# IP Routing: Intradomain 

CS/ECE 438: Spring 2014
Instructor: Matthew Caesar http://courses.engr.illinois.edu/cs438/

## Today

Application<br>Transport<br>Network<br>Link Layer<br>Physical

## Starting on the internals of the network layer

## Many pieces to the network layer

- Addressing
- Routing
- Forwarding
- Policy and management
- IP protocol details
- ...

Today + next 1-2 lectures: Routing
"Autonomous System (AS)" or "Domain"
Region of a network under a single administrative entity


## Lecture\#2: Routers Forward Packets



## Context and Terminology



Internet routing protocols are responsible for constructing and updating the forwarding tables at routers


- Routers advertise address blocks ("prefixes")
- Routers compute "shortest" paths to prefixes
- Map IP addresses to names with DNS


## Routing Protocols

- Routing protocols implement the core function of a network
- Establish paths between nodes
- Part of the network's "control plane"
- Network modeled as a graph
- Routers are graph vertices
- Links are edges
- Edges have an associated "cost"
- e.g., distance, loss

- Goal: compute a "good" path from source to destination
- "good" usually means the shortest (least cost) path


## Internet Routing

- Internet Routing works at two levels
- Each AS runs an intra-domain routing protocol that establishes routes within its domain
- (AS -- region of network under a single administrative entity)
- Link State, e.g., Open Shortest Path First (OSPF)
- Distance Vector, e.g., Routing Information Protocol (RIP)
- ASes participate in an inter-domain routing protocol that establishes routes between domains
- Path Vector, e.g., Border Gateway Protocol (BGP)


## Intra- vs. Inter-domain routing



- Run "Interior Gateway Protocol" (IGP) within ISPs
- OSPF, IS-IS, RIP
- Use "Border Gateway Protocol" (BGP) to connect ISPs
- To reduce costs, peer at exchange points (AMS-IX, MAE-EAST)


## Complete Network Assets : XO Communications



LEGEND

| O OC-12 Market Uplinks | - | Data Center IP OC-12c Uplink | 0 | Core IP Node | $=$ | Class 5 Voice Switch | $\square$ | Local Voice Footprint |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OC-3 Market Uplinks | - | OC-48 IP Backbone | $\square$ | Metro IP Node | $=$ | Sonus Gateway | 0 | XO Market |

Addressing (for now)

- Assume each host has a unique ID (address)
- No particular structure to those IDs
- Later in course will talk about real IP addressing


## Outline

- Link State
- Distance Vector
- Routing: goals and metrics (if time)


## Link-State Routing

Each node maintains : update propagation
a "topology database"


- How to prevent update loops:।
- How to bring up new node:


## Link state: route computation



- Each router computes shortest path tree, rooted at that router
- Determines next-hop to each dest, publish to forwarding table
- Operators can assign link costs to control path selection


## Link-state: packet forwarding



- In practice: shortest path precomputed, next-hops stored in forwarding table
- Downsides of link-state:
- Lesser control on policy (certain routes can't be filtered), more cpu
- Increased visibility (bad for privacy, but good for diagnostics)


## Link State Routing

- Each node maintains its local "link state" (LS)
- i.e., a list of its directly attached links and their costs



## Link State Routing

- Each node maintains is local link state" (LS)
- Each node floods its local link state
- on receiving a new LS message, a router forwards the message to all its neighbors other than the one it received the message from



## Link State Routing

- Each node floods its local link state
- Hence, each node learns the entire network topology
- Can use Dijkstra's to compute the shortest paths between nodes



## Dijkstra's Shortest Path Algorithm

- INPUT:
- Network topology (graph), with link costs
- OUTPUT:
- Least cost paths from one node to all other nodes
- Iterative: after $k$ iterations, a node knows the least cost path to its $k$ closest neighbors


## Example



## Notation

- c(i, j): link cost from node $i$ to $j$; cost is infinite if not direct neighbors; $\geq 0$
- $D(v)$ : total cost of the current least cost path from source to destination $v$
- $\mathrm{p}(\mathrm{v})$ : v's predecessor along path from source to $v$
- S: set of nodes whose least cost path definitively known



## Dijkstra' s Algorithm

1 Initialization:
$2 \mathbf{S}=\{\mathbf{A}\}$;
3 for all nodes $\boldsymbol{v}$
4 if $\boldsymbol{v}$ adjacent to $\boldsymbol{A}$
5 then $D(v)=c(A, v)$;
6 else $D(v)=$;

- c(i,j): link cost from node $i$ to $j$
- $\mathrm{D}(\mathrm{v})$ : current cost source $\rightarrow v$
- $\mathrm{p}(\mathrm{v})$ : v's predecessor along path from source to $v$
- S: set of nodes whose least cost path definitively known


## Loop

find $\mathbf{w}$ not in $\mathbf{S}$ such that $\mathrm{D}(\mathrm{w})$ is a minimum;
10 add w to S;
11 update $\mathrm{D}(\mathrm{v})$ for all $\mathbf{v}$ adjacent to $\mathbf{w}$ and not in $\mathbf{S}$ :
12 if $D(w)+c(w, v)<D(v)$ then $/ / \boldsymbol{w}$ gives us a shorter path to $\boldsymbol{v}$ than we've found so far
13 $\mathrm{D}(\mathrm{v})=\mathrm{D}(\mathrm{w})+\mathrm{c}(\mathrm{w}, \mathrm{v}) ; \mathrm{p}(\mathrm{v})=\mathrm{w}$;
14 until all nodes in $S$;

## Example: Dijkstra's Algorithm



1 Initialization:
$2 S=\{A\}$;
3 for all nodes $v$
4 if $\boldsymbol{v}$ adjacent to $\boldsymbol{A}$
5 then $D(v)=c(A, v)$; else $\mathrm{D}(\mathrm{v})=$;
...

## Example: Dijkstra's Algorithm



## Example: Dijkstra's Algorithm

| Step | set $S$ | $D(B), p(B)$ | $D(C), p(C)$ | $D(D), p(D)$ | $D(E), p(E)$ | $D(F), p(F)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Example: Dijkstra's Algorithm



## Example: Dijkstra's Algorithm

| Step | set $S$ | $D(B), p(B)$ | $D(C), p(C)$ | $D(D), p(D)$ | $D(E), p(E)$ | $D(F), p(F)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $A$ | $2, A$ | $5, A$ | $1, A$ |  |  |
| 1 | $A D$ |  | $4, D$ |  | $2, D$ |  |
|  | $A D E$ |  | $3, E$ |  |  | $4, E$ |
|  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |



- 8 Loop

9 find w not in $\mathbf{S}$ s.t. $\mathrm{D}(\mathrm{w})$ is a minimum; 10 add w to S;
11 update $\mathrm{D}(\mathrm{v})$ for all $\mathbf{v}$ adjacent to $\mathbf{w}$ and not in $\mathbf{S}$ :
12 If $D(w)+c(w, v)<D(v)$ then
$13 \quad D(v)=D(w)+c(w, v) ; p(v)=w$;
14 until all nodes in S;

## Example: Dijkstra's Algorithm

| Step | set S | $\mathrm{D}(\mathrm{B}), \mathrm{p}(\mathrm{B})$ | $\mathrm{D}(\mathrm{C}), \mathrm{p}(\mathrm{C})$ | $\mathrm{D}(\mathrm{D}), \mathrm{p}(\mathrm{D})$ | $\mathrm{D}(\mathrm{E}), \mathrm{p}(\mathrm{E})$ | $\mathrm{D}(\mathrm{F}), \mathrm{p}(\mathrm{F})$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | A | $2, \mathrm{~A}$ | $5, \mathrm{~A}$ | $1, A$ |  |  |  |
| 1 | AD |  | $4, \mathrm{D}$ |  | $2, \mathrm{D}$ |  |  |
| 2 | ADE | $3, E$ |  |  | $4, \mathrm{E}$ |  |  |
| 3 | ADEB |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |



- 8 Loop

9 find w not in $\mathbf{S}$ s.t. $\mathrm{D}(\mathrm{w})$ is a minimum; 10 add w to S;
11 update $\mathrm{D}(\mathrm{v})$ for all $\mathbf{v}$ adjacent to $\mathbf{w}$ and not in $\mathbf{S}$ :
12 If $D(w)+c(w, v)<D(v)$ then
$13 \quad D(v)=D(w)+c(w, v) ; p(v)=w$;
14 until all nodes in S;

## Example: Dijkstra's Algorithm

| Step | set S | $\mathrm{D}(\mathrm{B}), \mathrm{p}(\mathrm{B})$ | $\mathrm{D}(\mathrm{C}), \mathrm{p}(\mathrm{C})$ | $\mathrm{D}(\mathrm{D}), \mathrm{p}(\mathrm{D})$ | $\mathrm{D}(\mathrm{E}), \mathrm{p}(\mathrm{E})$ | $\mathrm{D}(\mathrm{F}), \mathrm{p}(\mathrm{F})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $A$ | $2, A$ | $5, A$ | $1, A$ |  |  |
| 1 | $A D$ |  | $4, D$ |  | $2, D$ |  |
| 2 | ADE |  | $3, E$ |  |  | $4, E$ |
| 3 | ADEB |  |  |  |  |  |
| 4 | ADEBC |  |  |  |  |  |


¢ 8 Loop
9 find w not in $\mathbf{S}$ s.t. $\mathrm{D}(\mathrm{w})$ is a minimum; 10 add w to S;
11 update $\mathrm{D}(\mathrm{v})$ for all $\mathbf{v}$ adjacent to $\mathbf{w}$ and not in $\mathbf{S}$ :
12 If $D(w)+c(w, v)<D(v)$ then
$13 \quad D(v)=D(w)+c(w, v) ; p(v)=w$;
-14 until all nodes in S;

## Example: Dijkstra's Algorithm

| Step | set $S$ | $D(B), p(B)$ | $D(C), p(C)$ | $D(D), p(D)$ | $D(E), p(E)$ | $D(F), p(F)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $A$ | $2, A$ | $5, A$ | $1, A$ |  |  |
| 1 | $A D$ | $4, D$ |  | $2, D$ |  |  |
| 2 | $A D E$ |  | $3, E$ |  |  | $4, E$ |
| 3 | $A D E B$ |  |  |  |  |  |
| 4 | ADEBC |  |  |  |  |  |
|  | ADEBCF |  |  |  |  |  |


$\rightarrow 8$ Loop
9 find w not in $\mathbf{S}$ s.t. $\mathrm{D}(\mathrm{w})$ is a minimum; 10 add w to S;
11 update $\mathrm{D}(\mathrm{v})$ for all $\mathbf{v}$ adjacent to $\mathbf{w}$ and not in $\mathbf{S}$ :
12 If $D(w)+c(w, v)<D(v)$ then
$13 \quad D(v)=D(w)+c(w, v) ; p(v)=w$;
14 until all nodes in S;

## Example: Dijkstra's Algorithm

| Step | set S | $\mathrm{D}(\mathrm{B}), \mathrm{p}(\mathrm{B})$ | $D(C), p(C)$ | $D(D), p(D)$ | $D(E), p(E) \quad D(F), p(F)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | A | 2,A | 5,A | 1,A |  |
| 1 | AD |  | 4,D |  | 2,5 |
| 2 | ADE |  | 3,E | - | 4,E |
| 3 | ADEB |  |  |  |  |
| 4 | ADEBC |  |  |  |  |
| 5 | ADEBCF |  |  |  |  |



To determine path $A \rightarrow C$ (say), work backward from $C$ via $p(v)$

## The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table


| Destination | Link |
| :---: | :---: |
| B | $(\mathrm{A}, \mathrm{B})$ |
| C | $(\mathrm{A}, \mathrm{D})$ |
| D | $(\mathrm{A}, \mathrm{D})$ |
| E | $(\mathrm{A}, \mathrm{D})$ |
| F | $(\mathrm{A}, \mathrm{D})$ |

## Issue \#1: Scalability

- How many messages needed to flood link state messages?
- $\mathrm{O}(\mathrm{N} \times \mathrm{E})$, where N is \#nodes; E is \#edges in graph
- Processing complexity for Dijkstra's algorithm?
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$, because we check all nodes w not in S at each iteration and we have $\mathrm{O}(\mathrm{N})$ iterations
- more efficient implementations: $\mathrm{O}(\mathrm{N} \log (\mathrm{N})$ )
- How many entries in the LS topology database? $\mathrm{O}(\mathrm{E})$
- How many entries in the forwarding table? $\mathrm{O}(\mathrm{N})$


## Issue\#2: Transient Disruptions

- Inconsistent link-state database
- Some routers know about failure before others
- The shortest paths are no longer consistent
- Can cause transient forwarding loops


A and $D$ think that this is the path to $C$


E thinks that this is the path to C


In regular link-state, routers maintain map of entire topology


Aggregate groups of routers into "areas"
"Border routers" generate "summary LSPs" to reach other border routers

## Distance Vector

# Learn-By-Doing 

Let's try to collectively develop<br>distance-vector routing from first principles

## Experiment

- Your job: find the youngest person in the room
- Ground Rules
- You may not leave your seat, nor shout loudly across the class
- You may talk with your immediate neighbors (hint: "exchange updates" with them)
- At the end of 5 minutes, I will pick a victim and ask:
- who is the youngest person in the room? (name, date)
- which one of your neighbors first told you this info.?

Go!

## Distance-Vector

## Example of Distributed



## Distance vector:

urdatrnmannontinn
D tells B: I am D, and
$I$ can reach $F$ via 1 hop


## Distance Vector Routing

- Each router knows the links to its neighbors
- Does not flood this information to the whole network
- Each router has provisional "shortest path" to every other router
- E.g.: Router A: "I can get to router B with cost 11"
- Routers exchange this distance vector information with their neighboring routers
- Vector because one entry per destination
- Routers look over the set of options offered by their neighbors and select the best one
- Iterative process converges to set of shortest paths


## Distance vector: convergence



- How many updates would link-state require?
- Is link-state better or worse than distance vector?
- Which should be used for intra-domain routing? What about inter-domain routing?


## Bellman-Ford Algorithm

- INPUT:
- Link costs to each neighbor (Not full topology)
- OUTPUT:
- Next hop to each destination and the corresponding cost (Not the complete path to the destination)
- My neighbors tell me how far they are from dest'n
- Compute: (cost to nbr) plus (nbr's cost to destination)
- Pick minimum as my choice
- Advertise that cost to my neighbors


## Bellman-Ford Overview

## Each node:

- Each router maintains a table
- Best known distance from $X$ to $Y$, via $Z$ as next hop $=D_{Z}(X, Y)$
- Each local iteration caused by:
- Local link cost change
- Message from neighbor
- Notify neighbors only if least cost path to any destination changes
- Neighbors then notify their neighbors if necessary
wait for (change in local link cost or msg from neighbor)
recompute distance table
if least cost path to any dest has changed, notify
neighbors


## Bellman-Ford Overview

- Each router maintains a table
- Row for each possible destination
- Column for each directly-attached neighbor to node
- Entry in row $Y$ and column $Z$ of node $X \Rightarrow$ best known distance from $X$ to $Y$, via $Z$ as next hop $=D_{Z}(X, Y)$



## Bellman-Ford Overview

- Each router maintains a table
- Row for each possible destination
- Column for each directly-attached neighbor to node
- Entry in row Y and column Z of node $X \Rightarrow$ best known distance from $X$ to $Y$, via $Z$ as next hop $=D_{Z}(X, Y)$


Smallest distance in row $Y=$ shortest
Distance of $A$ to $Y, D(A, Y)$

## Distance Vector Algorithm (cont'd)

1 Initialization:
2 for all neighbors $V$ do
3 if $V$ adjacent to $A$
$4 \quad \mathrm{D}(A, V)=\mathrm{c}(A, V)$;
5 else $D(A, V)=\infty ;$ send $\mathrm{D}(A, Y)$ to all neighbors
loop:
8 wait (until $A$ sees a link cost change to neighbor $V / *$ case 1 */
9 or until $A$ receives update from neighbor $V$ /* case 2 */
10 if $(c(A, V)$ changes by $\pm d) /^{*} \Leftarrow$ case $1^{* /}$
11 for all destinations $Y$ that go through $V$ do
12 $D_{V}(A, Y)=D_{V}(A, Y) \pm d$
else if (update $D(V, Y)$ received from $V$ ) $/^{*} \Leftarrow$ case 2 */
/* shortest path from V to some $Y$ has changed */
$14 \quad \mathrm{D}_{\mathrm{V}}(\mathrm{A}, \mathrm{Y})=\mathrm{D}_{\mathrm{V}}(A, V)+\mathrm{D}(V, Y) ; \quad / *$ may also change $\mathrm{D}(\mathrm{A}, \mathrm{Y})^{* /}$
15 if (there is a new minimum for destination $Y$ )
16 send $\mathrm{D}(A, Y)$ to all neighbors
17 forever

Distance Vector Algorithm (cont' d)

Each node: initialize, then
wait for (change in local link cost or msg from neighbor)

recompute distance table
if least cost path to any dest has changed, notify neighbors

## Distance Vector Algorithm (cont'd)

1 Initialization:
2 for all neighbors $V$ do $\quad c(i, j):$ link cost from node $i$ to $j$
3 if $V$ adjacent to $A$ - $D_{z}(A, V)$ : cost from $A$ to $V$ via $Z$
$4 \quad D(A, V)=c(A, V)$; $\quad D(A, V)$ : cost of $A$ 's best path to $V$
5 else
$D(A, V)=\infty ;$
send $D(A, Y)$ to all neighbors
loop:
8 wait (until $A$ sees a link cost change to neighbor $V / *$ case 1 */
9 or until $A$ receives update from neighbor $V$ /* case 2 */
10 if (c $(A, V)$ changes by $\pm d) /^{*} \Leftarrow$ case 1 */
$11 \quad$ for all destinations $Y$ that go through $V$ do
$12 \quad \mathrm{D}_{\mathrm{V}}(A, Y)=\mathrm{D}_{\mathrm{V}}(A, Y) \pm d$
13 else if (update $\mathrm{D}(V, Y)$ received from $V)^{*} \Leftarrow$ case 2 */ /* shortest path from V to some $Y$ has changed */
$14 \quad \mathrm{D}_{\mathrm{V}}(\mathrm{A}, \mathrm{Y})=\mathrm{D}_{\mathrm{V}}(A, V)+\mathrm{D}(V, Y)$; /* may also change $\mathrm{D}(\mathrm{A}, \mathrm{Y})^{* /}$
15 if (there is a new minimum for destination Y )
16 send $D(A, Y)$ to all neighbors
17 forever

## Example: Initialization



Node A

|  | B | C |
| :---: | :---: | :---: |
| B | 2 | $\infty$ |
| C | $\infty$ | 7 |
| D | $\infty$ | $\infty$ |

Node B

|  | A | C | D |
| :---: | :---: | :---: | :---: |
| A | 2 | $\infty$ | $\infty$ |
| C | $\infty$ | 1 | $\infty$ |
| D | $\infty$ | $\infty$ | 3 |

## 1 Initialization:

2 for all neighbors $V$ do if $V$ adjacent to $A$ $D(A, V)=c(A, V) ;$ else

$$
D(A, V)=\infty ;
$$

Node C

|  | A | B | D |
| :---: | :---: | :---: | :---: |
| A | 7 | $\infty$ | $\infty$ |
| B | $\infty$ | 1 | $\infty$ |
| D | $\infty$ | $\infty$ | 1 |

Node D

|  | B | C |
| :---: | :---: | :---: |
| A | $\infty$ | $\infty$ |
| B | 3 | $\infty$ |
| C | $\infty$ | 1 | send $D(A, Y)$ to all neighbors

## Example: $C$ sends update to $A$



Node A

|  | B | C |
| :---: | :---: | :---: |
| B | 2 | 8 |
| C | $\infty$ | 7 |
| D | $\infty$ | 8 |

Node B

|  | A | C | D |
| :---: | :---: | :---: | :---: |
| A | 2 | $\infty$ | $\infty$ |
| C | $\infty$ | 1 | $\infty$ |
| D | $\infty$ | $\infty$ | 3 |

$D_{C}(A, B)=D_{C}(A, C)+D(C, B)=7+1=8$
$D_{C}(A, D)=D_{C}(A, C)+D(C, D)=7+1=8$

Node D

|  | B | C |
| :---: | :---: | :---: |
| A | $\infty$ | $\infty$ |
| B | 3 | $\infty$ |
| C | $\infty$ | 1 |

7 loop:
13 else if (update $D(A, Y)$ from $C$ ) $14 \quad \mathrm{D}_{\mathrm{C}}(A, Y)=\mathrm{D}_{\mathrm{C}}(A, C)+\mathrm{D}(C, Y)$; 15 if (new min. for destination $Y$ ) 16 send $D(A, Y)$ to all neighbors
17 forever

Node C

|  | $A$ | $B$ | $D$ |
| :---: | :---: | :---: | :---: |
| $A$ | 7 | $\infty$ | $\infty$ |
| $B$ | $\infty$ | 1 | $\infty$ |
| $D$ | $\infty$ | $\infty$ | 1 |

## Example: Now B sends update to A

Node A

Node B

|  | A | C | D |
| :---: | :---: | :---: | :---: |
| A | 2 | $\infty$ | $\infty$ |
| C | $\infty$ | 1 | $\infty$ |
| D | $\infty$ | $\infty$ | 3 |

$D_{B}(A, B)+D(B, C)=2+1=3$
$(\triangle R) \_(R, D)=2+3=5$

Make sure you know why this is 5 , not 4 !

| $A$ | 7 | $\infty$ | $\infty$ |
| :---: | :---: | :---: | :---: |
| $B$ | $\infty$ | 1 |  |
| $D$ | $\infty$ | $\infty$ | 1 |


| A | $\infty$ | $\infty$ |
| :---: | :---: | :---: |
| B | 3 | $\infty$ |
| C | $\infty$ | 1 |

## Example: After $1^{\text {st }}$ Full Exchange

Node A

|  | $B$ | $C$ |
| :--- | :--- | :--- |
| $B$ | 2 | 8 |
| C | 3 | 7 |
| D | 5 | 8 |$\longleftrightarrow$

Node B

|  | A | C | D |
| :---: | :---: | :---: | :---: |
| A | 2 | 8 | $\infty$ |
| C | 9 | 1 | 4 |
| D | $\infty$ | 2 | 3 |

Make sure you know why this is 3
Assume all send messages at same time

Node D

|  | B | C |
| :---: | :---: | :---: |
| A | 5 | 8 |
| B | 3 | 2 |
| C | 4 | 1 |

## Example: Now What harm does this cause?

Node A


|  | $B$ | $C$ |
| :---: | :---: | :---: |
| $B$ | 2 | 8 |
| $C$ | 3 | 7 |
| $D$ | 5 | 8 |

$$
\begin{aligned}
& D_{A}(B, C)=D_{A}(B, A)+D(A, C)=2+3=5 \\
& D_{A}(B, D)=D_{A}(B, A)+D(A, D)=2+5=7
\end{aligned}
$$

13 else if (update $D(B, Y)$ from $A$ ) $14 \quad D_{A}(B, Y)=D_{A}(B, A)+D(A, Y) ;$ 15 if (new min. for destination $Y$ ) 16 send $D(B, Y)$ to all neighbors

Node C

|  | $A$ | $B$ | $D$ |
| :---: | :---: | :---: | :---: |
| A | 7 | 3 | $\infty$ |
| B | 9 | 1 | 4 |
| $D$ | $\infty$ | 4 | 1 |

Node D

|  | B | C |
| :---: | :---: | :---: |
| A | 5 | 8 |
| B | 3 | 2 |
| C | 4 | 1 |

17 forever

## Example: End of $2^{\text {nd }}$ Full Exchange



Node A

|  | B | C |
| :---: | :---: | :---: |
| B | 2 | 8 |
| C | 3 | 7 |
| D | 4 | 8 |$\longleftrightarrow$

Node B

|  | A | C | D |
| :---: | :---: | :---: | :---: |
| A | 2 | 4 | 8 |
| C | 5 | 1 | 4 |
| $D$ | 7 | 2 | 3 |

Node C
Assume all send messages at same time

|  | $A$ | $B$ | $D$ |
| :---: | :---: | :---: | :---: |
| $A$ | 7 | 3 | 6 |
| $B$ | 9 | 1 | 3 |
| $D$ | 12 | 3 | 1 |$\leftrightarrow$|  | $B$ | $C$ |
| :---: | :---: | :---: |
| $B$ | 5 | 4 |
| C | 3 | 2 |

## Example: End of 3rd Full Exchange



Node A

|  | $B$ | $C$ |
| :--- | :--- | :--- |
| B | 2 | 8 |
| C | 3 | 7 |
| D | 4 | 8 |$\longleftrightarrow$

Node B

|  | A | C | D |
| :---: | :---: | :---: | :---: |
| A | 2 | 4 | 7 |
| C | 5 | 1 | 4 |
| D | 6 | 2 | 3 |



Assume all send messages at same time

|  | A | B | D |
| :---: | :---: | :---: | :---: |
| A | 7 | 3 | 5 |
| B | 9 | 1 | 3 |
| D | 11 | 3 | 1 |$\leftrightarrow$|  | B | C |
| :---: | :---: | :---: |
| A | 5 | 4 |
| B | 3 | 2 |
| C | 4 | 1 |

What route does this 11 represent?

- Initial state: best one-hop paths
- One simultaneous round: best two-hop paths
- Tinn cimultanonuc rounde. hact throa_hon nathe

The key here is that the starting point is not the initialization, but some other set of entries. Convergence could be different!

- Must eventually converge
- as soon as it reaches longest bes
- .....but how does it respond to ctanges in cost?


## Count-to-Infinity Problem



## How to deal with count-to infinity problem?

- Option 1: if router X advertises router Y a route, Y should not advertise that route back to $X$
- Called split horizon
- Can be fooled by 3-node loops
- Option 2: if one of my routes is disappeared, I should advertise that route to all my neighbors with infinite costs
- Called poison reverse
- Useful for networks where routes only disappear after a timeout (so it's not necessary if you're using a protocol with triggered updates)
- Or, can alternatively have an explicit "withdrawal" message


## Split Horizon



## Split Horizon



## Split Horizon



## Split Horizon



## DV: Link Cost Changes



|  | Stable state |  |  | A-B changed |  |  | A sends tables to B, C |  |  | B sends tables to C |  |  | C sends tables to B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node A |  | B | C |  | B | C |  | B | C |  | B | C |  | B | C |
|  | B | 4 | 51 | B | 1 | 51 |
|  | C | 5 | 50 | C | 2 | 50 |
| Node E |  | A | C |  | A | C |  | A | C |  | A | C |  | A | C |
|  | A | 4 | 6 | A | 1 | 6 | A | 1 | 6 | A | 1 | 6 | A | 1 | 3 |
|  | C | 9 | 1 | C | 6 | 1 | C | 3 | 1 | C | 3 | 1 | C | 3 | 1 |
| Node |  | A | B |  | A | B |  | A | B |  | A | B |  | A | B |
|  | A | 50 | 5 | A | 50 | 5 | A | 50 | 5 | A | 50 | 2 | A | 50 | 2 |
|  | B | 54 | 1 | B | 54 | 1 | B | 51 | 1 | B | 51 | 1 | B | 51 | 1 |

## DV: Count to Infinity Problem



|  | Stable state |  |  | A-B changed |  |  | A sends tables to B, C |  |  | B sends tables to C |  |  | C sends tables to B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node A |  | B | C |  | B | C |  | B | C |  | B | C |  | B | C |
|  | B | 4 | 51 | B | 60 | 51 |
|  | C | 5 | 50 | C | 61 | 50 |
| Node B |  | A | C |  | A | C |  | A | C |  | A | C |  | A | C |
|  | A | 4 | 6 | A | 60 | 8 |
|  | C | 9 | 1 | C | 65 | 1 | C | 110 | 1 | C | 110 | 1 | C | 110 | 1 |
| Node 0 |  | A | B |  | A | B |  | A | B |  | A | B |  | A | B |
|  | A | 50 | 5 | A | 50 | 5 | A | 50 | 5 | A | 50 | 7 | A | 50 | 7 |
|  | B | 54 | 1 | B | 54 | 1 | B | 101 | 1 | B | 101 | 1 | B | 101 | 1 |

Link cost changes here
"bad news travels slowly" (not yet converged)

## DV: Poisoned Reverse

- If $B$ routes through $C$ to get to $A$ :

- $B$ tells $C$ its ( $B$ 's) distance to $A$ is infinite (so $C$ won't route to $A$ via $B$ )

|  | Stable state |  |  | A-B changed |  |  | A sends tables to B, C |  |  | $B$ sends tables to C |  |  | C sends tables to B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node A |  | B | C |  | B | C |  | B | C |  | B | C |  | B | C |
|  | B | 4 | 51 | B | 60 | 51 |
|  | C | 5 | 50 | C | 61 | 50 |
| Node B |  | A | C |  | A | C |  | A | C |  | A | C |  | A | C |
|  | A | 4 | $\infty$ | A | 60 | 51 |
|  | C | $\infty$ | 1 | C | $\infty$ | 1 | C | 110 | 1 | C | 110 | 1 | C | 110 | 1 |
| Node O |  | A | B |  | A | B |  | A | B |  | A | B |  | A | B |
|  | A | 50 | 5 | A | 50 | 5 | A | 50 | 5 | A | 50 | 61 | A | 50 | 61 |
|  | B | 54 | 1 | B | 54 | 1 | B | $\infty$ | 1 | B | $\infty$ | 1 | B | $\infty$ | 1 |
|  | Link cost changes here |  |  |  |  |  | Note: this converges after C receives another update from B |  |  |  |  |  |  |  |  |

## Will Poison-Reverse Completely Solve the Count-to-Infinity Problem?



## A few other inconvenient aspects

- What if we use a non-additive metric?
- E.g., maximal capacity
- What if routers don't use the same metric?
- I want low delay, you want low loss rate?
- What happens if nodes lie?


## Can You Use Any Metric?

- I said that we can pick any metric. Really?
- What about maximizing capacity?


## Doliry disputes

 ISP A prefers route through C over direct route

Advertise (A-D) ( $\mathrm{B}=\mathrm{A}=\mathrm{C}=\mathrm{D}=\mathrm{p}$ )

ISP B prefers route through A over direct route

ISP A
(link price: $\$ 100$ per 1Gbps)
Withdraw
(C-B-A-D-p)

ISP C prefers route through B over direct route

WithdrawISP C

ISP B

Withdraw
Advertise $(C-1+\infty)$

$$
(C-1+\infty)
$$

(C-B-A-D-p)

## Dolicy disputes ISP A prefers route

 through C over direct route$$
(A-C-B-D-p)
$$

$$
\text { Advertise( } \mathrm{A}-\mathrm{D})^{(1)} \quad \text { (B-A-C-D-p) }
$$

ISP B prefers route through A over direct route


## Dolicy disputes ISP A prefers route

 through C over direct route$$
(A-C-B-D-p)
$$

$$
\text { Advertise( } \mathrm{A}-\mathrm{D})^{(1)} \quad \text { (B-A-C-D-p) }
$$

ISP B prefers route through A over direct route


## Dolicy disputes ISP A prefers route

 through C over direct route$$
(A-C-B-D-p)
$$

$$
\text { Advertise( } \mathrm{A}-\mathrm{D})^{(1)} \quad \text { (B-A-C-D-p) }
$$

ISP B prefers route through A over direct route


What Happens Here?

## Problem: "cost" does not change around loop



Additive measures avoid this problem!

## No agreement on metrics?

- If the nodes choose their paths according to different criteria, then bad things might happen
- Example
- Node A is minimizing latency
- Node B is minimizing loss rate
- Node C is minimizing price
- Any of those goals are fine, if globally adopted
- Only a problem when nodes use different criteria
- Consider a routing algorithm where paths are described by delay, cost, loss


## What Happens Here?

## Cares about price,

 then loss Low price linkCares about delay, then price

Cares about loss, then delay

## Must agree on loop-avoiding metric

- When all nodes minimize same metric
- And that metric increases around loops
- Then process is guaranteed to converge


## What happens when routers lie?

- What if a router claims a 1-hop path to everywhere?
- All traffic from nearby routers gets sent there
- How can you tell if they are lying?
- Can this happen in real life?
- It has, several times....


## Link State vs. Distance Vector

- Core idea
- LS: tell all nodes about your immediate neighbors
- DV: tell your immediate neighbors about (your least cost distance to) all nodes


## Link State vs. Distance Vector

- LS: each node learns the complete network map; each node computes shortest paths independently and in parallel
- DV: no node has the complete picture; nodes cooperate to compute shortest paths in a distributed manner
$\rightarrow$ LS has higher messaging overhead
$\rightarrow$ LS has higher processing complexity
$\rightarrow$ LS is less vulnerable to looping


## Link State vs. Distance Vector

## Message complexity

- LS: O(NxE) messages;
- N is \#nodes; E is \#edges
- DV: O(\#lterations x E)
- where \#Iterations is ideally O(network diameter) but varies due to routing loops or the count-to-infinity problem

Robustness: what happens if router malfunctions?

- LS:
- node can advertise incorrect link cost
- each node computes only its own table
- DV:
- node can advertise incorrect path cost
- each node's table used by others; error propagates through network
- DV: O(\#lterations x N)


## Routing: Just the Beginning

- Link state and distance-vector are the deployed routing paradigms for intra-domain routing
- Next lecture: inter-domain routing (BGP)
- new constraints: policy, privacy
- new solutions: path vector routing
- new pitfalls: truly ugly ones


# What are desirable goals for a routing solution? 

- "Good" paths (least cost)
- Fast convergence after change/failures
- no/rare loops
- Scalable
- \#messages
- table size
- processing complexity
- Secure
- Policy
- Rich metrics (more later)


## Delivery models

- What if a node wants to send to more than one destination?
- broadcast: send to all
- multicast: send to all members of a group
- anycast: send to any member of a group
- What if a node wants to send along more than one path?


## Metrics

- Propagation delay
- Congestion
- Load balance
- Bandwidth (available, capacity, maximal, bbw)
- Price
- Reliability
- Loss rate
- Combinations of the above

In practice, operators set abstract "weights" (much like our costs); how exactly is a bit of a black art

