P Routing: Intradomain

CS/ECE 438: Spring 2014
Instructor: Matthew Caesar

http://courses.engt.illinois.edu/cs438/

Today

Application
Transport

Network

Link Layer

Physical

Starting on the internals of the network layer

Many pieces to the network layer

e Addressing

* Routing

* Forwarding

* Policy and management
* |P protocol details

Today + next 1-2 lectures: Routing

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“End hosts”
“Clients”, “Users”
“End points”

-~

- - -

.....

“Interior Routers”

ecture#2: Routers Forward
Packets

UCB :;3- sJL-
~.

switch#2 switch#2

Forwarding Table

111010010 . .
Destination Next Hop

_“switch¥#5 e

e to NYU
switch#3

to UW

Context and Terminology

are responsible for constructing
and updating the forwarding tables at routers

How can routers find paths?

Robert’s local
DNS server .com authoritative

DNS sever
_ y

T e | Routin

Prefix
4.0.0/8

Robert

Prefix

Routing Table at A

twitter.com

Prefix IF | Hops

4.0.0.0/8 B 2

Routing Table at C
Prefix IF | Hops
4.0.0.0/8 D 1

b

Twitter’s authoritative
DNS server

Hosts assigned topology-dependet addresses

Routers advertise address blocks (“prefixes”)

Routers compute “shortest” paths to prefixes

Map IP addresses to names with DNS

Routing Protocols

* Routing protocols implement the core function of a network
e Establish paths between nodes
e Part of the network’s “control plane”

* Network modeled as a graph
e Routers are graph vertices
* Links are edges

* Edges have an associated “cost”
e e.g., distance, loss

* Goal: compute a “good” path from source to destination
* “good” usually means the shortest (least cost) path

Internet Routing

* Internet Routing works at two levels

e Each AS runs an intra-domain routing protocol that
establishes routes within its domain
* (AS --region of network under a single administrative entity)
* Link State, e.g., Open Shortest Path First (OSPF)
* Distance Vector, e.g., Routing Information Protocol (RIP)

* ASes participate in an inter-domain routing protocol that establishe:
routes between domains

* Path Vector, e.g., Border Gateway Protocol (BGP)

Intra- vs. Inter-domain routing

source |

AT& T,

BGP
Session

* Run “Interior Gateway Protocol” (IGP) within ISPs

* OSPF, IS-IS, RIP

* Use “Border Gateway Protocol” (BGP) to connect ISPs
* To reduce costs, peer at exchange points (AMS-IX, MAE-EAST)

Complete Network Assets : XO Communications

(Oeattle B B Allentown White Plains
-;“Q [/ _ Scranton Boston B
Tacoma 47,7 Nah .._ S'pokane - | }) Reading
Vancouver —£) /X < O Coeur D'Alene | \ ancaster
) : \ B Harrisburg on
r | \ = Pittsburgh \,2“2 - -

™ Cleveland
Youngstown

” 'Ams‘[e rdam

"_-—

-
fikron New York =
Canton _\ Bergen
- S
| !..‘t:;{ > Jersey City
= Sacramento / . Atlantic City
/ Newark B
San Francisco .”?? Middlesex
Qakland ‘?.' .'Ol t Philadelphia =
San Jose ‘°‘.’ . Wilmington

Baltimore ™
Washington B

™ Fremont

Richmond

M Long Beach
Orange County

B San Diego

— . —
Tallahassee \

5 O Orlando
c: ¢ =

B Tampa
St. Petersburg .n\o,. Ft. Lauderdale =

ray'c!
Sarasota \g.. iami

LEGEND

() 0C-12 Market Uplinks = Data Center IP 0C-12c Uplink @ Core IP Node Class 5 Voice Switch Local Voice Footprint

< 0C-3 Market Uplinks === (QC-48 IP Backbone O Metro IP Node Sonus Gateway X0 Market

V; Diversely Routed OC-48Transport === OC-48 IP Market Uplink ¢ Private Peering IP Node Longhaul Termination Network Management Center
(All Bandwidths)

¢y 0C-192 BLSR Rings — 0C-192 Backbone Circuit & Public Peering IP Node Longhaul Termination Private Line Backbone
(OC-48 & Above Only)

& GigE === Peering Backbone Circuit A Data Center

Addressing (for now)

e Assume each host has a unique ID (address)
* No particular structure to those IDs

* Later in course will talk about real IP addressing

Outline

e Link State
* Distance Vector
* Routing: goals and metrics (if time)

Link-State Routing

Each node maintains ° Update propagation

a “topology database” F tells all routers:

thereis a link
between F and E
3 [e.5)
o G- V |
Q@ / \
[&.8] F

A [&F | (& (B85

C E

ﬁ
[&.5]

e How to prevent update loops: |

e How to bring up new node:

O

Link state: route computation

e Each router computes shortest path tree, rooted at that router
e Determines next-hop to each dest, publish to forwarding table
e QOperators can assign link costs to control path selection

Link-state: packet forwarding

B [\
/eStlnatlon

e In practice: shortest path precomputed, next-hops stored in forwarding table
e Downsides of link-state:

— Lesser control on policy (certain routes can’t be filtered), more cpu

— Increased visibility (bad for privacy, but good for diagnostics)

IP packet|) A
source

Q@/ \

Link State Routing

« Each node maintains its local “link state” (LS)
* |.e., alist of its directly attached links and their costs

(N1,N2)

(N1,N4)
(Nl,NS) Host C
Host A -j

Host B

— [:1
N6 N7 =

Link State Routing

 Each node floods its local link state

e 0N receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host C
Host A Host D
(N1,N2)
O
— (N1, N5)
_— T (N1,
h a (’2111 ’:‘i))
2 (N1, N5)
N
Nl (N1,N2) h N
(N1, N4)
(N1, N5) N3

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)

(N1,N2)
(N1, N4)

(N1, N (N1, N5) (N1,N2)
2 (N1, N4)
((r':l'm)) UELLEL

(N1, N5)

T (N1,N2) D
(N1, N4) 1
N6 (N1, N5)) N7

a

(N1,N2)
(N1, N4)
(N1, N5)

Link State Routing

 Each node floods its local link state

« Hence, each node learns the entire network topology
« Can use Dijkstra’s to compute the shortest paths between nodes

Host C

A\‘ j ‘/D E 1\‘ ‘; ‘/D
Ho A |B /J > j =i] /J : J t:I D
. \\\:§§~N2‘--___, .-Jé///; =
A\] :l>‘/D >N3
T |B/ ‘__‘[s 1‘\‘ j D
~l ‘/D J Iy 4
N j P j

~ P\‘ j 4 D ZB —
\N%“ J > J/ N7 _
e~ E‘——~ :

Dijkstra’'s Shortest Path Algorithm

* INPUT:
» Network topology (graph), with link costs

« OUTPUT:
 Least cost paths from one node to all other nodes

* [terative: after k iterations, a node knows the
least cost path to its k closest neighbors

Example

Notation

C(l,]): link cost from node i
to J; cost is infinite if not
direct neighbors; 2 0

D(V): total cost of the
current least cost path from
source to destination v

P(V): v's predecessor along
path from source to v

S: set of nodes whose least r

cost path definitively known

Dijkstra’ s Algorithm

* c(i,): link cost from node i to |

1 Initialization:

2 S={A}) * D(v): current cost source — v

3 for all nodes v * p(v): v's predecessor along path
4 if v adjacent to A from source to v

5 then D(v) = c(A,v); « S: set of nodes whose least cost
6 else D(v) = ¥: path definitively known

7

8 Loop

9 find w not in S such that D(w) is a minimum;

10 addwto S;

11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then
I/ 'w gives us a shorter path to v than we 've found so far
13 D(v) = D(w) + c(w,V); p(V) = w;
14 until all nodes in S;

O wN PR Oln

Example: Dijkstra’ s Algorithm

—
D
=)

2,A

5,A

setS D(B).p(B) D(C),p(C) D(D) p(D) D(E), pééE) D(F), géF)
A

1 Initialization:

2 S={A}

3 for all nodes v

4 if v adjacentto A

5 then D(v) = c(A,v);
6 else D(v) = ¥;

Example: Dijkstra’ s Algorithm

setS
A

5,A

D(B).p(B) D(C),p(C) D(D),p(b) D(E),IO#E) D(F),géF)
2,A

1,A
8 Loop
9 <dindw notin S s.t. D(w) is a minimum; |
10 addw i0S;
11 update D(v) for all v adjacent

tow and notin S:

12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w,
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

tep

S
0
I
2
3
4
5

setS _D(B),p(B) D(C),p(C) D(D),p(D) D(E),péféE) D(F),R(F)

A 2,A 9,A 1,A
AD
8 Loop
9s_fire-w-netin S s.t. D(w) Is a minimum,;
10 addwtoS;
11 update D(v) for all v adjacent
tow and notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w,
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D) P(D) D(E),p(E) D(F),p(F)
0 A 2.A 5,A ¥

g AD 4D < 2D >

2 \

3 \

4 \

5

\

~ 8 Loop
9 find w notin S s.t. D(w) is a minimum;

10 addw to S;

A1 update D(v) for all v adjacent)
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) =w;

—14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D).p(D) D(E).p(E) D(F),p(F)
0 A 2,A 5,A 1,A ¥
1 AD 4,D 2,D
2 ADE 3.E 4 E
3
4
S
8 Loop
9 findw notin S s.t. D(w) Is a minimum,;
10 addwto S;
11 update D(v) for all v adjacent
| tow and not in S:
12 If D(w) + c(w,Vv) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step _setS _ D(B),p(B) D(C),p(C) D(D).p(D) D(E).p(E) D(F),R(F)

0 A 2,A 5,A 1,A ¥

1 AD 4,D 2,D

2 ADE 3.E 4 E

3 ADEB

4

)
8 Loop
9 findw notin S s.t. D(w) Is a minimum,;
10 addwto S;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,Vv) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

set S D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
A 2 A 5.A 1,A ¥

AD 4D 2D

ADE 3,E 4.E
ADEB

ADEBC

8 Loop

10 addwto S;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,Vv) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

9 findw notin S s.t. D(w) Is a minimum,;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C).p(C) D(D).p(D) D(E).R(E) D(F),R(F)
0 A 2,A 5,A 1,A ¥
1 AD 4,D 2,D
2 ADE 3.E 4 E
3 ADEB
4 ADEBC
5 ADEBCF
8 Loop
9 findw notin S s.t. D(w) Is a minimum,;
10 addwto S;
11 update D(v) for all v adjacent
| tow and not in S:
12 If D(w) + c(w,Vv) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C),p(C) D(D),p(D). D(E),p(E) D(F),r_géF)
0 A 2 A 5.A 1,A ¥

1 AD 4D 25

2 ADE 3,E 4.E

3 ADEB

4 ADEBC

5 ADEBCF

To determine path A — C (say),
work backward from C via p(v)

The Forwarding Table

* Running Dijkstra at node A gives the shortest
path from A to all destinations

« We then construct the forwarding table

Destination Link
B (A,B)
C (A,D)
D (A,D)
E (A,D)
F (A,D)

Issue #1: Scalability

How many messages needed to flood link state messages?
* O(N x E), where N is #nodes; E is #edges in graph

Processing complexity for Dijkstra’s algorithm?

* O(N?), because we check all nodes w not in S at each iteration
and we have O(N) iterations

* more efficient implementations: O(N log(N))

How many entries in the LS topology database? O(E)

How many entries in the forwarding table? O(N)

Issue#2: Transient Disruptions

* [nconsistent link-state database
« Some routers know about failure before others
* The shortest paths are no longer consistent
« Can cause transient forwarding loops

©

Loop!

N~ -

A and D think that this E thinks that this
Is the path to C IS the path to C

Hier

In regular link-state,
routers maintain map
of entire topology

Hier

Routers summarize paths
across areas as “virtual links”

- T =

\
- ~

~
N\

\

Aggregate groups of “Border routers” generate

routers into “areas” “summary LSPs” to
reach other border routers

Distance Vector

Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles

Experiment

* Your job: find the youngest person in the room

 Ground Rules

* You may not leave your seat, nor shout loudly
across the class

* You may talk with your immediate neighbors
(hint: “exchange updates” with them)

* At the end of 5 minutes, | will pick a victim and ask:
* who is the youngest person in the room? (name, date)
* which one of your neighbors first told you this info.?

Go!

Distance-Vector

Example of Distributed

| am three hops away

| am two hops away

| am two hops away

Ay

| am three hops away

| am three hops away

/

N~

| am two hops away

| am two hops away

| am one hop away

| am one hop away

| am one hop a

Destination

Distance vector:

u

D tells B: | am D, and
| can reach F via 1 hop

e ding taple DSforwarding table Ftells D: 'am F, and
ﬁs orwarding table ﬁ | can reach F via 0 hops

(F1)
_
wm
(F2) (F,1) (F1)
estination
_

(F1)

Distance Vector Routing

« Each router knows the links to its neighbors
* Does not flood this information to the whole network

 Each router has provisional “shortest path” to
every other router

* E.g.: Router A: “l can get to router B with cost 11”

* Routers exchange this distance vector information
with their neighboring routers
 Vector because one entry per destination

* Routers look over the set of options offered by their
neighbors and select the best one

* |terative process converges to set of shortest paths

Distance vector: convergence

Updates

received b A///////?

source

Withdraw (H)

destination

e How many updates would link-state require?
e Is link-state better or worse than distance vector?

e Which should be used for intra-domain routing?
What about inter-domain routing?

Bellman-Ford Algorithm

* INPUT:

* Link costs to each neighbor
(Not full topology)

* OUTPUT:

* Next hop to each destination and the corresponding cost
(Not the complete path to the destination)

* My neighbors tell me how far they are from dest’n
e Compute: (cost to nbr) plus (nbr’s cost to destination)
e Pick minimum as my choice
* Advertise that cost to my neighbors

Bellman-Ford Overview

Each node:
« Each router maintains a table
« Best known distance from X to Y, walit for (change in local link
via Z as next hop = D,(X,Y) cost or msg from neighbor)

« Each local iteration caused by:
 Local link cost change
« Message from neighbor

recompute distance table

If least cost path to any dest
* Notify neighbors only if least cost | has changed, notify
path to any destination changes neighbors

« Neighbors then notify their neighbors
If necessary

Bellman-Ford Overview

« Each router maintains a table
« Row for each possible destination

« Column for each directly-attached
neighbor to node

« Entry in row Y and column Z of node
X = best known distance from X to,

via Z as next hop = D,(X,Y)
Neighbor
Node A (next-hop)
=

Destinations

Bellman-Ford Overview

« Each router maintains a table
« Row for each possible destination

« Column for each directly-attached
neighbor to node

« Entry in row Y and column Z of node
X = best known distance from X to Y,
via Z as next hop = D,(X,Y)

Node A

Smallest distance in row Y = shortest
Distance of Ato Y, D(A, Y)

Distance Vector Algorithm
(cont’ d)

1 Initialization:

2 for all neighbors V do * c(i,): link cost from node i to |

3 If V adjacent to A « D,(A,V): cost fromAto V via Z

4 DA, V) =clAV), D(A,V): cost of A's best path to V
5 else

6 D(A, V) = «;

7 send D(A, Y) to all neighbors

loop:

8 wait (until A sees a link cost change to neighbor V /* case 1 */
9 or until A receives update from neighbor V) /* */
10 if (c(A,V) changes by =d) /* < case 1*/

11 for all destinations Y that go through V do

12 Dy(AY) = Dy(A)Y) =d

13 else if (update D(V, Y) received from V) /* < */

14 Dy(A,Y) =Dy(A,V) + D(V,Y); /*may also change D(A,Y) */
15 if (there is a new minimum for destination Y)

16 send D(A, Y) to all neighbors

17 forever

Distance Vector Algorithm
(cont’ d)

Each node: initialize, then

for (change in local link
cost or msg from neighbor)

distance table

If least cost path to any dest

has changed,
neighbors

Distance Vector Algorithm
(cont’ d)

1 Initialization:

2 for all neighbors V do link cost from node i to |

3 If V adjacent to A cost from Ato V via Z

4 D(A, V) = c(AV); cost of A’s best path to V
5 else

6 D(A, V) = «;

7 send D(A, Y) to all neighbors

loop:

8 wait (until A sees a link cost change to neighbor V /* case 1 */
9 or until A receives update from neighbor V) /* */
10 if (c(A,V) changes by =d) /* < case 1*/

11 for all destinations Y that go through V do

12 Dy(AY) = Dy(A)Y) =d

13 else if (update D(V, Y) received from V) /* < */

14 Dy(A,Y) =Dy(A,V) + D(V,Y); /*may also change D(A,Y) */
15 if (there is a new minimum for destination Y)

16 send D(A, Y) to all neighbors

17 forever

Example: Initialization

3
2
1

7

1 Initialization:

2
3

4
5
6
I

for all neighbors V do
if V adjacent to A
D(A, V) = c(AV);
else
D(A, V) = «;
send D(A, Y) to all neighbors

Node A Node B
B
B 2 A |2
C 00 C
D °0 D
Node C Node D
A
A | 7 A
B 00 B
D | C

Example: C sends update to A

Node A Node B
B | C Al C | D
3 B | 2 | 8 A [2 | | =
2 C | © | 7 C | o | 1 | =
ﬂ D 8 D|~|=]3

7

D.(A, D) = D(A,C) +D(C,D) =7+1=8

Node C Node D

7 loop:
B | D B | C

13 else if (update D(A, Y) from C) [A
14 Dc(A)Y) =Dc(A,C) + D(C, Y);
15 if (new min. for destination Y)
16 send D(A, Y) to all neighbors | D
17 forever

o

IDC(A, B) = D(A,C) +D(C,B) =7 +1=8
A
=

Example: Now B sends update to A

Node A Node B
B C Al C | D
B 2 8 A |2 00 o0
cla| 7| |c|=]1]-=
D 3] 8 D 0 | 3

= Dg(A,B) +D(B,C) =2+ 1=3

7[Make sure you know why this is 5, not 4!

)| C
13 elseif (update D(A, Y)fromB)| A | 7 | o A o oo
14 Dg(A)Y) = Dg(A,B) + D(B, Y);
15 if (new min. for destinationy) | B | = | 1 B |3 |~
16 send D(A, Y)toallneighbors| D | = | 1 C 00 1

17 forever

Example: After 15t Full Exchange

Node A Node B
B | C Al C|D
5 B |2 |8 Al2 | 8]«
N cl3| 7| T c|of1]4
. D |5 8 D|=|2]3
7
Make sure you know why this is 3 T< I
N [Node D

Assume all send ~./B | D B | C

messages at same || At fo e A2 L0

_ B|o9|1]4 B | 3|2

time D | o | 4]1 cC| 4] 1

Example: Now { What harm does this cause?

Node A
B | C [l c|D
: B 2|8 || A f]s8 |~
2 c |37 c\p | 1] 4
1 D |5 | 8 p|'7]2]3

7
D.(B, C) = D,(B,A) + D(A,C) =2+3=5
DA(B’ D) = DA(B,A) +D(A,D) =2+5=7

Node C Node D
7 loop:
A| B |D B | C
13 elseif (update D(B, Y) from A)[5 | 7 3 | A 5 3
14 D,(B,Y) = D,(B,A) + D(A, Y);
15 if (new min. for destination Y) B 9 1 B 3 2
16 send D(B, Y)to all neighbors| D | = | 4 1 C 4 1

17 forever

Example: End of 2"d Full Exchange

Node A Node B
B | C A|lC|D
3 B | 2| 8 Al2 |4 | s
253 ’ cla3| 71| cls|1]a4
1 D | 4| 8 D| 7| 2] 3
7
Node C I Node DI
Assume all send B | D B | C
mesSages at same A7 [3|0l AlS |4
) B|o9| 1] 3 B | 3| 2
time D |12] 3 | 1 c | 4] 1

Example: End of 3rd Full Exchange

Node A Node B
B | C A|lC|D
. B | 2| 8 Al2 |4 |7
2 cla3| 71| cls|1]a4
& 1 D | 4| s D |6 | 2] 3
7
Node C I Node DI
Assume all send B | D B | C
mesSages at same Alr 3 |oleglAldS |4
) B|o9| 1] 3 B | 3| 2
time D |11 3 | 1 c |l 4|1
/\

[What route does this 11 represent?

J

Intuition

* |nitial state: best one-hop paths
* One simultaneous round: best two-hop paths

The key here is that the starting point is
not the initialization, but some other set of
entries. Convergence could be different!

U J

* Must eventually converge
* as soon as it reaches longest bes

ebut how does it respond to chghges in cost?

Count-to-Infinity Problem

1

2

A

B

72

Count-to-Infinity Problem

73

Count-to-Infinity Problem

74

Count-to-Infinity Problem

75

Count-to-Infinity Problem

e "i\”@
C 2 C I
’ n{i'
e

dest | cost_
A2
B |

76

Count-to-Infinity Problem

ﬂﬂ/)

77

dest | cost.
A //3

Count-to-Infinity Problem

ﬂﬂ/)

78

dest | cost.
A //3

Count-to-Infinity Problem

?@ / //3
c 2 /
14

m
A 24

B I

79

Count-to-Infinity Problem

e //‘ //3

cC 2
m
A 24

B I

|4

80

Count-to-Infinity Problem

ﬂll/)

81

mm
A7

How to deal with count-to infinity problem?

e Option 1: if router X advertises router Y a route, Y should
not advertise that route back to X
* Called split horizon
* Can be fooled by 3-node loops

e Option 2: if one of my routes is disappeared, | should
advertise that route to all my neighbors with infinite costs
* Called poison reverse

e Useful for networks where routes only disappear after a timeout (so
it’s not necessary if you’re using a protocol with triggered updates)

e Or, can alternatively have an explicit “withdrawal” message

Split Horizon

des
. (@
B I

cC 2

83

Split Horizon

des

.« (@
B I
C 2

84

Split Horizon

des CcoS
G (Dl
B I ""' A I

C 2 4 | C I

des | cos
t /14
A 2

B I

85

Split Horizon

des
t
B I
C 2

86

Vi

88

1

DV: Link Cost Changes &

50
Stable A-B changed A sends B sends C sends
state tables to B, C tables to C tables to B
Node A B| C B| C B| C B| C B| C
B| 4 |51 B 51 B| 1|51 B| 1|51 B| 1|51
C|lS3 |50 Cl| 2|50 C| 2|50 Cl 2|50 Cl 2|50
Node B Al C Al C Al C Al C Al C
Al 4 All All All All
Cl9]1 C| 6|1 Cl|3]|1 C|{3]|1 C|3]|1
Node C A| B A| B Al B A A| B
A|50| 5 A|50| 5 A |50 A |50 A |50
B|54| 1 B|54| 1 B|51| 1 B|51| 1 B |51

v

T 11 7
Link cost changes here gOOd news travels fast

60

DV: Count to Infinity Problem ;}il

50

Stable A-B changed A sends B sends C sends
state tablesto B, C tables to C tables to B
Node A B| C B| C B| C B| C B| C
Bl 4 |51 B [60] 51 B [60]| 51 B |60 51 B |60| 51
C| 5 |50 C | 61| 50 C | 61| 50 C|61]| 50 C|61]| 50
Node B Al C A | C Al C Al C A | C
Ald4d A|60]| 6 A| 60| 6 A | 60| 6 A | 60| 8
Cl9]| 1 C|65] 1 C |10} 1 C|10]| 1 c|luo| 1
Node C Al B Al B Al B A| B Al B
A|50| 5 A|50]| 5 A|0] 5 Al 7 A 50| 7
B|54| 1 B|54| 1 B |10l 1 B|101| 1 B |101| 1

T >

“bad news travels slowly”
(not yet converged)

Link cost changes here

60

DV: Poisoned Reverse ﬁl

If B routes through C to get to A: 50
- B tells C its (B’s) distance to A is infinite (so C won'’t route to A via B)
Stable A-B changed A sends B sends C sends
state tablesto B, C tables to C tables to B
Node A B| C B| C B| C B| C B| C
B| 4 |51 B | 60| 51 B |60| 51 B |60]| 51 B |60 | 51
Cl|5 |50 C | 61| 50 C|61] 50 C|61] 50 C|61] 50
Node B Al C Al C A|C Al C Al C
Al4d |~ A |60 | A|[60] = A|[60] = A | 60 | 51
Cl«o|1 C|lo| 1 C|uo| 1 C|uo| 1 C|1o| 1
Node C A| B A| B A| B A| B A|B
A|50]| 5 A|50]| 5 Al 0] > A | 50 | 6l Al 0|6l
B |54 | 1 B|54| 1 B| | *t B| = | ? Bl ~ | *t
f Note: this converges after C receives]

Link cost changes here another update from B

Will Poison-Reverse Completely Solve
the Count-to-Infinity Problem?

A few other inconvenient aspects

e What if we use a non-additive metric?
* E.g., maximal capacity

* What if routers don’t use the same metric?
* | want low delay, you want low loss rate?

 What happens if nodes lie?

Can You Use Any Metric?

* | said that we can pick any metric. Really?
* What about maximizing capacity?

PAlicy Hisputes

ISP A prefers route

(A-C-B-D-p) ISP B prefers route
ghrou?h Ctover (% (B-A-C-D-) through A over
Irect route | Advertise(5j|rect route
t se(¥ e

(link prlce 100 per 1Gbps

vertise(D- p

Withdraw ISP B

Advertise (A Rgaly

Advertise(B=s=@)l
l (B=aldD)
Withdraw® ¢ PP)

’ Withdraw

ISP C prefers route draw]SP C Advertise(CrBwtiu,

through B over (C =)
direct route (C-B-A-D-p)

disputes

(A-C-B-D-p)

Adv(m (B'A!'C'D'p)

Withdraw ?“::'-"_V
With Advertise(D

Adv(ert_ise(o WAL Advertise(Besa@)
(A-C-B-D-p) ﬂ’
(C-B-A-D-p)
Ad\gertise(t;&m_

l (Bp)

Withdraw® "¢ P-P)

’ Withdraw

Advertise(CoButiu,
(C= =R2D)

(C-B-A-D-p)

disputes

(A-C-B-D-p)

Adv(m (B'A!'C'D'p)

Withdraw ?“::'-"_V
With Advertise(D

Adv(ert_ise(o WAL Advertise(Besa@)
(A-C-B-D-p) ﬂ’
(C-B-A-D-p)
Ad\gertise(t;&m_

l (Bp)

Withdraw® "¢ P-P)

’ Withdraw

Advertise(CoButiu,
(C= =R2D)

(C-B-A-D-p)

disputes

(A-C-B-D-p)

Adv(m (B'A!'C'D'p)

Withdraw ?“::'-"_V
With Advertise(D

Adv(ert_ise(o WAL Advertise(Besa@)
(A-C-B-D-p) ﬂ’
(C-B-A-D-p)
Ad\gertise(t;&m_

l (Bp)

Withdraw® "¢ P-P)

’ Withdraw

Advertise(CoButiu,
(C= =R2D)

(C-B-A-D-p)

What Happens Here?

‘ Problem: “cost” does not change around loop

N

Additive measures avoid this problem!

No agreement on metrics?

* If the nodes choose their paths according to
different criteria, then bad things might happen

* Example
* Node A is minimizing latency
* Node B is minimizing loss rate
* Node Cis minimizing price
* Any of those goals are fine, if globally adopted
* Only a problem when nodes use different criteria

* Consider a routing algorithm where paths are
described by delay, cost, loss

What Happens Here?

Cares about price,] [Cares about delay,
then loss Low price link then price
-

loss link Low defay lin

Cares about loss,
then delay

elay link

Low pri€e link

Must agree on loop-avoiding metric

* When all nodes minimize same metric
* And that metric increases around loops

* Then process is guaranteed to converge

What happens when routers lie?

 What if a router claims a 1-hop path to everywhere?
 All traffic from nearby routers gets sent there
* How can you tell if they are lying?

* Can this happen in real life?
* |t has, several times....

Link State vs. Distance Vector

* Core idea
* |S: tell all nodes about your immediate neighbors

* DV: tell your immediate neighbors about (your least
cost distance to) all nodes

Link State vs. Distance Vector

* LS: each node learns the complete network map; each node
computes shortest paths independently and in parallel

* DV: no node has the complete picture; nodes cooperate to
compute shortest paths in a distributed manner

= LS has higher messaging overhead
— LS has higher processing complexity
—> LS is less vulnerable to looping

Link State vs. Distance Vector

Message complexity Robustness: what happens if router
ions?
e LS: O(NXE) messages; malfunctions
* N is #nodes; E is #edges * LS:
« DV: O(#lterations x E) * node can advertise incorrect
' cost
* where #lterations is ideally]
O(network diameter) but varies due * each node computes only its own
to routing loops or the table
count-to-infinity problem
P * DV:
* node can advertise incorrect
Processing complexity cost
5 « each node’ s table used by others;
e LS: O(N?)
error propagates through network

e DV: O(#lterations x N)

Routing: Just the Beginning

* Link state and distance-vector are the deployed
routing paradigms for intra-domain routing

* Next lecture: inter-domain routing (BGP)
* new constraints: policy, privacy
* new solutions: path vector routing
* new pitfalls: truly ugly ones

W
ro

nat are C

uting sol

esirable goals for a

Jtion?

e “Good” paths (least cost)

* Fast convergence after change/failures

* no/rare loops

e Scalable

* #messages
* table size

* processing complexity

e Secure

* Policy

e Rich metrics (more later)

Delivery models

* What if a node wants to send to more than one
destination?
* broadcast: send to all
* multicast: send to all members of a group
e anycast: send to any member of a group

 What if a node wants to send along more than one
path?

Metrics

* Propagation delay

* Congestion

* Load balance

 Bandwidth (available, capacity, maximal, bbw)
* Price

* Reliability

* Loss rate

e Combinations of the above

In practice, operators set abstract “weights” (much like
our costs); how exactly is a bit of a black art

