaque Payload

Packet Headers

• Think of packet header as interface
• Only way of passing information from packet to switch

• Designing interfaces
• What task are you trying to perform?

• What information do you need to accomplish it?

• Header reflects information needed for basic tasks

What Tasks Do We Need to Do?

• Read packet correctly

• Get packet to the destination; responses back to
the source

• Carry data

• Tell host what to do with packet once arrived

• Specify any special network handling of the packet

• Deal with problems that arise along the path

Flags

Version HLen TOS Length

Ident Offset

TTL Protocol Checksum

SourceAddr

DestinationAddr

Options (variable) Pad
(variable)

Data
4-bit version

IPv4 = 4, IPv6 = 6
4-bit IP header length

Counted in 32-bit words, minimum
value is 5

8-bit type of service field (TOS)
Specifies priorities: priority level,
minimize delay, maximize throughput,
maximize reliability, minimize
monetary cost, etc
Mostly unused

Total Length of datagram, including header
and data

Counted in bytes
Maximum size is 65536 bytes

16-bit packet ID (Fragmentation support)
All fragments from the same packet have the
same ID
Sender must make sure ID is unique for that
(src,dest) pair, for the time the datagram will
be active in the Internet

3-bit flags
R = Reserved (unused)
DF = Don’t fragment (if set, router returns

ICMP if MTU too small)
MF = More fragments (1 indicates datagram has
additional fragments on the way, 0 indicates this is the
last fragment)

13-bit fragment offset into packet (Fragmentation)
Indicates where in packet this fragment
belongs (first fragment has offset zero,
fragment starting at byte X has offset of X/8)
Counted in 8-byte words

IP Packet Format

0 4 8 16 19 31

8-bit time-to-live field (TTL)
Initial value: 128 (Windows), 64 (Linux)
Hop count decremented at each router
Packet is discarded if TTL = 0

8-bit protocol field (specifies encapsulated protocol)
TCP = 6, UDP = 17

16-bit IP checksum on header
Since some header fields change at each router,
this is recomputed at each router

32-bit source IP address32-bit destination IP address

IP Packet Structure
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

20 Bytes of Standard Header, then Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Fields for Reading Packet Correctly
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Reading Packet Correctly

• Version number (4 bits)
• Indicates the version of the IP protocol
• Necessary to know what other fields to expect
• Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
• Number of 32-bit words in the header
• Typically “5” (for a 20-byte IPv4 header)
• Can be more when IP options are used

• Total length (16 bits)
• Number of bytes in the packet
• Maximum size is 65,535 bytes (216 -1)
• … though underlying links may impose smaller limits

Fields for Reaching Destination and Back
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Telling End-Host How to Handle Packet
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Telling End-Host How to Handle Packet

• Protocol (8 bits)
• Identifies the higher-level protocol
• Important for demultiplexing at receiving host

Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7 SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN

Telling End-Host How to Handle Packet

• Protocol (8 bits)
• Identifies the higher-level protocol
• Important for demultiplexing at receiving host

• Most common examples
• E.g., “6” for the Transmission Control Protocol (TCP)
• E.g., “17” for the User Datagram Protocol (UDP)

IP header IP header

TCP header UDP header

protocol=6 protocol=17

Potential Problems

• Header Corrupted: Checksum

• Loop: TTL

• Packet too large: Fragmentation

Checksum, TTL and Fragmentation Fields

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Header Corruption (Checksum)

• Checksum (16 bits)
• Particular form of checksum over packet header

• If not correct, router discards packets
• So it doesn’t act on bogus information

• Checksum recalculated at every router
• Why?

• Why include TTL?

• Why only header?

Preventing Loops (TTL)

• Forwarding loops cause packets to cycle for a looong time
• As these accumulate, eventually consume all capacity

• Time-to-Live (TTL) Field (8 bits)
• Decremented at each hop, packet discarded if reaches 0
• …and “time exceeded” message is sent to the source

Fragmentation

• Fragmentation: when forwarding a packet, an Internet
router can split it into multiple pieces (“fragments”) if
the packet is too big for next hop link

• too big � exceeds the link’s “Max Transmission Unit” (MTU)

• Must reassemble to recover original packet
• Need fragmentation information (32 bits)
• Packet identifier, flags, and fragment offset

Path MTU discovery

• Set “don’t fragment” bit in IP header, size is MTU of
first hop

• Interface with too-small MTU responds back with
“ICMP” message

• Unfortunately, many networks drop ICMP traffic

• Reduce packet size, repeat until discover smallest
MTU on path

• Binary search
• Better yet: note there are small number of MTUs in the

Internet

IP Fragmentation and Reassembly

ETH IP (1480)

FDDI IP (1480)

PPP IP (456)

PPP IP (512)

PPP IP (512)

ETH IP (456)

ETH IP (512)

ETH IP (512)

Start of header
Ident = x 0 Offset 0

Rest of header
1400 data bytes

Start of header
Ident = x 1 Offset 0

Rest of header
512 data bytes

Start of header
Ident = x 1 Offset 512

Rest of header
512 data bytes

Start of header
Ident = x 0 Offset 1024

Rest of header
456 data bytes

H1 R1 R2 R3 H2

ETH
(MTU=1500)

FDDI
(MTU=4500)

PPP
(MTU=535)

ETH
(MTU=1500)

Fields for Special Handling
4-bit

Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Special Handling

• “Type of Service”, or “Differentiated Services
Code Point (DSCP)” (8 bits)

• Allow packets to be treated differently based on needs
• E.g., low delay for audio, high bandwidth for bulk transfer
• Has been redefined several times, will cover later in class

• Options (not often used)
• details in Section

Examples of Options

• Record Route

• Strict Source Route

• Loose Source Route

• Timestamp

• Traceroute

• Router Alert

• …..

Let’s take a quick look at the
IPv6 header…

IPv6

• Motivated (prematurely) by address exhaustion
• Addresses four times as big

• Steve Deering focused on simplifying IP
• Got rid of all fields that were not absolutely necessary

• “Spring Cleaning” for IP

Summary of Changes

• Eliminated fragmentation (why?)
• Eliminated checksum (why?)
• New options mechanism (next header) (why?)
• Eliminated header length (why?)
• Expanded addresses (why?)
• Added Flow Label (why?)

IPv4 and IPv6 Header
Comparison

Version IHL Type of Service Total Length

Identification Flags Fragment
Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Version Traffic Class Flow Label

Payload Length Next
Header Hop Limit

Source Address

Destination Address

IPv4 IPv6

Field name kept from IPv4 to IPv6

Fields not kept in IPv6

Name & position changed in IPv6

New field in IPv6

Philosophy of Changes

• Don’t deal with problems: leave to ends
• Eliminated fragmentation
• Eliminated checksum
• Why retain TTL?

• Simplify handling:
• New options mechanism (uses next header

approach)
• Eliminated header length

• Why couldn’t IPv4 do this?

• Provide general flow label for packet
• Not tied to semantics
• Provides great flexibility

Comparison of Design Philosophy

Version IHL Type of Service Total Length

Identification Flags Fragment
Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Version Traffic Class Flow Label

Payload Length Next
Header Hop Limit

Source Address

Destination Address

IPv4 IPv6

To Destination and Back (expanded)

Deal with Problems (greatly reduced)

Read Correctly (reduced)

Special Handling (similar)

IP Routers

• Core building block of the Internet infrastructure

• $120B+ industry

• Vendors: Cisco, Huawei, Juniper, Alcatel-Lucent
(account for >90%)

This lecture

• Network devices
• Their internals and how they work

• Network connections
• How to plug devices together

33

34

IP Router

• A router consists

• A set of input interfaces at which packets arrive

• A set of output interfaces from which packets depart

• Router implements two main functions
• Forward packet to corresponding output interface

• Manage congestion

.

.. .
..

35

Generic Router Architecture

• Input and output interfaces are
connected through a backplane

• A backplane can be
implemented by

• Shared memory

• Low capacity routers (e.g., PC-
based routers)

• Shared bus

• Medium capacity routers

• Point-to-point (switched) bus

• High capacity routers

input interface output interface

Inter-
connection
Medium
(Backplane)

36

Speedup

• C – input/output link capacity

• RI – maximum rate at which an input
interface can send data into
backplane

• RO – maximum rate at which an
output can read data from
backplane

• B – maximum aggregate backplane
transfer rate

• Back-plane speedup: B/C

• Input speedup: RI/C

• Output speedup: RO/C

input interface output interface

Inter-
connection
Medium
(Backplane)

C CRI ROB

37

Function division

• Input interfaces:
• Must perform packet

forwarding – need to
know to which output
interface to send packets

• May enqueue packets and
perform scheduling

• Output interfaces:
• May enqueue packets and

perform scheduling

input interface output interface

Inter-
connection
Medium
(Backplane)

C CRI ROB

38

Three Router Architectures

• Output queued

• Input queued

• Combined Input-Output queued

39

Output Queued (OQ) Routers

• Only output interfaces
store packets

• Advantages
• Easy to design algorithms:

only one congestion point

• Disadvantages
• Requires an output

speedup of N, where N is
the number of interfaces
� not feasible

input interface output interface

Backplane

CRO

40

Input Queueing (IQ) Routers

• Only input interfaces store packets

• Advantages
• Easy to build

• Store packets at inputs if contention
at outputs

• Relatively easy to design algorithms

• Only one congestion point, but not
output…

• need to implement backpressure

• Disadvantages
• Hard to achieve utilization � 1 (due to

output contention, head-of-line blocking)

• However, theoretical and simulation
results show that for realistic traffic
an input/output speedup of 2 is
enough to achieve utilizations close
to 1

input interface output interface

Backplane

CRO

41

Combined Input-Output
Queueing (CIOQ) Routers

• Both input and output interfaces
store packets

• Advantages
• Easy to built

• Utilization 1 can be achieved with
limited input/output speedup (<=
2)

• Disadvantages
• Harder to design algorithms

• Two congestion points

• Need to design flow control

• Note: results show that with a
input/output speedup of 2, a CIOQ
can emulate any work-conserving
OQ [G+98,SZ98]

input interface output interface

Backplane

CRO

42

Generic Architecture of a High
Speed Router Today

• Combined Input-Output Queued Architecture
• Input/output speedup <= 2

• Input interface
• Perform packet forwarding (and classification)

• Output interface
• Perform packet (classification and) scheduling

• Backplane
• Point-to-point (switched) bus; speedup N

• Schedule packet transfer from input to output

43

Backplane

• Point-to-point switch allows to simultaneously transfer a
packet between any two disjoint pairs of input-output
interfaces

• Goal: come-up with a schedule that
• Meet flow QoS requirements

• Maximize router throughput

• Challenges:
• Address head-of-line blocking at inputs

• Resolve input/output speedups contention

• Avoid packet dropping at output if possible

• Note: packets are fragmented in fix sized cells (why?) at
inputs and reassembled at outputs

• In Partridge et al, a cell is 64 B (what are the trade-offs?)

45

Head-of-line Blocking

• The cell at the head of an input queue cannot
be transferred, thus blocking the following cells

Cannot be
transferred
because output
buffer full

Cannot be transferred because
is blocked by red cell

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

46

Solution to Avoid Head-of-line
Blocking

• Maintain at each input N virtual queues, i.e., one
per output

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

47

Cell transfer

• Schedule:

• Ideally: find the maximum number of input-output pairs such that:

• Resolve input/output contentions

• Avoid packet drops at outputs

• Packets meet their time constraints (e.g., deadlines), if any

• Example

• Assign cell preferences at inputs, e.g., their position in the input queue

• Assign cell preferences at outputs, e.g., based on packet deadlines, or the
order in which cells would depart in a OQ router

• Match inputs and outputs based on their preferences

• Problem:

• Achieving a high quality matching complex, i.e., hard to do in constant time

48

Routing vs. Forwarding

• Routing: control plane
• Computing paths the packets will follow

• Routers talking amongst themselves

• Individual router creating a forwarding table

• Forwarding: data plane
• Directing a data packet to an outgoing link

• Individual router using a forwarding table

How the control and data planes
work together (logical view)

FIB
IF 1

IF 2

RIB

Protocol daemon
Control
Plane

Data
Plane

12.0.0.0/8 ���� IF 2

12.0.0.0/8 ���� IF 2

12.0.0.0/8
Update

12.0.0.0/8
Data packet

50

Physical layout of a high-end router

Switching
Fabric

Route
Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane

control
plane

Routing vs. Forwarding

• Control plane’s jobs include

• Route calculation

• Maintenance of routing table

• Execution of routing protocols

• On commercial routers, handled
by special-purpose processor
called “route processor”

• IP forwarding is per-packet
processing

• On high-end commercial routers, IP
forwarding is distributed

• Most work is done by interface
cards

51

Switching
Fabric

Route
Processor

data plane

control
plane

Router Components

• On a PC router:
• Interconnection network is the PCI bus

• Interface cards are the NICs (e.g.,
Ethernet cards)

• All forwarding and routing is done on a
commodity CPU

• On commercial routers:
• Interconnection network and interface

cards are sophisticated, special-purpose
hardware

• Packet forwarding oftend implemented
in a custom ASIC

• Only routing (control plane) is done on
the commodity CPU (route processor)

Slotted Chassis

• Large routers are built as a slotted chassis
• Interface cards are inserted in the slots

• Route processor is also inserted as a slot

• This simplifies repairs and upgrades of components
• E.g., “hot-swapping” of components

Evolution of router architectures

• Early routers were just general-purpose computers

• Today, high-performance routers resemble mini data centers
• Exploit parallelism

• Specialized hardware

• Until 1980s (1st generation): standard computer

• Early 1990s (2nd generation): delegate packet processing to
interfaces

• Late 1990s (3rd generation): distributed architecture

• Today: distributed across multiple racks

54

First generation routers

• This architecture is still used in low-
end routers

• Arriving packets are copied to main
memory via direct memory access
(DMA)

• Interconnection network is a
backplane (shared bus)

• All IP forwarding functions are
performed by a commodity CPU

• Routing cache at processor can
accelerate the routing table lookup

• Drawbacks:

• Forwarding performance is limited
by the CPU

• Capacity of shared bus limits the
number of interface cards that can
be connected

55

Off-chip buffer
memory

Shared
bus

Typically <0.5Gb/s
aggregate capacity

CPU Buffer
Memory

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Line
Interface

DMA

MAC

Second generation routers

• Bypasses memory bus with
direct transfer over bus
between line cards

• Moves forwarding
decisions local to card to
reduce CPU utilization

• Trap to CPU for “slow”
operations

56

Typically <5Gb/s aggregate capacity

CPU Buffer
Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Line
Card

DMA

MAC

Local
Buffer

Memory

Speeding up the common case
with a “Fast path”

• IP packet forwarding is complex
• But, vast majority of packets can be forwarded with simple algorithm

• Main idea: put common-case forwarding in hardware, trap to software on
exceptions

• Example: BBN router had 85 instructions for fast-path code, which fits
entirely in L1 cache

• Non-common cases handled by slow path:
• Route cache misses

• Errors (e.g., ICMP time exceeded)

• IP options

• Fragmented packets

• Multicast packets

57

Improving upon second-
generation routers

• Control plane must remember lots of information
(BGP attributes, etc.)

• But data plane only needs to know FIB

• Smaller, fixed-length attributes

• Idea: store FIB in hardware

• Going over the bus adds delay
• Idea: Cache FIB in line cards

• Send directly over bus to outbound line card

58

Improving upon second-
generation routers

• Shared bus is a big bottleneck
• E.g., modern PCI bus (PCIx16) is only 32Gbit/sec (in

theory)

• Almost-modern Cisco (XR 12416) is 320 Gbit/sec

• Ow! How do we get there?

• Idea: put a “network” inside the router
• Switched backplane for larger cross-section bandwidths

59

Third generation routers

• Replace bus with
interconnection network
(e.g., a crossbar switch)

• Distributed architecture:
• Line cards operate independently

of one another

• No centralized processing for IP
forwarding

• These routers can be scaled to
many hundreds of interface
cards and capacity of > 1
Tbit/sec

60

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

Multi-chassis routers

• Multi-chassis router
• A single router that is a distributed collection of racks

• Scales to 322 Tbps, can replace an entire PoP

61

Switch Fabric: From Input to
Output

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Lookup
Address

Update
Header

Header Processing

Address
Table
Address
Table

Queue
Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Queue
Packet

Buffer
Memory

Data Hdr

Data Hdr

Data Hdr

1

2

N

1

2

N

Crossbars

• N input ports, N output ports

• One per line card, usually

• Every line card has its own forwarding table/classifier/etc ---
removes CPU bottleneck

• Scheduler
• Decides which input/output port pairs to connect in a given time

slot

• Often forward fixed-sized “cells” to avoid variable-length time slots

• Crossbar constraint

• If input i is connected to output j, no other input connected to j, no
other output connected to i

• Scheduling is a bipartite matching

63

Crossbar Switch

• Every input port is connected to every output port
• NxN

• Output ports
• Complexity scales as O(N2)

Crossbar Switch

Output Port

Output Port

Output Port

Output Port

Input Port

Input Port

Input Port

Input Port

Knockout Switch

• Full crossbar requires each output port to handle
up to N input packets

• N simultaneous inputs for the same output is
unlikely, especially in a large switch

• Instead, let’s implement each port to handle L<N
packets at the same time

• Hard issue: what value of L to use?

Knockout switch

• Components:
• Packet filters (recognize packets destined for this output

port)

• Concentrator (selects subset of L packets, “knocks out”
others)

• A queue with capacity L packets

Knockout switch

• Want some fairness: no single input should have its
packets always “knocked out”

• Essentially a “knock out” tennis tournament with
each game of 2 players (packets) chosen randomly

• Overall winner is selected by playing log N rounds,
and keeping the winner

Knockout switch

• Pick L from N packets at a port
• Output port maintains L cyclic buffers

• Shifter places up to L packets in one cycle

• Each buffer gets only one packet

• Output port uses round-robin between buffers

• Arrival order is maintained

• Output ports scale as O(N)

Knockout Switch

R R

R

D

R

R
D

R
2x2

random
selector

Delay
unit

Choose L of N

Ex: 2 of 4

What happens
if more than L

arrive?

1 2 3 4

Choice
1

Choice
2

Discard
1

3

4

1
2

34

Discard
1

2
34

Self-Routing Fabrics

• Idea
• Use source routing on “network” in switch

• Input port attaches output port number as header

• Fabric routes packet based on output port

• Types
• Banyan Network

• Batcher-Banyan Network

• Sunshine Switch

Banyan Network

• A network of 2x2 switches
• Each element routes to output 0 or 1 based on packet

header

• A switching element at stage i looks at bit i in the header

0
1

00100

Banyan Network

101

101

101

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Banyan Network

001

011

110

111

001

011

110

111

001

011

110
111

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

001

011

110
111

Banyan Network

• Perfect Shuffle
• N inputs requires log2N stages of N/2 switching elements

• Complexity on order of N log2N

• Collisions
• If two packets arrive at the same switch destined for the

same output port, a collision will occur

• If all packets are sorted in ascending order upon arrival
to a banyan network, no collisions will occur!

Collision in a Banyan Network

001

011

110

111

001

110

001

110

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

001

110

Collision!
Happens because
input is unsorted

Batcher Network

• Performs merge sort

• A network of 2x2 switches
• Each element routes to output 0 or 1 based on packet

header

• A switch at stage i looks at the whole header

• Two types of switches
• Up switch

• Sends higher number to top output (0)

• Down switch

• Sends higher number to bottom output (1)

D

U

Batcher Network

D

D

D

U

D

D

Sort Merge

6

3

1

7

7

3

6

1

7

3

6

1

3

7

6

1

1

7

3

6

Merge

7

3

6

1

Batcher Network

8x8
Switch

D

D

D

U

D

D

U

U

U

D

U

U

D

D

D

D

D

D

D

D

D

D

D

D

Sort inputs 0 – 3 in
ascending order

Sort inputs 4 – 7 in
descending order

Merge 0 – 3
with 4 – 7

Batcher Network

• How it really works
• Merger is presented with a pair of sorted lists, one in

ascending order, one in descending order

• First stage of merger sends packets to the correct half of
the network

• Second stage sends them to the correct quarter

• Size
• N/2 switches per stage

• log2N x (1 + log2N)/2 stages

• Complexity = N log2
2N

Batcher-Banyan Network

• Idea
• Attach a batcher network back-to-back

with a banyan network
• Arbitrary unique permutations can be

routed without contention

82

Data Plane Details: Checksum

• Takes too much time to verify checksum
• Increases forwarding time by 21%

• Take an optimistic approach: just incrementally
update it

• Safe operation: if checksum was correct it remains
correct

• If checksum bad, it will be anyway caught by end-host

• Note: IPv6 does not include a header checksum
anyway!

Matching Algorithms

What’s so hard about IP packet
forwarding?

• Back-of-the-envelope numbers
• Line cards can be 40 Gbps today (OC-768)

• Getting faster every year!

• To handle minimum-sized packets (~40b)

• 125 Mpps, or 8ns per packet

• Can use parallelism, but need to be careful about reordering

• For each packet, you must
• Do a routing lookup (where to send it)

• Schedule the crossbar

• Maybe buffer, maybe QoS, maybe ACLs,…

84

Routing lookups

• Routing tables: 200,000 to
1M entries

• Router must be able to
handle routing table loads 5-
10 years hence

• How can we store routing
state?

• What kind of memory to use?

• How can we quickly lookup
with increasingly large routing
tables?

85

Memory technologies

• Vendors moved from DRAM (1980s) to SRAM (1990s) to
TCAM (2000s)

• Vendors are now moving back to SRAM and parallel banks
of DRAM due to power/heat 86

Technology Single chip
density

$/MByte Access
speed

Watts/
chip

Dynamic RAM (DRAM)
cheap, slow

64 MB $0.50-
$0.75

40-80ns 0.5-2W

Static RAM (SRAM)
expensive, fast, a bit higher
heat/power

4 MB $5-$8 4-8ns 1-3W

Ternary Content Addressable
Memory (TCAM)
very expensive, very high
heat/power, very fast (does
parallel lookups in hardware)

1 MB $200-$250 4-8ns 15-30W

Fixed-Length
Matching Algorithms

Ethernet Switch

• Lookup frame DA in forwarding table.
• If known, forward to correct port.

• If unknown, broadcast to all ports.

• Learn SA of incoming frame.

• Forward frame to outgoing interface.

• Transmit frame onto link.

• How to do this quickly?
• Need to determine next hop quickly

• Would like to do so without reducing line rates

88

Inside a switch

• Packet received from upper Ethernet

• Ethernet chip extracts source address S, stored in shared memory, in
receive queue

• Ethernet chips set in “promiscuous mode”

• Extracts destination address D, given to lookup engine

89

Ethernet 2

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memoryProcessor
Lookup

engine

Inside a switch

• Lookup engine looks up D in database stored in memory

• If destination is on upper Ethernet: set packet buffer pointer to free
queue

• If destination is on lower Ethernet: set packet buffer pointer to transmit
queue of the lower Ethernet

• How to do the lookup quickly?
90

Ethernet 2

Ethernet 1
Ethernet chip

Ethernet chip

Packet/lookup memoryProcessor
Lookup

engine

F0:4D:A2:3A:31:9C � Eth 1

00:21:9B:77:F2:65 � Eth 2

8B:01:54:A2:78:9C � Eth 1

00:0C:F1:56:98:AD � Eth 1

00:B0:D0:86:BB:F7 � Eth 2

00:A0:C9:14:C8:29 � Eth 2

90:03:BA:26:01:B0 � Eth 2

00:0C:29:A8:D0:FA � Eth 1

00:10:7F:00:0D:B7 � Eth 2

Problem overview

• Goal: given address, look up outbound interface
• Do this quickly (few instructions/low circuit complexity)

• Linear search too low
91

F0:4D:A2:3A:31:9C � Eth 1

00:21:9B:77:F2:65 � Eth 2

8B:01:54:A2:78:9C � Eth 1

00:0C:F1:56:98:AD � Eth 1

00:B0:D0:86:BB:F7 � Eth 2

00:A0:C9:14:C8:29 � Eth 2

90:03:BA:26:01:B0 � Eth 2

00:0C:29:A8:D0:FA � Eth 1

00:10:7F:00:0D:B7 � Eth 2

90:03:BA:26:01:B0 Eth 2

Idea #1: binary search

• Put all destinations in a list, sort them, binary
search

• Problem: logarithmic time

92

F0:4D:A2:3A:31:9C � Eth 1

00:21:9B:77:F2:65 � Eth 2

8B:01:54:A2:78:9C � Eth 1

00:0C:F1:56:98:AD � Eth 1

00:B0:D0:86:BB:F7 � Eth 2

00:A0:C9:14:C8:29 � Eth 2

90:03:BA:26:01:B0 � Eth 2

00:0C:29:A8:D0:FA � Eth 1

00:10:7F:00:0D:B7 � Eth 2

00:0C:F1:56:98:AD � Eth 1

00:10:7F:00:0D:B7 � Eth 2

00:21:9B:77:F2:65 � Eth 2

00:B0:D0:86:BB:F7 � Eth 2

00:A0:C9:14:C8:29 � Eth 2

00:0C:29:A8:D0:FA � Eth 1

8B:01:54:A2:78:9C � Eth 1

90:03:BA:26:01:B0 � Eth 2

F0:4D:A2:3A:31:9C � Eth 1

90:03:BA:26:01:B0 Eth 2

Improvement:
Parallel Binary search

• Packets still have O(log n) delay, but can process
O(log n) packets in parallel � O(1)

93

00:A0:C9:14:C8:29

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:F1:56:98:AD

00:10:7F:00:0D:B7

00:21:9B:77:F2:65

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

00:0C:29:A8:D0:FA

8B:01:54:A2:78:9C

90:03:BA:26:01:B0

F0:4D:A2:3A:31:9C

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

Improvement:
Parallel Binary search

• Packets still have O(log n) delay, but can process
O(log n) packets in parallel � O(1)

94

00:A0:C9:14:C8:29

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:10:7F:00:0D:B7

00:B0:D0:86:BB:F7

00:0C:29:A8:D0:FA

90:03:BA:26:01:B0

00:0C:F1:56:98:AD

00:10:7F:00:0D:B7

00:21:9B:77:F2:65

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

00:0C:29:A8:D0:FA

8B:01:54:A2:78:9C

90:03:BA:26:01:B0

F0:4D:A2:3A:31:9C

8B:01:54:A2:78:9C

F0:4D:A2:3A:31:9C

00:10:7F:00:0D:B7

01

02

04

Idea #2: hashing

• Hash key=destination, value=interface pairs

• Lookup in O(1) with hash

• Problem: chaining (not really O(1))

00

hashes

03

01

02

04
05...

08

function
F0:4D:A2:3A:31:9C

keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA

00:10:7F:00:0D:B7

bins

F0:4D:A2:3A:31:9C

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F700:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA00:10:7F:00:0D:B7
90:03:BA:26:01:B0

Improvement: Perfect hashing

• Perfect hashing: find a hash function that maps perfectly with no
collisions

• Gigaswitch approach

• Use a parameterized hash function

• Precompute hash function to bound worst case number of collisions 96

01

02

04

00

hashes

03

01

02

04
05...

08

parameter

F0:4D:A2:3A:31:9C

keys

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F7

00:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA

00:10:7F:00:0D:B7

bins

F0:4D:A2:3A:31:9C

00:21:9B:77:F2:65

8B:01:54:A2:78:9C

00:0C:F1:56:98:AD

00:B0:D0:86:BB:F700:A0:C9:14:C8:29

90:03:BA:26:01:B0

00:0C:29:A8:D0:FA00:10:7F:00:0D:B7
90:03:BA:26:01:B0

Variable-Length
Matching Algorithms

Longest Prefix Match

• Not just one entry that matches a destination
• 128.174.252.0/24 and 128.174.0.0/16

• Which one to use for 128.174.252.14?

• By convention, Internet routers choose the longest
(most-specific) match

• Need variable prefix match algorithms
• Several methods

98

Method 1: Trie

Sample Database

• P1=10*

• P2=111*

• P3=11001*

• P4=1*

• P5=0*

• P6=1000*

• P7=100000*

• P8=1000000*

99

• Tree of (left ptr, right ptr) data structures

• May be stored in SRAM/DRAM

• Lookup performed by traversing sequence of pointers

• Lookup time O(log N) where N is # prefixes

Trie

Improvement 1: Skip Counts and
Path Compression

• Removing one-way branches ensures # of trie nodes is at most twice #
of prefixes

• Using a skip count requires exact match at end and backtracking on
failure � path compression is simpler

• Main idea behind Patricia Tries
100

Improvement 2:
Multi-way tree

• Doing multiple comparisons per cycle accelerates lookup

• Can do this for free to the width of CPU word (modern CPUs process
multiple bits per cycle)

• But increases wasted space (more unused pointers)
101

16-ary Search Trie

0000, ptr 1111, ptr

0000, 0 1111, ptr

000011110000

0000, 0 1111, ptr

111111111111

Improvement 2: Multi-way tree

102

Degree of
Tree

Mem
References

Nodes
(x106)

Total Memory
(Mbytes)

Fraction
Wasted (%)

2 48 1.09 4.3 49
4 24 0.53 4.3 73
8 16 0.35 5.6 86
16 12 0.25 8.3 93
64 8 0.17 21 98
256 6 0.12 64 99.5

Ew DL 1– 1 1 N

DL
-------–

 
 D–

 
  D i 1 Di 1––()N 1 D1 i––()N–()

i 1=

L 1–

∑+=

En 1 DL 1 N

DL
-------–

 
 D Di D i 1– 1 Di 1––()N–

i 1=

L 1–

∑+ +=

Where:

D Degree of tree=

L Number of layers/references=

N Number of entries in table =

En Expected number of nodes=

Ew Expected amount of wasted memory=

Table produced from 215 randomly generated 48-bit addresses

Method 2: Use a Really Big Array

103

• Observation: most prefixes are /24 or shorter

• So, just store a big 2^24 table with next hop for each prefix

• Nonexistant prefixes � just leave that entry empty

Prefix length

N
um

be
r

Method 2: Use a Really Big Array

104

14
2.

19
.6

.1
4

Prefixes up to 24-bits
14

2.
19

.6
14

1 Next Hop

24

Next Hop

142.19.6

224 = 16M entries

Method 2: Use a Really Big Array

105

12
8.

3.
72

.4
4

Prefixes up to 24-bits
12

8.
3.

72
44

1 Next Hop

128.3.72

24 0 Pointer

8

Prefixes above
24-bits

Next Hop

Next Hop

Next Hop
of

fs
et

ba
se

Method 2: Use a Really Big Array

• Advantages
• Very fast lookups

• 20 Mpps with 50ns DRAM

• Easy to implement in hardware

• Disadvantages
• Large memory required

• Performance depends on prefix length distribution

106

Method 3: Ternary CAMs

• “Content Addressable”
• Hardware searches entire memory to find supplied value

• Similar interface to hash table

• “Ternary”: memory can be in three states
• True, false, don’t care

• Hardware to treat don’t care as wildcard match

Selector

Next Hop

Associative Memory

Value Mask Next hop

10.0.0.0 255.0.0.0 IF 1

10.1.0.0 255.255.0.0 IF 3

10.1.1.0 255.255.255.0 IF 4

10.1.3.0 255.255.255.0 IF 2

10.1.3.1 255.255.255.255 IF 2

Lookup
Value

Classification Algorithms

Providing Value-Added Services

• Differentiated services

• Regard traffic from AS#33 as `platinumgrade’

• Access Control Lists

• Deny udp host 194.72.72.33 194.72.6.64 0.0.0.15 eq snmp

• Committed Access Rate

• Rate limit WWW traffic from subinterface#739 to 10Mbps

• Policybased Routing

• Route all voice traffic through the ATM network

• Peering Arrangements

• Restrict the total amount of traffic of precedence 7 from

• MAC address N to 20 Mbps between 10 am and 5pm

• Accounting and Billing

• Generate hourly reports of traffic from MAC address M

• � Need to address the Flow Classification problem

109

Flow Classification

110

Flow Index

---- ----

Predicate Action
Policy Database

Flow Classification

Forwarding Engine

Incoming
Packet

H
E
A
D
E
R

A Packet Classifier

111

Given a classifier, find the action associated with the highest priority
rule (here, the lowest numbered rule) matching an incoming packet.

 Field 1 Field 2 … Field k Action

Rule 1 152.163.190.69/21 152.163.80.11/32 … Udp A1

Rule 2 152.168.3.0/24 152.163.200.157/16 … Tcp A2

… … … … … …

Rule N 152.168.3.0/16 152.163.80.11/32 … Any An

Geometric Interpretation in 2D

112

R5 R4

R3

R2
R1

R7

P2

Field #1

F
ie

ld
 #

2

R6

Field #1 Field #2 Data

P1

e.g. (128.16.46.23, *)
e.g. (144.24/16, 64/24)

Approach #1: Linear search

• Build linked list of all classification rules
• Possibly sorted in order of decreasing priorities

• For each arriving packet, evaluate each rule until
match is found

• Pros: simple and storage efficient

• Cons: classification time grows linearly with
number of rules

• Variant: build FSM of rules (pattern matching)

113

Approach #2: Ternary CAMs

• Similar to TCAM use in prefix matching
• Need wider than 32-bit array, typically 128-256 bits

• Ranges expressed as don’t cares below a particular
bit

• Done for each field

• Pros: O(1) lookup time, simple

• Cons: heat, power, cost, etc.
• Power for a TCAM row increases proportionally to its

width
114

Approach #3: Hierarchical trie

• Recursively build d-dimensional radix trie

• Trie for first field, attach sub-tries to trie’s leaves for sub-field,
repeat

• For N-bit rules, d dimensions, W-bit wide dimensions:

• Storage complexity: O(NdW)

• Lookup complexity: O(W^d)

115

F1

F2

Approach #4: Crossproducting

• Compute separate 1-dimensional range lookups
for each dimension

• For N-bit rules, d dimensions, W-bit wide dimensions:
• Storage complexity: O(N^d)

• Lookup complexity: O(dW)

116

Roadmap

• Midterm high-level questions

• Network Address Translation

• QoS scheduling

• Physical Media

118

Network address translation

Packet Scheduling and Fair Queuing

Packet Scheduling: Problem Overview

122

• When to send packets?

• What order to send them in?

Approach #1: First In First Out (FIFO)

123

• Packets are sent out in the same order they

are received

• Benefits: simple to design, analyze

• Downsides: not compatible with QoS

• High priority packets can get stuck behind low

priority packets

Approach #2: Priority Queuing

124

• Operator can configure policies to give certain kinds of packets higher priority

• Associate packets with priority queues

• Service higher-priority queue when packets are available to be sent

• Downside:

• Can lead to starvation of lower-priority queues

High

Normal

Low

Classifier

Approach #3: Weighted Round Robin

125

• Round robin through queues, but visit higher-priority queues more often

• Benefit: Prevents starvation

• Downsides: a host sending long packets can steal bandwidth

• Naïve implementation wastes bandwidth due to unused slots

60% (� 6 slots)

30% (� 3 slots)

10% (� 1 slots)

1

14

1

2367

2345

23

45

123

6

4

512

31

126

Overview

• Fairness

• Fair-queuing

• Core-stateless FQ

• Other FQ variants

What would be a fair allocation
here?

127

128

Fairness Goals

• Allocate resources fairly

• Isolate ill-behaved users
• Router does not send explicit feedback to source

• Still needs e2e congestion control

• Still achieve statistical muxing
• One flow can fill entire pipe if no contenders

• Work conserving � scheduler never idles link if it has a
packet

129

What is Fairness?

• At what granularity?
• Flows, connections, domains?

• What if users have different RTTs/links/etc.
• Should it share a link fairly or be TCP fair?

• Maximize fairness index?

• Fairness = (Σxi)
2/n(Σxi

2) 0<fairness<1

• Basically a tough question to answer – typically
design mechanisms instead of policy

• User = arbitrary granularity

What would be a fair allocation
here?

130

131

Max-min Fairness

• Allocate user with “small” demand what it wants,
evenly divide unused resources to “big” users

• Formally:
• Resources allocated in terms of increasing demand

• No source gets resource share larger than its demand

• Sources with unsatisfied demands get equal share of resource

132

Max-min Fairness Example

• Assume sources 1..n, with resource demands
X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants, divide

excess (C/n - X1) to other sources: each gets C/n + (C/n -
X1)/(n-1)

• If this is larger than what X2 wants, repeat process

133

Implementing max-min Fairness

• Generalized processor sharing
• Fluid fairness

• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length � can get more service by

sending bigger packets

• Unfair instantaneous service rate

• What if arrive just before/after packet departs?

134

Bit-by-bit RR

• Single flow: clock ticks when a bit is transmitted.
For packet i:

• Pi = length, Ai = arrival time, Si = begin transmit time, Fi =
finish transmit time

• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all active
flows is transmitted � round number

• Can calculate Fi for each packet if number of flows is
know at all times

• This can be complicated

Approach #4: Bit-by-bit Round Robin

135

• Round robin through “backlogged” queues (queues with pkts to send)

• However, only send one bit from each queue at a time

• Benefit:

• Achieves max-min fairness, even in presence of variable sized pkts

• Downsides:

• You can’t really mix up bits like this on real networks!

20 bits

5 bits

10 bits

Output queue

136

The next-best thing:
Fair Queuing

• Bit-by-bit round robin is fair, but you can’t really do
that in practice

• Idea: simulate bit-by-bit RR, compute the finish
times of each packet

• Then, send packets in order of finish times

• This is known as Fair Queuing

137

What is Weighted Fair Queuing?

• Each flow i given a weight (importance) wi

• WFQ guarantees a minimum service rate to flow i
• ri = R * wi / (w1 + w2 + ... + wn)

• Implies isolation among flows (one cannot mess up
another)

w1

w2

wn

R

Packet queues

138

What is the Intuition? Fluid Flow

w1

water pipes
w2

w3

t1

t2

w2 w3

water buckets

w1

139

Example

1 2 1 3 2 3 4 4 55 6Packet
system time

1 2 3
1 2

4
3 4

5
5 6

Service
in “idealized”

fluid flow
system

time (ms)

• Practical implementation: send the first packet that finishes in
the fluid flow system

140

Properties of WFQ

• Guarantee that any packet is transmitted within
packet_length/link_capacity of its transmission
time in the fluid flow system

• Can be used to provide guaranteed services

• Achieve fair allocation
• Can be used to protect well-behaved flows against

malicious flows

141

Deficit Round Robin

• Each queue is allowed to send Q bytes per round

• If Q bytes are not sent (because packet is too large)
deficit counter of queue keeps track of unused
portion

• If queue is empty, deficit counter is reset to 0

• Uses hash bins like Stochastic FQ

• Similar behavior as FQ but computationally simpler
• Bandwidth guarantees, but no latency guarantees

Deficit Round Robin
Example

Matthew Caesar (caesar@uiuc.edu) 142

1500

800

1200

Deficit=0

Deficit=0

Deficit=0

1. Increment deficit counter by

Quantum Size

2. Send packet if size is greater than

deficit

3. When you send a packet, subtract its

size from the deficit

Quantum Size = 1000

1000

1000

1000
2000

500

2000

200 Outbound queue

800

Tunneling

• IP Tunnel
• Virtual point-to-point link between an arbitrarily

connected pair of nodes

Network
1

Network
2Internetwork

R1 R2

IP Tunnel

IP Dest = 2.x
IP Payload

IP Dest = 10.0.0.1

10.0.0.1

IP Dest = 2.x
IP Payload

IP Dest = 2.x
IP Payload

Tunneling

• Approaches: GRE, MPLS, IPv6-in-IPv4 (6in4), L2TP,
VPLS, VPNs, IPSec, SSH, HTTP, Covert channels (eg.
ICMP), etc

• Advantages
• Transparent transmission of packets over a

heterogeneous network

• Only need to change relevant routers

• Disadvantages
• Increases packet size

• Processing time needed to encapsulate and
unencapsulate packets

• Management at tunnel-aware routers

Delivery models

• Unicast
• One source, one

destination

• Widely used (web,
p2p, streaming,
many other
protocols)

• Broadcast

• Multicast

• Anycast

A

B C

D

G

E

J
H

F

I

Delivery models

• Unicast

• Broadcast
• One source, all

destinations

• Used to disseminate
control information,
perform service
discovery

• Multicast

• Anycast

A

B C

D

G

E

J
H

F

I

Delivery models

• Unicast

• Broadcast

• Multicast
• One source, several

(prespecified)
destinations

• Used within some ISP
infrastructures for
content delivery,
overlay networks

• Anycast

A

B C

D

G

E

J
H

F

I

Delivery models

• Unicast

• Broadcast

• Multicast

• Anycast
• One source, route to

“best” destination

• Used in DNS, content
distribution

A

B C

D

G

E

J
H

F

I

UIUC, Spring 2010 149

Internet Multicast

• Motivation and challenges

• Support strategy

• IP multicast service model

• Multicast in the Internet

• Multicast routing protocols

• Limitations

UIUC, Spring 2010 150

Multicast: motivating example

• Example: Live 8 concert
• Send ~300 Kbps video streams

• Peak usage > 100,000 simultaneous users

• Consumes > 30 Gbps

• If 1000 people in UIUC, and if the concert is
broadcast from a single location, then 1000
unicast streams are sent from that location to
UIUC

Problem: this approach does not
scale

Alternative: build trees

Copy data at routers,
at most one copy of a
data packet per link

“Group members” kept
track of by routers in real
time, tree updated to reflect
membership changes

LANs locally link-layer
multicast by broadcasting

Multicast routing approaches

• Kinds of trees
• Source-specific trees vs. Shared tree

• Layer
• Data-link, network, application

• Tree computation methods
• Link state vs. Distance vector

UIUC, Spring 2010

Source-specific trees

• Each source is the
root of its own tree

• One tree per source

• Tree consists of
shortest paths to
each receiver

A

B C

D

G

E

J
H

F

I

F
Member of
multicast group

Sender to
multicast group

UIUC, Spring 2010

Source-specific trees

• Each source is the
root of its own tree

• One tree per source

• Tree consists of
shortest paths to
each receiver

A

B C

D

G

E

J
H

F

I

F
Member of
multicast group

Sender to
multicast group

J

UIUC, Spring 2010 156

Shared Tree

• One tree used by all
members of a group

• Rooted at
“rendezvous point”
(RP)

• Less state to
maintain, but hard
to pick a tree that’s
“good” for
everybody!

A

B C

D

G

E

J
H

F

I

J

RP

UIUC, Spring 2010 157

Shared Tree
• Ideally, find a

“Steiner tree”
minimum-weighted
tree connecting
only the multicast
members

– Unfortunately, this is
NP-hard

• Instead, use
heuristics

– E.g., find a minimum
spanning tree (much
easier)

A

B C

D

G

E

J
H

F

I

J

RP

Multicast service model

• Unicast: packets are delivered to one host

• Broadcast: packets are delivered to all hosts

• Multicast: packets are delivered to all hosts that
have joined the multicast group

• Multicast group identified by a multicast address

NETWORK
Sender

Receiver0

Receiver1

Receiver2

[G,data]

[join,0]

[join,1]

[join,2]

[G,data]

[G,data]

[G,data]

Concepts

• Reverse-path forwarding

• Regular routing protocols compute shortest path tree, so forward
multicast packets along “reverse” of this tree

• Truncated reverse-path forwarding

• Routers inform upstreams whether the upstream is on the router’s
shortest path, to eliminate unnecessary broadcasting

• Flood-and-prune

• Hosts must explicitly ask to not be part of multicast tree

• Alternative: host explicitly sends “join” request to add self to tree

Reverse-path forwarding

• Extension to DV routing

• Packet forwarding
• If incoming link is shortest

path to source

• Send on all links except
incoming

• Packets always take
shortest path

• Assuming delay is
symmetric

• Issues
• Routers/LANs may receive

multiple copies

Truncated reverse-path
forwarding

• Eliminate unnecessary
forwarding

• Routers inform upstreams if
used on shortest path

• Explicit group joining per-
LAN

• Packet forwarding
• If not a leaf router, or have

members

• Then send out all links
except incoming

Core-based trees

• Pick a rendezvous point for
each group (called the “core”)

• Unicast packet to core and
bounce back to multicast
groups

• Reduces routing table state
• By how much?

• O(S*G) to O(G)

• Finding optimal core location
is hard (use heuristics)

UIUC, Spring 2010 163

Other IP Multicast protocols

• Three ways for senders and receivers to “meet”:

• Broadcast membership advertisement from each receiver to
entire network

• example: MOSPF

• Broadcast initial packets from each source to entire network; non-
members prune

• examples: DVMRP, PIM-DM

• Specify “meeting place” to which sources send initial packets, and
receivers join; requires mapping between multicast group address
and “meeting place”

• examples: PIM-SM

• What are some problems with IP-layer Multicast?

Problems with
Network Layer Multicast

• Scales poorly with number of groups
• Routers must maintain state for every group

• Many groups traverse core routers

• Higher-layer functionality is difficult
• NLM: best-effort delivery

• Reliability, congestion control, transcoding for NLM
complicated

• Deployment is difficult and slow
• ISPs reluctant to turn on NLM

Problems with
Network Layer Multicast

• Inconsistent with ISP charging model
• Charging today is based on send rate of customer

• But one multicast packet at ingress may cause millions
to be sent on egress

• Troublesome security model
• Anyone can send to group

• Denial of service attacks on groups

Alternative:
Application-layer Multicast

• Let hosts do all packet copying, tree construction

• Only require unicast from network

• Hosts construct unicast channels between themselves to form tree

• Benefits
• No need to change IP, or for ISP cooperation

• End hosts can prevent untrusted hosts from sending

• Easy to implement reliability (per-hop retransmissions)

• Downsides

• Stretch penalty (latency), Stress penalty (multiple retransmissions
over same physical link

Example of
Application-level Multicast

UIUC

Microsoft

Microsoft

UIUC

Comcast
Comc1

Comc2

Berk1

Berk2
Berkeley

Comc1

Comc2

Berk1

Berk2

IPv6: proposed next generation of
IP

• Problems with IPv4
• Running out of address space

• Projected depletion 2015-2032

• Forwarding complicated by fragmentation, checksum
computation, many unused fields

• IPv6 adopted by IETF in 1994

• IPv6 deployed incrementally, runs in parallel with
IPv4

• Routers distinguish packets based on version number

IPv6: Features

� Larger address space

• 2128 (340,282,366,920,938,000,000,
000,000,000,000,000,000) addresses

• 295 addresses for every person alive, 252 addresses
for every observable star in the universe

• But goal is to simplify addressing, not geographic
saturation of devices

• More hierarchical, systematic approach to allocation

• Avoids need for splitting up prefixes, renumbering
networks

IPv6: Features
� Automatic host configuration

• IPv6 hosts probe network to discover gateway, acquire IPv6
address

• “Stateless”: upstream router stores no per-host information

• Steps:
• Host locally derives IP address from its MAC address

• Broadcasts to make sure that IP address is not in use on the
network

• Contacts gateway router to get other configuration information

• Host assigns itself IP address determined above

IPv6: Other features

• Simplified packet processing
• Removed rarely used fields

• Hosts must perform MTU discovery, fragmentation disallowed

• IPv6 header has no checksum (integrity assumed to assured by
transport level)

• Mobile IPv6 simplifies mobility
• Maintains connectivity while end host moves

• Improved security
• IPSec support is mandatory in IPv6

• What are the downsides of IPv6?

IPv6 Deployment challenges

• Requires infrastructure changes

• What kind of changes?

• Hardware: forwarding engines

• Software: routing protocols

• However, certain strategies simplify deployment

• Dual stack: routers run IPv4 and IPv6

• IPv4 addresses can be mapped to IPv6 addresses

• First 80 bits set to 0, next 16 set to one, final 32 are IPv4 address

• Tunneling: IPv6 packets encapsulated in IPv4 packets

IPv6: Do we really need it?

• Larger address space
• NAT reduces severity of address space depletion

• Could just extend address sizes (IPv4+4)

• Simplified processing
• Routers can do checksum processing in hardware at line

speeds

• End host configuration, mobility, security
• This functionality has been back-ported to IPv4

• DHCP, IPSec, Mobile IP

Current state of IPv6

• Prefix allocations growing rapidly, but traffic
showing no substantial growth

• 500 allocations in 2004, 1200 allocations in 2009

• Currently less than 1% of internet traffic is IPv6 (0.45% in
USA, 0.24% in China)

• Possible reasons for slow growth
• Lack of incentives (low demand from customers)

• Not clear benefits are worth deployment efforts

Router definitionsRouter definitionsRouter definitionsRouter definitions

1

2

3

4
5

…

N-1

N

• N = number of external router “ports”

• R = speed (“line rate”) of a port

• Router capacity = N x R

R bits/sec

Networks and routersNetworks and routersNetworks and routersNetworks and routers

AT&T
BBN

NYU

UCB

corecore

corecore

edge (ISP)edge (ISP)

edge (enterprise)edge (enterprise)

home,

small business

home,

small business

Examples of routers (core)Examples of routers (core)Examples of routers (core)Examples of routers (core)

72 racks, 1MW

Cisco CRS

• R=10/40/100 Gbps

• NR = 322 Tbps

Juniper T4000

• R= 10/40 Gbps

• NR = 4 Tbps

Examples of routers (edge)Examples of routers (edge)Examples of routers (edge)Examples of routers (edge)

Cisco ASR 1006

• R=1/10 Gbps

• NR = 40 Gbps

Juniper M120

• R= 2.5/10 Gbps

• NR = 120 Gbps

Examples of routers (small business)Examples of routers (small business)Examples of routers (small business)Examples of routers (small business)

Cisco 3945E

• R = 10/100/1000 Mbps

• NR < 10 Gbps

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect

(Switching)

Fabric

Route/Control

Processor

Linecards (output)

Processes packets

on their way in

Processes packets

before they leave

Transfers packets

from input to

output ports

Input and Output for

the same port are on one

physical linecard

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect

(Switching)

Fabric

Route/Control

Processor

Linecards (output)

(1) Implement IGP

and BGP protocols;

compute routing tables

(2) Push forwarding

tables to the line cards

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect

Fabric

Route/Control

Processor

Linecards (output)

Constitutes the

data plane

Constitutes the

control plane

Input Linecards

• Tasks
• Receive incoming packets (physical layer stuff)

• Update the IP header

Version Header
Length

Type of Service
(TOS) Total Length (Bytes)

16-bit Identification Flags Fragment Offset

Time to
Live (TTL) Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if any)

Payload

Input Linecards

• Tasks
• Receive incoming packets (physical layer stuff)

• Update the IP header

• TTL, Checksum, Options (maybe), Fragment (maybe)

• Lookup the output port for the destination IP address

• Queue the packet at the switch fabric

• Challenge: speed!
• 100B packets @ 40Gbps � new packet every 20 nano secs!

• Typically implemented with specialized hardware
• ASICs, specialized “network processors”

• “exception” processing often done at control processor

IP Lookup

• Recall IP addressing and BGP routing
• For scalability, multiple IP addresses are aggregated

• BGP operates on IP address prefixes (recall “/n” notation)

• IP routing tables maintain a mapping from IP prefixes to output
interfaces

• Route lookup � find the longest prefix in the table that
matches the packet destination address

• Longest Prefix Match (LPM) lookup

Longest Prefix Match Lookup

• Packet with destination address 12.82.100.101 is sent to
interface 2, as 12.82.100.xxx is the longest prefix matching
packet’s destination address

1

2128.16.120.111

12.82.100.101

……

312.82.xxx.xxx

1128.16.120.xxx

12.82.100.xxx 2

Longest Prefix Match is NOT…

• Check an address against all destination prefixes and select
the prefix it matches with on the most bits

……

31**.***.xxx.xxx(/1)

1101.xx.xxx.xxx (/3)

… ..

� To which port should we send a packet with destination

address 100.5.6.7?

Example #1: 4 Prefixes, 4 Ports

Prefix Port

201.143.0.0/22 Port 1

201.143.4.0.0/24 Port 2

201.143.5.0.0/24 Port 3

201.143.6.0/23 Port 4

201.143.0.0/22 201.143.4.0/24 201.143.5.0/24 201.143.6.0/23

ISP Router
Port 1

Port 2 Port 3

Port 4

Finding the Match

• Consider 11001001100011110000010111010010
• First 21 bits match 4 partial prefixes
• First 22 bits match 3 partial prefixes
• First 23 bits match 2 partial prefixes
• First 24 bits match exactly one full prefix

11001001 10001111 000000−− −−−−−−−

11001001 10001111 00000100 −−−−−−−
11001001 10001111 00000101 −−−−−−−
11001001 10001111 0000011− −−−−−−−

201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

Finding Match Efficiently

• Testing each entry to find a match scales poorly

• On average: O(number of entries)

• Leverage tree structure of binary strings

• Set up tree-like data structure

• Return to example:

Prefix Port

1100100110001111000000********** 1

110010011000111100000100******** 2

110010011000111100000101******** 3

11001001100011110000011********* 4

Prefix Port

1100100110001111000000********** 1

110010011000111100000100******** 2

110010011000111100000101******** 3

11001001100011110000011********* 4

Consider four three-bit prefixes

• Just focusing on the bits where all the action is….

• 0**� Port 1

• 100 � Port 2

• 101 � Port 3

• 11* � Port 4

194

Tree Structure

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

0** � Port 1

100 � Port 2

101 � Port 3

11* � Port 4

Walk Tree: Stop at Prefix
Entries

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

0** � Port 1

100 � Port 2

101 � Port 3

11* � Port 4

Walk Tree: Stop at Prefix
Entries

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

P1

P2 P3

P4

0** � Port 1

100 � Port 2

101 � Port 3

11* � Port 4

Slightly Different Example

• Several of the unique prefixes go to same port

• 0**� Port 1

• 100 � Port 2

• 101 � Port 1

• 11* � Port 1

Prefix Tree

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

P1

P2 P1

P1

0** � Port 1

100 � Port 2

101 � Port 1

11* � Port 1

More Compact Representation

10*

100

0

1**
0

1

P2

P1

Record port associated with latest match,

and only over-ride when it matches another

prefix during walk down tree

If you ever leave path, you

are done, last matched prefix

is answer

LPM in real routers

• Real routers use far more advanced/complex
solutions than the approaches I just described

• but what we discussed is their starting point

• With many heuristics and optimizations that
leverage real-world patterns

• Some destinations more popular than others

• Some ports lead to more destinations

• Typical prefix granularities

Recap: Input linecards

• Main challenge is processing speeds

• Tasks involved:
• Update packet header (easy)

• LPM lookup on destination address (harder)

• Mostly implemented with specialized hardware

Output Linecard

� Packet classification: map each packet to a “flow”

� Flow (for now): set of packets between two particular endpoints

� Buffer management: decide when and which packet to drop

� Scheduler: decide when and which packet to transmit

1

2

Scheduler

flow 1

flow 2

flow n

Classifier

Buffer
management

Output Linecard

� Packet classification: map each packet to a “flow”

� Flow (for now): set of packets between two particular endpoints

� Buffer management: decide when and which packet to drop

� Scheduler: decide when and which packet to transmit

� Used to implement various forms of policy

� Deny all e-mail traffic from ISP-X to Y (access control)

� Route IP telephony traffic from X to Y via PHY_CIRCUIT (policy)

� Ensure that no more than 50 Mbps are injected from ISP-X (QoS)

Simplest: FIFO Router

• No classification

• Drop-tail buffer management: when buffer is full drop the
incoming packet

• First-In-First-Out (FIFO) Scheduling: schedule packets in the same
order they arrive

1

2

Scheduler
Buffer

Packet Classification

• Classify an IP packet based on a number of fields in the packet
header, e.g.,

• source/destination IP address (32 bits)

• source/destination TCP port number (16 bits)

• Type of service (TOS) byte (8 bits)

• Type of protocol (8 bits)

• In general fields are specified by range

• classification requires a multi-dimensional range search!

1

2
Scheduler

flow 1

flow 2

flow n

Classifier

Buffer management

Scheduler

• One queue per “flow”

• Scheduler decides when and from which queue to send a packet

• Goals of a scheduling algorithm:
• Fast!

• Depends on the policy being implemented (fairness, priority, etc.)

1

2

Scheduler

flow 1

flow 2

flow n

Classifier

Buffer management

Priority

Scheduler

Example: Priority Scheduler

• Priority scheduler: packets in the highest priority queue are
always served before the packets in lower priority queues

High priority

Medium priority

Low priority

Example: Round Robin Scheduler

• Round robin: packets are served from each queue
in turn

Fair

Scheduler

High priority

Medium priority

Low priority

Switching

1

2

N

1

2

N

Linecards (input)

Interconnect

Fabric

Route/Control

Processor

Route/Control

Processor

Linecards (output)

Shared Memory (1st Generation)

Route

Table
CPU

Buffer

Memory

Line
Interface

MAC

Line
Interface

MAC

Line
Interface

MAC

Limited by rate of shared memory

Shared Backplane

(* Slide by Nick McKeown, Stanford Univ.)

Shared Bus (2nd Generation)

Route

Table
CPU

Line
Card

Buffer
Memory

Line
Card

MAC

Buffer
Memory

Line
Card

MAC

Buffer
Memory

Fwding
Cache

Fwding
Cache

Fwding
Cache

MAC

Buffer

Memory

Limited by shared bus

(* Slide by Nick McKeown)

Point-to-Point Switch (3rd Generation)

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

Switched Backplane

Fwding
Table

Routing
Table

Fwding
Table

(*Slide by Nick McKeown)

© Nick McKeown 2006

NxR

3rd Gen. Router: Switched Interconnects

This is called an “output queued” switch

© Nick McKeown 2006

3333rdrdrdrd Gen. Router: Switched InterconnectsGen. Router: Switched InterconnectsGen. Router: Switched InterconnectsGen. Router: Switched Interconnects

This is called an “input queued” switch

Two challenges with input queuing

1) Need an internal fabric scheduler!

© Nick McKeown 2006

1 x R

Fabric Scheduler

3333rdrdrdrd Gen. Router: Switched InterconnectsGen. Router: Switched InterconnectsGen. Router: Switched InterconnectsGen. Router: Switched Interconnects

Two challenges with input queuing

1) Need an internal fabric scheduler!

2) Must avoid “head-of-line” blocking

Head of Line Blocking

HoL blocking limits throughput to

approximately 58% of capacity

“Virtual Output Queues”

© Nick McKeown 2006

1 x R

Fabric Scheduler

3333rdrdrdrd Gen. Router: Switched InterconnectsGen. Router: Switched InterconnectsGen. Router: Switched InterconnectsGen. Router: Switched Interconnects

Reality is more complicated

• Commercial (high-speed) routers use
• combination of input and output queuing

• complex multi-stage switching topologies (Clos, Benes)

• distributed, multi-stage schedulers (for scalability)

• We’ll consider one simpler context
• de-facto architecture for a long time and still used in lower-

speed routers

Scheduling

• Context
• crossbar fabric

• centralized scheduler

• Goals
• Work conserving (100% throughput)

• Fast

Scheduling

• Context
• crossbar fabric

• centralized scheduler

• Goal: 100% throughput, fast
• optimal solution: maximum matching on a bipartite graph

• problem: too slow

• practical solution: a good maximal matching

• multiple fast algorithms exist for computing a good
and fair maximal matching [PIM, iSlip]

In Summary

• IP header formats
• not as boring as one might imagine

• IP routers
• core building block of the infrastructure

• needs simple, fast implementations for longest-prefix
matching, multi-dimensional search, switch and output
scheduling

