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Many pieces to the network layer 

• Addressing 

• Routing  

• Forwarding  

• Policy and management 

• IP protocol details 

• … 

 

Today + next 1-2 lectures: Routing 



Context and Terminology 

“End hosts” 
“Clients”, “Users” 

“End points” 

“Interior Routers” 

“Border Routers” 

“Autonomous System (AS)” or “Domain” 
Region of a network under a single administrative entity 

“Route” or “Path” 
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Internet routing protocols are responsible for constructing  

and updating the forwarding tables at routers 

Context and Terminology 



How can routers find paths? 

• Hosts assigned topology-dependent addresses 

• Routers advertise address blocks (“prefixes”) 

• Routers compute “shortest” paths to prefixes 

• Map IP addresses to names with DNS 
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Routing Protocols  

• Routing protocols implement the core function of a network 

• Establish paths between nodes 

• Part of the network’s “control plane”  

 

• Network modeled as a graph 

• Routers are graph vertices  

• Links are edges 

• Edges have an associated “cost” 
• e.g., distance, loss   

 

• Goal: compute a “good” path from source to destination 

• “good” usually means the shortest (least cost) path 
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Internet Routing 

• Internet Routing works at two levels 
 

• Each AS runs an intra-domain routing protocol that  
establishes routes within its domain  

• (AS -- region of network under a single administrative entity) 

• Link State, e.g., Open Shortest Path First (OSPF) 

• Distance Vector, e.g., Routing Information Protocol (RIP) 

 

• ASes participate in an inter-domain routing protocol that establishes 
routes between domains 

• Path Vector, e.g., Border Gateway Protocol (BGP) 

 



Intra- vs. Inter-domain routing 

• Run “Interior Gateway Protocol” (IGP) within ISPs 
• OSPF, IS-IS, RIP 

• Use “Border Gateway Protocol” (BGP) to connect ISPs 
• To reduce costs, peer at exchange points (AMS-IX, MAE-EAST) 
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dest 



 



Addressing (for now) 

• Assume each host has a unique ID (address) 
 

• No particular structure to those IDs 
 

• Later in course will talk about real IP addressing 

 



Outline  

• Link State 

• Distance Vector  

• Routing: goals and metrics (if time) 



Link-State Routing 



Link state: update propagation 
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• How to prevent update loops: (seq numbers) 

• How to bring up new node: (load TDB from neighbor) 
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Each node maintains 

a “topology database” 



Link state: route computation 

B D 

C E 

A F 

• Each router computes shortest path tree, rooted at that router 

• Determines next-hop to each dest, publish to forwarding table 

• Operators can assign link costs to control path selection 



Link-state: packet forwarding 

B D 

C E 

A F IP packet 

source destination 

• In practice: shortest path precomputed, next-hops stored in forwarding table 

• Downsides of link-state: 

– Lesser control on policy (certain routes can’t be filtered), more cpu 

– Increased visibility (bad for privacy, but good for diagnostics)  



Link State Routing 

• Each node maintains its local “link state” (LS) 
• i.e., a list of its directly attached links and their costs 
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Link State Routing 

• Each node maintains its local “link state” (LS) 

• Each node floods its local link state  
• on receiving a new LS message, a router forwards the message 

to all its neighbors other than the one it received the message from 
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Link State Routing 

• Each node maintains its local “link state” (LS) 

• Each node floods its local link state  

• Hence, each node learns the entire network topology 
• Can use Dijkstra’s to compute the shortest paths between nodes 
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Dijkstra’s Shortest Path Algorithm 

• INPUT: 
• Network topology (graph), with link costs 

 

• OUTPUT: 
• Least cost paths from one node to all other nodes 

 

• Iterative: after k iterations, a node knows the 
least cost path to its k closest neighbors 
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Notation 
 

• c(i,j): link cost from node i  
to j; cost is infinite if not 
direct neighbors; ≥ 0 

 

• D(v): total cost of the 
current least cost path from 
source to destination v 

 

• p(v): v’s predecessor along 
path from source to v 

 

• S: set of nodes whose least 
cost path definitively known 

A 

E D 

C B 

F 

2 

2 

1 
3 

1 

1 

2 

5 

3 

5 

Source 



Dijkstra’s Algorithm 

1  Initialization:  

2    S = {A}; 

3    for all nodes v  

4      if v adjacent to A  

5        then D(v) = c(A,v);  

6        else D(v) =     ; 

7  

8   Loop  

9      find w not in S such that D(w) is a minimum;  

10    add w to S;  

11    update D(v) for all v adjacent to w and not in S:  

12       if  D(w) + c(w,v) < D(v) then 

              // w gives us a shorter path to v than we’ve found so far  

13          D(v) = D(w) + c(w,v); p(v) = w; 

14  until all nodes in S;  

¥

• c(i,j): link cost from node i to j 

• D(v): current cost source  v 

• p(v): v’s predecessor along path 
from source to v 

• S: set of nodes whose least cost 
path definitively known 



Example: Dijkstra’s Algorithm 
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Example: Dijkstra’s Algorithm 
Step 
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… 

8   Loop  

9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  

12 If D(w) + c(w,v) < D(v) then 

13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  
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Step 

0 

1 

2 

3 

4 

5 

set S 

A 

AD 

D(B),p(B) 

2,A 

D(C),p(C) 

5,A 

D(D),p(D) 

1,A 

D(E),p(E) 

 
D(F),p(F) 

 

 

A 

E D 

C B 

F 

2 

2 

1 
3 

1 

1 

2 

5 
3 

5 

¥ ¥

… 

8   Loop  

9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  

12 If D(w) + c(w,v) < D(v) then 

13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  



Example: Dijkstra’s Algorithm 
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8   Loop  

9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  

12 If D(w) + c(w,v) < D(v) then 

13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  
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8   Loop  

9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  

12 If D(w) + c(w,v) < D(v) then 

13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  
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          to w and not in S:  
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13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  
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• Running Dijkstra at node A gives the shortest 
path from A to all destinations 

• We then construct the forwarding table 

The Forwarding Table 
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Issue #1: Scalability 

• How many messages needed to flood link state messages?  

• O(N x E), where N is #nodes; E is #edges in graph 
 

• Processing complexity for Dijkstra’s algorithm? 

• O(N2), because we check all nodes w not in S at each iteration 
and we have O(N) iterations 

• more efficient implementations: O(N log(N)) 
 

• How many entries in the LS topology database? O(E) 
  

• How many entries in the forwarding table? O(N) 

 



• Inconsistent link-state database 
• Some routers know about failure before others 

• The shortest paths are no longer consistent 

• Can cause transient forwarding loops 

Issue#2: Transient Disruptions 
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Hierarchical routing 

A 

B 

C 

H 

G 

D 

E 

I 

J 

M 

P 

O 

A 

B 

C 

H 

G 

D 

E 

I 

J 

M 

P 

O 

In regular link-state,  

routers maintain map  

of entire topology 



Hierarchical routing 
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across areas as “virtual links” 

Aggregate groups of  
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reach other border routers 



Distance Vector 



Learn-By-Doing 
Let’s try to collectively develop 

 distance-vector routing from first principles 
 



Experiment 

• Your job: find the youngest person in the room 

 

• Ground Rules 

• You may not leave your seat, nor shout loudly 
across the class  

• You may talk with your immediate neighbors 
 (hint: “exchange updates” with them) 
 

• At the end of 5 minutes, I will pick a victim and ask:  

• who is the youngest person in the room? (name, date) 

• which one of your neighbors first told you this info.?  

 



Go! 



Distance-Vector 



Example of Distributed 
Computation 

I am one hop away 

I am one hop away 

I am one hop away 

I am two hops away 

I am two hops away 

I am two hops away 

I am two hops away 

I am three hops away 

I am three hops away 

Destination 
I am three hops away 



Distance vector:  
update propagation 
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Distance Vector Routing 

• Each router knows the links to its neighbors 
• Does not flood this information to the whole network 

• Each router has provisional “shortest path” to  
every other router 

• E.g.:  Router A: “I can get to router B with cost 11” 

• Routers exchange this distance vector  information 
with their neighboring routers 

• Vector because one entry per destination 

• Routers look over the set of options offered by their 
neighbors and select the best one 

• Iterative process converges to set of shortest paths 



Distance vector: convergence 

B D 

C E 

A 

F G H 

source 

destination 

Withdraw(H) 

Updates 

received by A: 0 1 2 3 4 5 6 7 

• How many updates would link-state require? 

• Is link-state better or worse than distance vector? 

• Which should be used for intra-domain routing? 
What about inter-domain routing? 



Bellman-Ford Algorithm 

• INPUT: 
• Link costs to each neighbor 

(Not full topology) 

• OUTPUT: 
• Next hop to each destination and the corresponding cost 

    (Not the complete path to the destination) 

 

• My neighbors tell me how far they are from dest’n 
• Compute: (cost to nbr) plus (nbr’s cost to destination) 

• Pick minimum as my choice 

• Advertise that cost to my neighbors 

 



Bellman-Ford Overview 

• Each router maintains a table 
• Best known distance from X to Y, 

     via Z as next hop = DZ(X,Y) 

 

• Each local iteration caused by:  
• Local link cost change  

• Message from neighbor 

 

• Notify neighbors only if least cost 
path to any destination changes 

• Neighbors then notify their neighbors 
if necessary 

 

wait for (change in local link 

cost or msg from neighbor) 

 

recompute distance table 

 

if least cost path to any dest 

has changed, notify 

neighbors  

 

Each node: 



Bellman-Ford Overview 

• Each router maintains a table 
• Row for each possible destination 

• Column for each directly-attached 
neighbor to node 

• Entry in row Y and column Z of node 
X  best known distance from X to Y, 
via Z as next hop = DZ(X,Y) 
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B D 3 
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C 3 7 

D 4 8 

Node A 

Neighbor  

(next-hop) 

Destinations DC(A, D) 



Bellman-Ford Overview 

• Each router maintains a table 
• Row for each possible destination 

• Column for each directly-attached 
neighbor to node 

• Entry in row Y and column Z of node 
X  best known distance from X to Y, 
via Z as next hop = DZ(X,Y) 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C 3 7 

D 4 8 

Node A 

Smallest distance in row Y = shortest 
Distance of A to Y, D(A, Y)  



Distance Vector Algorithm 
(cont’d) 

1 Initialization:  

2    for all neighbors V  do 

3          if V adjacent to A  

4                D(A, V) = c(A,V); 

5     else  

6            D(A, V) = ∞; 

7  send D(A, Y) to all neighbors 

 loop:  

8    wait (until A sees a link cost change to neighbor V  /* case 1 */ 

9             or until A receives update from neighbor V)    /* case 2 */ 

10   if (c(A,V) changes by ±d)  /*  case 1 */ 

11           for all destinations Y that go through V do    

12                 DV(A,Y) =  DV(A,Y) ± d  

13   else if (update D(V, Y) received from V) /*  case 2 */ 

               /* shortest path from V to some Y has changed  */  

14           DV(A,Y) = DV(A,V) + D(V, Y);    /* may also change D(A,Y) */ 

15   if (there is a new minimum for destination Y) 

16           send D(A, Y) to all neighbors  

17  forever  

• c(i,j): link cost from node i to j 

• DZ(A,V): cost from A to V via Z 

• D(A,V): cost of A’s best path to V 



 

wait for (change in local link 

cost or msg from neighbor) 

 

recompute distance table 

 

if least cost path to any dest 

has changed, notify 

neighbors  

 

Each node: initialize, then 

Distance Vector Algorithm 
(cont’d) 



1 Initialization:  

2    for all neighbors V  do 

3          if V adjacent to A  

4                D(A, V) = c(A,V); 

5     else  

6            D(A, V) = ∞; 

7  send D(A, Y) to all neighbors 

 loop:  

8    wait (until A sees a link cost change to neighbor V  /* case 1 */ 

9             or until A receives update from neighbor V)    /* case 2 */ 

10   if (c(A,V) changes by ±d)  /*  case 1 */ 

11           for all destinations Y that go through V do    

12                 DV(A,Y) =  DV(A,Y) ± d  

13   else if (update D(V, Y) received from V) /*  case 2 */ 

               /* shortest path from V to some Y has changed  */  

14           DV(A,Y) = DV(A,V) + D(V, Y);    /* may also change D(A,Y) */ 

15   if (there is a new minimum for destination Y) 

16           send D(A, Y) to all neighbors  

17  forever  

• c(i,j): link cost from node i to j 

• DZ(A,V): cost from A to V via Z 

• D(A,V): cost of A’s best path to V 

Distance Vector Algorithm 
(cont’d) 



Example: Initialization 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 ∞ 

C ∞ 7 

D ∞ ∞ 

Node A 

A C D 

A 2 ∞ ∞ 

C ∞ 1 ∞ 

D ∞ ∞ 3 

Node B 

Node C 

A B D 

A  7 ∞ ∞ 

B ∞ 1 ∞ 

D ∞ ∞ 1 

B C 

A ∞ ∞ 

B 3 ∞ 

C ∞ 1 

Node D 
1 Initialization:  

2    for all neighbors V  do 

3          if V adjacent to A  

4                D(A, V) = c(A,V); 

5     else  

6            D(A, V) = ∞; 

7  send D(A, Y) to all neighbors 



Example: C sends update to A 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C ∞ 7 

D ∞ 8 

Node A 

A C D 

A 2 ∞ ∞ 

C ∞ 1 ∞ 

D ∞ ∞ 3 

Node B 

Node C 

A B D 

A  7 ∞ ∞ 

B ∞ 1 ∞ 

D ∞ ∞ 1 

B C 

A ∞ ∞ 

B 3 ∞ 

C ∞ 1 

Node D 
7 loop: 

     … 

13   else if (update D(A, Y) from C)  

14     DC(A,Y) = DC(A,C) + D(C, Y); 

15   if (new min. for destination Y) 

16     send D(A, Y) to all neighbors  

17  forever  

DC(A, B) = DC(A,C) + D(C, B)  = 7 + 1 = 8 

DC(A, D) = DC(A,C) + D(C, D)  = 7 + 1 = 8 



Example: Now B sends update to A 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C 3 7 

D 5 8 

Node A 

A C D 

A 2 ∞ ∞ 

C ∞ 1 ∞ 

D ∞ ∞ 3 

Node B 

Node C 

A B D 

A  7 ∞ ∞ 

B ∞ 1 

D ∞ ∞ 1 

Node D 
7 loop: 

     … 

13   else if (update D(A, Y) from B)  

14     DB(A,Y) = DB(A,B) + D(B, Y); 

15   if (new min. for destination Y) 

16     send D(A, Y) to all neighbors  

17  forever  

DB(A, C) = DB(A,B) + D(B, C)  = 2 + 1 = 3 

DB(A, D) = DB(A,B) + D(B, D)  = 2 + 3 = 5 

B C 

A ∞ ∞ 

B 3 ∞ 

C ∞ 1 

Make sure you know why this is 5, not 4! 



Example: After 1st Full Exchange 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C 3 7 

D 5 8 

Node A Node B 

Node C 

A B D 

A  7   3  ∞ 

B 9 1 4 

D ∞ 4 1 

Node D 

B C 

A 5 8 

B 3 2 

C 4 1 

End of 1st Iteration 

All nodes knows the 

best two-hop paths  

A C D 

A  2   8 ∞ 

C 9 1 4 

D ∞ 2 3 

Make sure you know why this is 3 

Assume all send 

messages at same 

time 



Example: Now A sends update to B 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C 3 7 

D 5 8 

Node A Node B 

Node C 

A B D 

A  7   3  ∞ 

B 9 1 4 

D ∞ 4 1 

Node D 

B C 

A 5 8 

B 3 2 

C 4 1 

A C D 

A   2  8 ∞ 

C 5 1 4 

D 7 2 3 

7 loop: 

     … 

13   else if (update D(B, Y) from A)  

14     DA(B,Y) = DA(B,A) + D(A, Y); 

15   if (new min. for destination Y) 

16     send D(B, Y) to all neighbors  

17  forever  

DA(B, C) = DA(B,A) + D(A, C)  = 2 + 3 = 5 

DA(B, D) = DA(B,A) + D(A, D)  = 2 + 5 = 7 

Where does this 5 come from? Where does this 7 come from? What harm does this cause? 



Example: End of 2nd Full Exchange 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C 3 7 

D 4 8 

Node A 

A C D 

A  2  4 8 

C 5 1 4 

D 7 2 3 

Node B 

Node C 

A B D 

A  7   3  6 

B 9 1 3 

D 12 3 1 

Node D 

B C 

A 5 4 

B 3 2 

C 4 1 

End of 2nd Iteration 

All nodes knows the 

best three-hop paths  

Assume all send 

messages at same 

time 



Example: End of 3rd Full Exchange 

A C 

1 2 

7 

B D 3 

1 

B C 

B 2 8 

C 3 7 

D 4 8 

Node A 

A C D 

A  2  4 7 

C 5 1 4 

D 6 2 3 

Node B 

Node C 

A B D 

A  7   3  5 

B 9 1 3 

D 11 3 1 

Node D 

B C 

A 5 4 

B 3 2 

C 4 1 

End of 3rd Iteration: 

Algorithm 

Converges! 

What route does this 11 represent? 

Assume all send 

messages at same 

time 



Intuition 

• Initial state: best one-hop paths 

• One simultaneous round: best two-hop paths 

• Two simultaneous rounds: best three-hop paths 

• … 

• Kth simultaneous round: best (k+1) hop paths 

 

• Must eventually converge 
• as soon as it reaches longest best path  

• …..but how does it respond to changes in cost? 

The key here is that the starting point is  
not the initialization, but some other set of  

entries.  Convergence could be different! 



Count-to-Infinity Problem 

A B 

C 

1 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

72 



Count-to-Infinity Problem 

A B 

C 

1 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

73 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

74 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 

75 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 

A 2 

76 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 
A 2 

3 

77 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 
A 3 

3 

78 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 

A 3 

3 

4 

79 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 

A 4 

3 

4 

80 



Count-to-Infinity Problem 

A B 

C 

14 1 

dest cost 

B 1 

C 2 

dest cost 

A 1 

C 1 

dest cost 

A 2 

B 1 

~ 
A 4 

3 

4 

5 

81 



How to deal with count-to infinity problem? 

• Option 1: if router X advertises router Y a route, Y should 
not advertise that route back to X 

• Called split horizon 

• Can be fooled by 3-node loops 

• Option 2: if one of my routes is disappeared, I should 
advertise that route to all my neighbors with infinite costs 

• Called poison reverse 

• Useful for networks where routes only disappear after a timeout (so 
it’s not necessary if you’re using a protocol with triggered updates) 

• Or, can alternatively have an explicit “withdrawal” message 

 



Split Horizon 

A B 

C 

14 1 

des

t 

cos

t 

B 1 

C 2 

des

t 

cos

t 

A 1 

C 1 

des

t 

cos

t 

A 2 

B 1 

inf 

83 



Split Horizon 

A B 

C 

14 1 

des

t 

cos

t 

B 1 

C 2 

des

t 

cos

t 

A 1 

C 1 

des

t 

cos

t 

A 2 

B 1 

inf 

14 

84 

A inf 



Split Horizon 

A B 

C 

14 1 

des

t 

cos

t 

B 1 

C 2 

des

t 

cos

t 

A 1 

C 1 

des

t 

cos

t 

A 2 

B 1 

14 

A 14 

85 

inf 



Split Horizon 

A B 

C 

14 1 

des

t 

cos

t 

B 1 

C 2 

des

t 

cos

t 

A 1 

C 1 

des

t 

cos

t 

A 2 

B 1 

14 

A 14 
15 

86 

inf 



DV: Link Cost Changes 

A C 

A 4 6 

C 9 1 

Node B 

A B 

A 50 5 

B 54 1 

Node C 

Link cost changes here 

A C 

A 1 6 

C 6 1 

A B 

A 50 5 

B 54 1 

A C 

A 1 6 

C 3 1 

A B 

A 50 5 

B 51 1 

A C 

A 1 6 

C 3 1 

A B 

A 50 2 

B 51 1 

B C 

B 4 51 

C 5 50 

Node A B C 

B 1 51 

C 2 50 

B C 

B 1 51 

C 2 50 

B C 

B 1 51 

C 2 50 

A C 

A 1 3 

C 3 1 

A B 

A 50 2 

B 51 1 

B C 

B 1 51 

C 2 50 

Stable 

state 

A-B changed A sends 

tables to B, C 

B sends 

tables to C 

C sends 

tables to B 

A C 

1 4 

50 

B 
1 

“good news  travels fast” 



DV: Count to Infinity Problem  

A C 

A 4 6 

C 9 1 

Node B 

A B 

A 50 5 

B 54 1 

Node C 

Link cost changes here 

A C 

A 60 6 

C 65 1 

A B 

A 50 5 

B 54 1 

A C 

A 60 6 

C 110 1 

A B 

A 50 5 

B 101 1 

A C 

A 60 6 

C 110 1 

A B 

A 50 7 

B 101 1 

B C 

B 4 51 

C 5 50 

Node A B C 

B 60 51 

C 61 50 

B C 

B 60 51 

C 61 50 

B C 

B 60 51 

C 61 50 

A C 

A 60 8 

C 110 1 

A B 

A 50 7 

B 101 1 

B C 

B 60 51 

C 61 50 

Stable 

state 

A-B changed A sends 

tables to B, C 

B sends 

tables to C 

C sends 

tables to B 

A C 

1 4 

50 

B 
60 

“bad news travels slowly” 

(not yet converged) 



DV: Poisoned Reverse 

A C 

A 4 ∞ 

C ∞ 1 

Node B 

A B 

A 50 5 

B 54 1 

Node C 

Link cost changes here 

A C 

A 60 ∞ 

C ∞ 1 

A B 

A 50 5 

B 54 1 

A C 

A 60 ∞ 

C 110 1 

A B 

A 50 5 

B ∞ 1 

A C 

A 60 ∞ 

C 110 1 

A B 

A 50 61 

B ∞ 1 

B C 

B 4 51 

C 5 50 

Node A B C 

B 60 51 

C 61 50 

B C 

B 60 51 

C 61 50 

B C 

B 60 51 

C 61 50 

A C 

A 60 51 

C 110 1 

A B 

A 50 61 

B ∞ 1 

B C 

B 60 51 

C 61 50 

Stable 

state 

A-B changed A sends 

tables to B, C 

B sends 

tables to C 

C sends 

tables to B 

A C 

1 4 

50 

B 
60 

• If B routes through C to get to A: 

- B tells C its (B’s) distance to A is infinite (so C won’t route to A via B) 

Note: this converges after C receives 

another update from B 



Will Poison-Reverse Completely Solve  
the Count-to-Infinity Problem? 

A C 
1 

B 

D 

1 

1 1 
1 1 

2 2 

∞ 

∞ ∞ 

100 

100 100 

3 

∞ 

4 

∞ 4 

5 

6 



A few other inconvenient aspects 

• What if we use a non-additive metric? 
• E.g., maximal capacity 

 

• What if routers don’t use the same metric? 
• I want low delay, you want low loss rate? 

 

• What happens if nodes lie? 



Can You Use Any Metric? 

• I said that we can pick any metric.  Really? 

• What about maximizing capacity? 



Policy disputes 

ISP A ISP B 

ISP C ISP C prefers route  

through B over 

direct route 

ISP B prefers route  

through A over 

direct route 

ISP A prefers route  

through C over 

direct route 

Advertise(D-p) 

Prefix P 

ISP D 

Advertise(A-D-p) 

Advertise(A-D-p) 

Advertise(C-D-p) 

Advertise(C-D-p) 

Advertise(B-D-p) 

Advertise(B-D-p) 

(B-C-D-p) 

(B-A-D-p) 

(C-B-D-p) 

(C-B-D-p) 

(A-C-D-p) 

(A-C-D-p) 

(C-B-A-D-p) 

(C-B-A-D-p) 

(A-C-B-D-p) 

(A-C-B-D-p) 

(B-A-C-D-p) 

(B-A-C-D-p) 

(link price: $100 per 1Gbps) 

(link price:  

$5000 per  

1Gbps) 

(A-C-B-A-D-p) 

Withdraw 

Withdraw 

Withdraw Withdraw 

Withdraw 

Withdraw 



Policy disputes 

ISP A ISP B 

ISP C ISP C prefers route  

through B over 

direct route 

ISP B prefers route  

through A over 

direct route 

ISP A prefers route  

through C over 

direct route 

Advertise(D-p) 

Prefix P 

ISP D 

Advertise(A-D-p) 

Advertise(A-D-p) 

Advertise(C-D-p) 

Advertise(C-D-p) 

Advertise(B-D-p) 

Advertise(B-D-p) 

(B-C-D-p) 

(B-A-D-p) 

(C-B-D-p) 

(C-B-D-p) 

(A-C-D-p) 

(A-C-D-p) 

(C-B-A-D-p) 

(C-B-A-D-p) 

(A-C-B-D-p) 

(A-C-B-D-p) 

(B-A-C-D-p) 

(B-A-C-D-p) 

Withdraw 

Withdraw 

Withdraw Withdraw 

Withdraw 

Withdraw 



Policy disputes 

ISP A ISP B 

ISP C ISP C prefers route  

through B over 

direct route 

ISP B prefers route  

through A over 

direct route 

ISP A prefers route  

through C over 

direct route 

Advertise(D-p) 

Prefix P 

ISP D 

Advertise(A-D-p) 

Advertise(A-D-p) 

Advertise(C-D-p) 

Advertise(C-D-p) 

Advertise(B-D-p) 

Advertise(B-D-p) 

(B-C-D-p) 

(B-A-D-p) 

(C-B-D-p) 

(C-B-D-p) 

(A-C-D-p) 

(A-C-D-p) 

(C-B-A-D-p) 

(C-B-A-D-p) 

(A-C-B-D-p) 

(A-C-B-D-p) 

(B-A-C-D-p) 

(B-A-C-D-p) 

Withdraw 

Withdraw 

Withdraw Withdraw 

Withdraw 

Withdraw 



Policy disputes 

ISP A ISP B 

ISP C ISP C prefers route  

through B over 

direct route 

ISP B prefers route  

through A over 

direct route 

ISP A prefers route  

through C over 

direct route 

Advertise(D-p) 

Prefix P 

ISP D 

Advertise(A-D-p) 

Advertise(A-D-p) 

Advertise(C-D-p) 

Advertise(C-D-p) 

Advertise(B-D-p) 

Advertise(B-D-p) 

(B-C-D-p) 

(B-A-D-p) 

(C-B-D-p) 

(C-B-D-p) 

(A-C-D-p) 

(A-C-D-p) 

(C-B-A-D-p) 

(C-B-A-D-p) 

(A-C-B-D-p) 

(A-C-B-D-p) 

(B-A-C-D-p) 

(B-A-C-D-p) 

Withdraw 

Withdraw 

Withdraw Withdraw 

Withdraw 

Withdraw 



What Happens Here? 
All nodes want to maximize capacity A high capacity link gets reduced to low capacity 

Problem:“cost” does not change around loop 

Additive measures avoid this problem! 



No agreement on metrics? 

• If the nodes choose their paths according to 
different criteria, then bad things might happen 

• Example 
• Node A is minimizing latency 

• Node B is minimizing loss rate 

• Node C is minimizing price 

• Any of those goals are fine, if globally adopted 
• Only a problem when nodes use different criteria 

 

• Consider a routing algorithm where paths are 
described by delay, cost, loss 



What Happens Here? 

Low price link 

Low loss link 

Low delay link Low loss link 

Low delay link 

Low price link 

Cares about price,  
then loss 

Cares about delay, 
then price 

Cares about loss, 
then delay 



Must agree on loop-avoiding metric 

• When all nodes minimize same metric 
 

• And that metric increases around loops 
 

• Then process is guaranteed to converge 

 



What happens when routers lie? 

• What if a router claims a 1-hop path to everywhere? 
 

• All traffic from nearby routers gets sent there 
 

• How can you tell if they are lying? 
 

• Can this happen in real life? 
• It has, several times…. 



Link State vs. Distance Vector 

• Core idea 
• LS: tell all nodes about your immediate neighbors 

• DV: tell your immediate neighbors about (your least 
cost distance to) all nodes 

 

 



Link State vs. Distance Vector 

• LS: each node learns the complete network map; each node 
computes shortest paths independently and in parallel 

 

• DV: no node has the complete picture; nodes cooperate to 
compute shortest paths in a distributed manner 

 

LS has higher messaging overhead 

LS has higher processing complexity 

LS is less vulnerable to looping 
 

 



Link State vs. Distance Vector 

Message complexity 

• LS: O(NxE) messages;  
• N is #nodes; E is #edges 

• DV: O(#Iterations x E) 
• where #Iterations is ideally  

O(network diameter) but varies due 
to routing loops or the  
count-to-infinity problem 

 

Processing complexity 

• LS: O(N2) 

• DV: O(#Iterations x N) 

Robustness: what happens if router 
malfunctions? 

• LS:  
• node can advertise incorrect link 

cost 

• each node computes only its own 
table 

• DV: 
• node can advertise incorrect path 

cost 

• each node’s table used by others; 
error propagates through network 

 



Routing: Just the Beginning 

• Link state and distance-vector are the deployed 
routing paradigms for intra-domain routing  

 

• Next lecture: inter-domain routing (BGP) 
• new constraints: policy, privacy  

• new solutions: path vector routing  

• new pitfalls: truly ugly ones 



What are desirable goals for a 
routing solution? 

• “Good” paths (least cost) 

• Fast convergence after change/failures 
• no/rare loops 

• Scalable  
• #messages 

• table size  

• processing complexity 

• Secure 

• Policy 

• Rich metrics (more later) 



Delivery models 

• What if a node wants to send to more than one 
destination? 

• broadcast: send to all 

• multicast: send to all members of a group 

• anycast: send to any member of a group 

 

• What if a node wants to send along more than one 
path? 



Metrics 

• Propagation delay 

• Congestion 

• Load balance 

• Bandwidth (available, capacity, maximal, bbw) 

• Price 

• Reliability  

• Loss rate  

• Combinations of the above 

In practice, operators set abstract “weights” (much like 
our costs); how exactly is a bit of a black art 

 


