
IP Routing: Intradomain
CS/ECE 438: Spring 2014

Instructor: Matthew Caesar

http://courses.engr.illinois.edu/cs438/

Starting on the internals of the network layer

Today

Application

Transport

Network

Link Layer

Physical

Many pieces to the network layer

• Addressing

• Routing

• Forwarding

• Policy and management

• IP protocol details

• …

Today + next 1-2 lectures: Routing

Context and Terminology

“End hosts”
“Clients”, “Users”

“End points”

“Interior Routers”

“Border Routers”

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“Route” or “Path”

to MIT

to UW

UCB

to NYU

Destination Next Hop

UCB 4

UW 5

MIT 2

NYU 3

Forwarding Table

111010010 MIT

switch#2

switch#5

switch#3

switch#4

Lecture#2: Routers Forward
Packets

111010010

M
I
T

Destination

Destination

Destination

Destination

Destination

Destination

Destination

Destination

MIT
Internet routing protocols are responsible for constructing

and updating the forwarding tables at routers

Context and Terminology

How can routers find paths?

• Hosts assigned topology-dependent addresses

• Routers advertise address blocks (“prefixes”)

• Routers compute “shortest” paths to prefixes

• Map IP addresses to names with DNS

Robert

twitter.com

23.2.0.0/24

81.2.0.0/24

10.1.0.0/16

4.0.0.0/8
Prefix Hops IF
Routing Table at B

D 1

4.0.0.0/8
Prefix Hops IF
Routing Table at C

D 1

4.0.0.0/8
Prefix Hops IF
Routing Table at A

B 2

A
B

C D
10.1.0.1

10.1.8.7

23.2.0.1

81.2.0.1 4.5.16.2

4.18.5.1

4.9.0.1

IP address

4.0.0.0/8

Prefix

Robert’s local

DNS server

Twitter’s authoritative

DNS server

.com authoritative

DNS sever

Routing Protocols

• Routing protocols implement the core function of a network

• Establish paths between nodes

• Part of the network’s “control plane”

• Network modeled as a graph

• Routers are graph vertices

• Links are edges

• Edges have an associated “cost”
• e.g., distance, loss

• Goal: compute a “good” path from source to destination

• “good” usually means the shortest (least cost) path

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

Internet Routing

• Internet Routing works at two levels

• Each AS runs an intra-domain routing protocol that
establishes routes within its domain

• (AS -- region of network under a single administrative entity)

• Link State, e.g., Open Shortest Path First (OSPF)

• Distance Vector, e.g., Routing Information Protocol (RIP)

• ASes participate in an inter-domain routing protocol that establishes
routes between domains

• Path Vector, e.g., Border Gateway Protocol (BGP)

Intra- vs. Inter-domain routing

• Run “Interior Gateway Protocol” (IGP) within ISPs
• OSPF, IS-IS, RIP

• Use “Border Gateway Protocol” (BGP) to connect ISPs
• To reduce costs, peer at exchange points (AMS-IX, MAE-EAST)

AT&T

Sprint

BGP

session

source

dest

Addressing (for now)

• Assume each host has a unique ID (address)

• No particular structure to those IDs

• Later in course will talk about real IP addressing

Outline

• Link State

• Distance Vector

• Routing: goals and metrics (if time)

Link-State Routing

Link state: update propagation

B D

C E

A F

[E,F]

[E,F]

[E,F]

[E,F]

[E,F] [E,F] [E,F] [E,F]

[E,F]

[E,F]

• How to prevent update loops: (seq numbers)

• How to bring up new node: (load TDB from neighbor)

[D,F]

[D,F]

[D,F]

[D,F]

[D,F] [D,F] [D,F] [D,F]

[D,F]

[D,F]

[C,A]

[C,A]

[C,A]

[C,A]

[C,A] [C,A] [C,A] [C,A]

[C,A]

[C,A]

[C,E]

[C,E]

[C,E]

[C,E]

[C,E] [C,E] [C,E] [C,E]

[C,E]

[C,E]

[C,B]

[C,B]

[C,B]

[C,B]

[C,B] [C,B] [C,B] [C,B]

[C,B]

[C,B]

[A,B]

[A,B]

[A,B]

[A,B]

[A,B] [A,B] [A,B] [A,B]

[A,B]

[A,B]

[B,D]

[B,D]

[B,D]

[B,D]

[B,D] [B,D] [B,D] [B,D]

[B,D]

[B,D]

[D,E]

[D,E]

[D,E]

[D,E]

[D,E] [D,E] [D,E] [D,E]

[D,E]

[D,E]

F tells all routers:

there is a link

between F and E

Each node maintains

a “topology database”

Link state: route computation

B D

C E

A F

• Each router computes shortest path tree, rooted at that router

• Determines next-hop to each dest, publish to forwarding table

• Operators can assign link costs to control path selection

Link-state: packet forwarding

B D

C E

A F IP packet

source destination

• In practice: shortest path precomputed, next-hops stored in forwarding table

• Downsides of link-state:

– Lesser control on policy (certain routes can’t be filtered), more cpu

– Increased visibility (bad for privacy, but good for diagnostics)

Link State Routing

• Each node maintains its local “link state” (LS)
• i.e., a list of its directly attached links and their costs

 (N1,N2)
(N1,N4)
(N1,N5)

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

Link State Routing

• Each node maintains its local “link state” (LS)

• Each node floods its local link state
• on receiving a new LS message, a router forwards the message

to all its neighbors other than the one it received the message from

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

Link State Routing

• Each node maintains its local “link state” (LS)

• Each node floods its local link state

• Hence, each node learns the entire network topology
• Can use Dijkstra’s to compute the shortest paths between nodes

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

Dijkstra’s Shortest Path Algorithm

• INPUT:
• Network topology (graph), with link costs

• OUTPUT:
• Least cost paths from one node to all other nodes

• Iterative: after k iterations, a node knows the
least cost path to its k closest neighbors

Example

A

E D

C B

F

2

2

1
3

1

1

2

5

3

5

Notation

• c(i,j): link cost from node i
to j; cost is infinite if not
direct neighbors; ≥ 0

• D(v): total cost of the
current least cost path from
source to destination v

• p(v): v’s predecessor along
path from source to v

• S: set of nodes whose least
cost path definitively known

A

E D

C B

F

2

2

1
3

1

1

2

5

3

5

Source

Dijkstra’s Algorithm

1 Initialization:

2 S = {A};

3 for all nodes v

4 if v adjacent to A

5 then D(v) = c(A,v);

6 else D(v) = ;

7

8 Loop

9 find w not in S such that D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent to w and not in S:

12 if D(w) + c(w,v) < D(v) then

 // w gives us a shorter path to v than we’ve found so far

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

¥

• c(i,j): link cost from node i to j

• D(v): current cost source  v

• p(v): v’s predecessor along path
from source to v

• S: set of nodes whose least cost
path definitively known

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

D(B),p(B)

2,A

 D(C),p(C)

5,A

D(D),p(D)

1,A

D(E),p(E)

D(F),p(F)

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

¥ ¥

1 Initialization:

2 S = {A};

3 for all nodes v

4 if v adjacent to A

5 then D(v) = c(A,v);

6 else D(v) = ;

…
¥

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

D(B),p(B)

2,A

D(C),p(C)

5,A

…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

D(D),p(D)

1,A

D(E),p(E)

D(F),p(F)

¥ ¥

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

D(B),p(B)

2,A

D(C),p(C)

5,A

D(D),p(D)

1,A

D(E),p(E)

D(F),p(F)

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

¥ ¥

…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

¥ ¥

…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

ADE

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

ADE

ADEB

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

ADE

ADEB

ADEBC

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’s Algorithm
Step

0

1

2

3

4

5

set S

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

To determine path A  C (say),

work backward from C via p(v)

• Running Dijkstra at node A gives the shortest
path from A to all destinations

• We then construct the forwarding table

The Forwarding Table

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
Destination Link

B (A,B)

C (A,D)

D (A,D)

E (A,D)

F (A,D)

Issue #1: Scalability

• How many messages needed to flood link state messages?

• O(N x E), where N is #nodes; E is #edges in graph

• Processing complexity for Dijkstra’s algorithm?

• O(N2), because we check all nodes w not in S at each iteration
and we have O(N) iterations

• more efficient implementations: O(N log(N))

• How many entries in the LS topology database? O(E)

• How many entries in the forwarding table? O(N)

• Inconsistent link-state database
• Some routers know about failure before others

• The shortest paths are no longer consistent

• Can cause transient forwarding loops

Issue#2: Transient Disruptions

A

E D

C B

F

A and D think that this

is the path to C

E thinks that this

is the path to C

A

E D

C B

F

Loop!

Hierarchical routing

A

B

C

H

G

D

E

I

J

M

P

O

A

B

C

H

G

D

E

I

J

M

P

O

In regular link-state,

routers maintain map

of entire topology

Hierarchical routing

A

B

C

H

G

D

E

I

J

M

P

O

A

H

G

I

J

M

P

O

Routers summarize paths

across areas as “virtual links”

Aggregate groups of

routers into “areas”

“Border routers” generate

“summary LSPs” to

reach other border routers

Distance Vector

Learn-By-Doing
Let’s try to collectively develop

 distance-vector routing from first principles

Experiment

• Your job: find the youngest person in the room

• Ground Rules

• You may not leave your seat, nor shout loudly
across the class

• You may talk with your immediate neighbors
 (hint: “exchange updates” with them)

• At the end of 5 minutes, I will pick a victim and ask:

• who is the youngest person in the room? (name, date)

• which one of your neighbors first told you this info.?

Go!

Distance-Vector

Example of Distributed
Computation

I am one hop away

I am one hop away

I am one hop away

I am two hops away

I am two hops away

I am two hops away

I am two hops away

I am three hops away

I am three hops away

Destination
I am three hops away

Distance vector:
update propagation

B D

C E

A F

(F,0)

(F,0)

(F,1)

(F,1)

(F,1) (F,1) (F,2) (F,2)

(F,2)

(F,2)

F tells D: I am F, and

I can reach F via 0 hops

D tells B: I am D, and

I can reach F via 1 hop

Dest NextHop Dist
F F 1

Dest NextHop Dist
A
B
C
D
E
F

D’s forwarding table

Dest NextHop Dist
F D 2

B’s forwarding table

source destination

 (A,2)

(A,2)

(A,1)

(A,1)

(A,2) (A,2) (A,1) (A,1)

(A,0)

(A,0)

(C,2)

(C,1)

(C,1)

(C,0)

(C,1) (C,2) (C,0) (C,2)

(C,1)

(C,0)

(B,2)

(B,1)

(B,0)

(B,1)

(B,1) (B,2) (B,0) (B,0)

(B,0)

(B,1)

Distance Vector Routing

• Each router knows the links to its neighbors
• Does not flood this information to the whole network

• Each router has provisional “shortest path” to
every other router

• E.g.: Router A: “I can get to router B with cost 11”

• Routers exchange this distance vector information
with their neighboring routers

• Vector because one entry per destination

• Routers look over the set of options offered by their
neighbors and select the best one

• Iterative process converges to set of shortest paths

Distance vector: convergence

B D

C E

A

F G H

source

destination

Withdraw(H)

Updates

received by A: 0 1 2 3 4 5 6 7

• How many updates would link-state require?

• Is link-state better or worse than distance vector?

• Which should be used for intra-domain routing?
What about inter-domain routing?

Bellman-Ford Algorithm

• INPUT:
• Link costs to each neighbor

(Not full topology)

• OUTPUT:
• Next hop to each destination and the corresponding cost

 (Not the complete path to the destination)

• My neighbors tell me how far they are from dest’n
• Compute: (cost to nbr) plus (nbr’s cost to destination)

• Pick minimum as my choice

• Advertise that cost to my neighbors

Bellman-Ford Overview

• Each router maintains a table
• Best known distance from X to Y,

 via Z as next hop = DZ(X,Y)

• Each local iteration caused by:
• Local link cost change

• Message from neighbor

• Notify neighbors only if least cost
path to any destination changes

• Neighbors then notify their neighbors
if necessary

wait for (change in local link

cost or msg from neighbor)

recompute distance table

if least cost path to any dest

has changed, notify

neighbors

Each node:

Bellman-Ford Overview

• Each router maintains a table
• Row for each possible destination

• Column for each directly-attached
neighbor to node

• Entry in row Y and column Z of node
X  best known distance from X to Y,
via Z as next hop = DZ(X,Y)

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

Neighbor

(next-hop)

Destinations DC(A, D)

Bellman-Ford Overview

• Each router maintains a table
• Row for each possible destination

• Column for each directly-attached
neighbor to node

• Entry in row Y and column Z of node
X  best known distance from X to Y,
via Z as next hop = DZ(X,Y)

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

Smallest distance in row Y = shortest
Distance of A to Y, D(A, Y)

Distance Vector Algorithm
(cont’d)

1 Initialization:

2 for all neighbors V do

3 if V adjacent to A

4 D(A, V) = c(A,V);

5 else

6 D(A, V) = ∞;

7 send D(A, Y) to all neighbors

 loop:

8 wait (until A sees a link cost change to neighbor V /* case 1 */

9 or until A receives update from neighbor V) /* case 2 */

10 if (c(A,V) changes by ±d) /*  case 1 */

11 for all destinations Y that go through V do

12 DV(A,Y) = DV(A,Y) ± d

13 else if (update D(V, Y) received from V) /*  case 2 */

 /* shortest path from V to some Y has changed */

14 DV(A,Y) = DV(A,V) + D(V, Y); /* may also change D(A,Y) */

15 if (there is a new minimum for destination Y)

16 send D(A, Y) to all neighbors

17 forever

• c(i,j): link cost from node i to j

• DZ(A,V): cost from A to V via Z

• D(A,V): cost of A’s best path to V

wait for (change in local link

cost or msg from neighbor)

recompute distance table

if least cost path to any dest

has changed, notify

neighbors

Each node: initialize, then

Distance Vector Algorithm
(cont’d)

1 Initialization:

2 for all neighbors V do

3 if V adjacent to A

4 D(A, V) = c(A,V);

5 else

6 D(A, V) = ∞;

7 send D(A, Y) to all neighbors

 loop:

8 wait (until A sees a link cost change to neighbor V /* case 1 */

9 or until A receives update from neighbor V) /* case 2 */

10 if (c(A,V) changes by ±d) /*  case 1 */

11 for all destinations Y that go through V do

12 DV(A,Y) = DV(A,Y) ± d

13 else if (update D(V, Y) received from V) /*  case 2 */

 /* shortest path from V to some Y has changed */

14 DV(A,Y) = DV(A,V) + D(V, Y); /* may also change D(A,Y) */

15 if (there is a new minimum for destination Y)

16 send D(A, Y) to all neighbors

17 forever

• c(i,j): link cost from node i to j

• DZ(A,V): cost from A to V via Z

• D(A,V): cost of A’s best path to V

Distance Vector Algorithm
(cont’d)

Example: Initialization

A C

1 2

7

B D 3

1

B C

B 2 ∞

C ∞ 7

D ∞ ∞

Node A

A C D

A 2 ∞ ∞

C ∞ 1 ∞

D ∞ ∞ 3

Node B

Node C

A B D

A 7 ∞ ∞

B ∞ 1 ∞

D ∞ ∞ 1

B C

A ∞ ∞

B 3 ∞

C ∞ 1

Node D
1 Initialization:

2 for all neighbors V do

3 if V adjacent to A

4 D(A, V) = c(A,V);

5 else

6 D(A, V) = ∞;

7 send D(A, Y) to all neighbors

Example: C sends update to A

A C

1 2

7

B D 3

1

B C

B 2 8

C ∞ 7

D ∞ 8

Node A

A C D

A 2 ∞ ∞

C ∞ 1 ∞

D ∞ ∞ 3

Node B

Node C

A B D

A 7 ∞ ∞

B ∞ 1 ∞

D ∞ ∞ 1

B C

A ∞ ∞

B 3 ∞

C ∞ 1

Node D
7 loop:

 …

13 else if (update D(A, Y) from C)

14 DC(A,Y) = DC(A,C) + D(C, Y);

15 if (new min. for destination Y)

16 send D(A, Y) to all neighbors

17 forever

DC(A, B) = DC(A,C) + D(C, B) = 7 + 1 = 8

DC(A, D) = DC(A,C) + D(C, D) = 7 + 1 = 8

Example: Now B sends update to A

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 5 8

Node A

A C D

A 2 ∞ ∞

C ∞ 1 ∞

D ∞ ∞ 3

Node B

Node C

A B D

A 7 ∞ ∞

B ∞ 1

D ∞ ∞ 1

Node D
7 loop:

 …

13 else if (update D(A, Y) from B)

14 DB(A,Y) = DB(A,B) + D(B, Y);

15 if (new min. for destination Y)

16 send D(A, Y) to all neighbors

17 forever

DB(A, C) = DB(A,B) + D(B, C) = 2 + 1 = 3

DB(A, D) = DB(A,B) + D(B, D) = 2 + 3 = 5

B C

A ∞ ∞

B 3 ∞

C ∞ 1

Make sure you know why this is 5, not 4!

Example: After 1st Full Exchange

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 5 8

Node A Node B

Node C

A B D

A 7 3 ∞

B 9 1 4

D ∞ 4 1

Node D

B C

A 5 8

B 3 2

C 4 1

End of 1st Iteration

All nodes knows the

best two-hop paths

A C D

A 2 8 ∞

C 9 1 4

D ∞ 2 3

Make sure you know why this is 3

Assume all send

messages at same

time

Example: Now A sends update to B

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 5 8

Node A Node B

Node C

A B D

A 7 3 ∞

B 9 1 4

D ∞ 4 1

Node D

B C

A 5 8

B 3 2

C 4 1

A C D

A 2 8 ∞

C 5 1 4

D 7 2 3

7 loop:

 …

13 else if (update D(B, Y) from A)

14 DA(B,Y) = DA(B,A) + D(A, Y);

15 if (new min. for destination Y)

16 send D(B, Y) to all neighbors

17 forever

DA(B, C) = DA(B,A) + D(A, C) = 2 + 3 = 5

DA(B, D) = DA(B,A) + D(A, D) = 2 + 5 = 7

Where does this 5 come from? Where does this 7 come from? What harm does this cause?

Example: End of 2nd Full Exchange

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

A C D

A 2 4 8

C 5 1 4

D 7 2 3

Node B

Node C

A B D

A 7 3 6

B 9 1 3

D 12 3 1

Node D

B C

A 5 4

B 3 2

C 4 1

End of 2nd Iteration

All nodes knows the

best three-hop paths

Assume all send

messages at same

time

Example: End of 3rd Full Exchange

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

A C D

A 2 4 7

C 5 1 4

D 6 2 3

Node B

Node C

A B D

A 7 3 5

B 9 1 3

D 11 3 1

Node D

B C

A 5 4

B 3 2

C 4 1

End of 3rd Iteration:

Algorithm

Converges!

What route does this 11 represent?

Assume all send

messages at same

time

Intuition

• Initial state: best one-hop paths

• One simultaneous round: best two-hop paths

• Two simultaneous rounds: best three-hop paths

• …

• Kth simultaneous round: best (k+1) hop paths

• Must eventually converge
• as soon as it reaches longest best path

• …..but how does it respond to changes in cost?

The key here is that the starting point is
not the initialization, but some other set of

entries. Convergence could be different!

Count-to-Infinity Problem

A B

C

1

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

72

Count-to-Infinity Problem

A B

C

1

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

73

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

74

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

75

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

A 2

76

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~
A 2

3

77

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~
A 3

3

78

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

A 3

3

4

79

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~

A 4

3

4

80

Count-to-Infinity Problem

A B

C

14 1

dest cost

B 1

C 2

dest cost

A 1

C 1

dest cost

A 2

B 1

~
A 4

3

4

5

81

How to deal with count-to infinity problem?

• Option 1: if router X advertises router Y a route, Y should
not advertise that route back to X

• Called split horizon

• Can be fooled by 3-node loops

• Option 2: if one of my routes is disappeared, I should
advertise that route to all my neighbors with infinite costs

• Called poison reverse

• Useful for networks where routes only disappear after a timeout (so
it’s not necessary if you’re using a protocol with triggered updates)

• Or, can alternatively have an explicit “withdrawal” message

Split Horizon

A B

C

14 1

des

t

cos

t

B 1

C 2

des

t

cos

t

A 1

C 1

des

t

cos

t

A 2

B 1

inf

83

Split Horizon

A B

C

14 1

des

t

cos

t

B 1

C 2

des

t

cos

t

A 1

C 1

des

t

cos

t

A 2

B 1

inf

14

84

A inf

Split Horizon

A B

C

14 1

des

t

cos

t

B 1

C 2

des

t

cos

t

A 1

C 1

des

t

cos

t

A 2

B 1

14

A 14

85

inf

Split Horizon

A B

C

14 1

des

t

cos

t

B 1

C 2

des

t

cos

t

A 1

C 1

des

t

cos

t

A 2

B 1

14

A 14
15

86

inf

DV: Link Cost Changes

A C

A 4 6

C 9 1

Node B

A B

A 50 5

B 54 1

Node C

Link cost changes here

A C

A 1 6

C 6 1

A B

A 50 5

B 54 1

A C

A 1 6

C 3 1

A B

A 50 5

B 51 1

A C

A 1 6

C 3 1

A B

A 50 2

B 51 1

B C

B 4 51

C 5 50

Node A B C

B 1 51

C 2 50

B C

B 1 51

C 2 50

B C

B 1 51

C 2 50

A C

A 1 3

C 3 1

A B

A 50 2

B 51 1

B C

B 1 51

C 2 50

Stable

state

A-B changed A sends

tables to B, C

B sends

tables to C

C sends

tables to B

A C

1 4

50

B
1

“good news travels fast”

DV: Count to Infinity Problem

A C

A 4 6

C 9 1

Node B

A B

A 50 5

B 54 1

Node C

Link cost changes here

A C

A 60 6

C 65 1

A B

A 50 5

B 54 1

A C

A 60 6

C 110 1

A B

A 50 5

B 101 1

A C

A 60 6

C 110 1

A B

A 50 7

B 101 1

B C

B 4 51

C 5 50

Node A B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

A C

A 60 8

C 110 1

A B

A 50 7

B 101 1

B C

B 60 51

C 61 50

Stable

state

A-B changed A sends

tables to B, C

B sends

tables to C

C sends

tables to B

A C

1 4

50

B
60

“bad news travels slowly”

(not yet converged)

DV: Poisoned Reverse

A C

A 4 ∞

C ∞ 1

Node B

A B

A 50 5

B 54 1

Node C

Link cost changes here

A C

A 60 ∞

C ∞ 1

A B

A 50 5

B 54 1

A C

A 60 ∞

C 110 1

A B

A 50 5

B ∞ 1

A C

A 60 ∞

C 110 1

A B

A 50 61

B ∞ 1

B C

B 4 51

C 5 50

Node A B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

A C

A 60 51

C 110 1

A B

A 50 61

B ∞ 1

B C

B 60 51

C 61 50

Stable

state

A-B changed A sends

tables to B, C

B sends

tables to C

C sends

tables to B

A C

1 4

50

B
60

• If B routes through C to get to A:

- B tells C its (B’s) distance to A is infinite (so C won’t route to A via B)

Note: this converges after C receives

another update from B

Will Poison-Reverse Completely Solve
the Count-to-Infinity Problem?

A C
1

B

D

1

1 1
1 1

2 2

∞

∞ ∞

100

100 100

3

∞

4

∞ 4

5

6

A few other inconvenient aspects

• What if we use a non-additive metric?
• E.g., maximal capacity

• What if routers don’t use the same metric?
• I want low delay, you want low loss rate?

• What happens if nodes lie?

Can You Use Any Metric?

• I said that we can pick any metric. Really?

• What about maximizing capacity?

Policy disputes

ISP A ISP B

ISP C ISP C prefers route

through B over

direct route

ISP B prefers route

through A over

direct route

ISP A prefers route

through C over

direct route

Advertise(D-p)

Prefix P

ISP D

Advertise(A-D-p)

Advertise(A-D-p)

Advertise(C-D-p)

Advertise(C-D-p)

Advertise(B-D-p)

Advertise(B-D-p)

(B-C-D-p)

(B-A-D-p)

(C-B-D-p)

(C-B-D-p)

(A-C-D-p)

(A-C-D-p)

(C-B-A-D-p)

(C-B-A-D-p)

(A-C-B-D-p)

(A-C-B-D-p)

(B-A-C-D-p)

(B-A-C-D-p)

(link price: $100 per 1Gbps)

(link price:

$5000 per

1Gbps)

(A-C-B-A-D-p)

Withdraw

Withdraw

Withdraw Withdraw

Withdraw

Withdraw

Policy disputes

ISP A ISP B

ISP C ISP C prefers route

through B over

direct route

ISP B prefers route

through A over

direct route

ISP A prefers route

through C over

direct route

Advertise(D-p)

Prefix P

ISP D

Advertise(A-D-p)

Advertise(A-D-p)

Advertise(C-D-p)

Advertise(C-D-p)

Advertise(B-D-p)

Advertise(B-D-p)

(B-C-D-p)

(B-A-D-p)

(C-B-D-p)

(C-B-D-p)

(A-C-D-p)

(A-C-D-p)

(C-B-A-D-p)

(C-B-A-D-p)

(A-C-B-D-p)

(A-C-B-D-p)

(B-A-C-D-p)

(B-A-C-D-p)

Withdraw

Withdraw

Withdraw Withdraw

Withdraw

Withdraw

Policy disputes

ISP A ISP B

ISP C ISP C prefers route

through B over

direct route

ISP B prefers route

through A over

direct route

ISP A prefers route

through C over

direct route

Advertise(D-p)

Prefix P

ISP D

Advertise(A-D-p)

Advertise(A-D-p)

Advertise(C-D-p)

Advertise(C-D-p)

Advertise(B-D-p)

Advertise(B-D-p)

(B-C-D-p)

(B-A-D-p)

(C-B-D-p)

(C-B-D-p)

(A-C-D-p)

(A-C-D-p)

(C-B-A-D-p)

(C-B-A-D-p)

(A-C-B-D-p)

(A-C-B-D-p)

(B-A-C-D-p)

(B-A-C-D-p)

Withdraw

Withdraw

Withdraw Withdraw

Withdraw

Withdraw

Policy disputes

ISP A ISP B

ISP C ISP C prefers route

through B over

direct route

ISP B prefers route

through A over

direct route

ISP A prefers route

through C over

direct route

Advertise(D-p)

Prefix P

ISP D

Advertise(A-D-p)

Advertise(A-D-p)

Advertise(C-D-p)

Advertise(C-D-p)

Advertise(B-D-p)

Advertise(B-D-p)

(B-C-D-p)

(B-A-D-p)

(C-B-D-p)

(C-B-D-p)

(A-C-D-p)

(A-C-D-p)

(C-B-A-D-p)

(C-B-A-D-p)

(A-C-B-D-p)

(A-C-B-D-p)

(B-A-C-D-p)

(B-A-C-D-p)

Withdraw

Withdraw

Withdraw Withdraw

Withdraw

Withdraw

What Happens Here?
All nodes want to maximize capacity A high capacity link gets reduced to low capacity

Problem:“cost” does not change around loop

Additive measures avoid this problem!

No agreement on metrics?

• If the nodes choose their paths according to
different criteria, then bad things might happen

• Example
• Node A is minimizing latency

• Node B is minimizing loss rate

• Node C is minimizing price

• Any of those goals are fine, if globally adopted
• Only a problem when nodes use different criteria

• Consider a routing algorithm where paths are
described by delay, cost, loss

What Happens Here?

Low price link

Low loss link

Low delay link Low loss link

Low delay link

Low price link

Cares about price,
then loss

Cares about delay,
then price

Cares about loss,
then delay

Must agree on loop-avoiding metric

• When all nodes minimize same metric

• And that metric increases around loops

• Then process is guaranteed to converge

What happens when routers lie?

• What if a router claims a 1-hop path to everywhere?

• All traffic from nearby routers gets sent there

• How can you tell if they are lying?

• Can this happen in real life?
• It has, several times….

Link State vs. Distance Vector

• Core idea
• LS: tell all nodes about your immediate neighbors

• DV: tell your immediate neighbors about (your least
cost distance to) all nodes

Link State vs. Distance Vector

• LS: each node learns the complete network map; each node
computes shortest paths independently and in parallel

• DV: no node has the complete picture; nodes cooperate to
compute shortest paths in a distributed manner

LS has higher messaging overhead

LS has higher processing complexity

LS is less vulnerable to looping

Link State vs. Distance Vector

Message complexity

• LS: O(NxE) messages;
• N is #nodes; E is #edges

• DV: O(#Iterations x E)
• where #Iterations is ideally

O(network diameter) but varies due
to routing loops or the
count-to-infinity problem

Processing complexity

• LS: O(N2)

• DV: O(#Iterations x N)

Robustness: what happens if router
malfunctions?

• LS:
• node can advertise incorrect link

cost

• each node computes only its own
table

• DV:
• node can advertise incorrect path

cost

• each node’s table used by others;
error propagates through network

Routing: Just the Beginning

• Link state and distance-vector are the deployed
routing paradigms for intra-domain routing

• Next lecture: inter-domain routing (BGP)
• new constraints: policy, privacy

• new solutions: path vector routing

• new pitfalls: truly ugly ones

What are desirable goals for a
routing solution?

• “Good” paths (least cost)

• Fast convergence after change/failures
• no/rare loops

• Scalable
• #messages

• table size

• processing complexity

• Secure

• Policy

• Rich metrics (more later)

Delivery models

• What if a node wants to send to more than one
destination?

• broadcast: send to all

• multicast: send to all members of a group

• anycast: send to any member of a group

• What if a node wants to send along more than one
path?

Metrics

• Propagation delay

• Congestion

• Load balance

• Bandwidth (available, capacity, maximal, bbw)

• Price

• Reliability

• Loss rate

• Combinations of the above

In practice, operators set abstract “weights” (much like
our costs); how exactly is a bit of a black art

