IP Routing: Intradomain

CS/ECE 438: Spring 2014

Instructor: Matthew Caesar

http://courses.engr.illinois.edu/cs438/

Today

Starting on the internals of the network layer

Many pieces to the network layer

- Addressing
- Routing
- Forwarding
- Policy and management
- IP protocol details
- ...

Today + next 1-2 lectures: Routing

"Autonomous System (AS)" or "Domain" Region of a network under a single administrative entity

Lecture#2: Routers Forward Packets

Context and Terminology

Internet routing protocols are responsible for constructing and updating the forwarding tables at routers

How can routers find paths?

- Routers advertise address blocks ("prefixes")
- Routers compute "shortest" paths to prefixes
- Map IP addresses to names with DNS

Routing Protocols

- Routing protocols implement the core function of a network
 - Establish paths between nodes
 - Part of the network's "control plane"
- Network modeled as a graph
 - Routers are graph vertices
 - Links are edges
 - Edges have an associated "cost"
 - e.g., distance, loss

- Goal: compute a "good" path from source to destination
 - "good" usually means the shortest (least cost) path

Internet Routing

- Internet Routing works at two levels
- Each AS runs an intra-domain routing protocol that establishes routes within its domain
 - (AS -- region of network under a single administrative entity)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Distance Vector, e.g., Routing Information Protocol (RIP)
- ASes participate in an inter-domain routing protocol that establishes routes between domains
 - Path Vector, e.g., Border Gateway Protocol (BGP)

Intra-vs. Inter-domain routing

- OSPF, IS-IS, RIP
- Use "Border Gateway Protocol" (BGP) to connect ISPs
 - To reduce costs, peer at exchange points (AMS-IX, MAE-EAST)

Complete Network Assets : XO Communications

Addressing (for now)

- Assume each host has a unique ID (address)
- No particular structure to those IDs
- Later in course will talk about real IP addressing

Outline

- Link State
- Distance Vector
- Routing: goals and metrics (if time)

Link-State Routing

- How to prevent update loops:
- How to bring up new node:

- Each router computes shortest path tree, rooted at that router
- Determines next-hop to each dest, publish to forwarding table
- Operators can assign link costs to control path selection

Link-state: packet forwarding

- In practice: shortest path precomputed, next-hops stored in forwarding table
- Downsides of link-state:
 - Lesser control on policy (certain routes can't be filtered), more cpu
 - Increased visibility (bad for privacy, but good for diagnostics)

Link State Routing

- Each node maintains its local "link state" (LS)
 - i.e., a list of its directly attached links and their costs

Link State Routing

- Each node maintains its local "link state" (LS)
- Each node floods its local link state
 - on receiving a new LS message, a router forwards the message to all its neighbors other than the one it received the message from

Link State Routing

- Each node maintains its local "link state" (LS)
- Each node floods its local link state
- Hence, each node learns the entire network topology
 - Can use Dijkstra's to compute the shortest paths between nodes

Dijkstra's Shortest Path Algorithm

- INPUT:
 - Network topology (graph), with link costs
- OUTPUT:
 - Least cost paths from one node to all other nodes
- Iterative: after k iterations, a node knows the least cost path to its k closest neighbors

Example

Notation

- C(i,j): link cost from node i to j; cost is infinite if not direct neighbors; ≥ 0
- D(v): total cost of the current least cost path from source to destination v
- p(v): v's predecessor along path from source to v
- S: set of nodes whose least cost path definitively known

Dijkstra's Algorithm

- 1 Initialization:
- 2 **S** = {**A**};
- 3 for all nodes v
- 4 if **v** adjacent to **A**
- 5 then D(v) = c(A,v);
- 6 else D(v) = \neq ; 7

- c(i,j): link cost from node i to j
- D(v): current cost source $\rightarrow v$
- p(v): v's predecessor along path from source to v
- S: set of nodes whose least cost path definitively known

→8 **Loop**

- 9 find \mathbf{w} not in \mathbf{S} such that $D(\mathbf{w})$ is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:
- 12 if D(w) + c(w,v) < D(v) then

// w gives us a shorter path to v than we've found so far

- 13 D(v) = D(w) + c(w,v); p(v) = w;
- 14 until all nodes in S;

else D(v) = 4;

. . .

Step	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	¥	¥
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3						
4						
5						

• • •	
8	Loop
9	find w not in S s.t. D(w) is a minimum;
10	add w to S ;
11	update D(v) for all v adjacent
	to w and not in S :
12	If $D(w) + c(w,v) < D(v)$ then
13	D(v) = D(w) + c(w,v); p(v) = w;
 -14	until all nodes in S;

Step	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	¥	¥
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3	ADEB					
4						
5						

Loop
find w not in S s.t. D(w) is a minimum;
) add w to S ;
update D(v) for all v adjacent
to w and not in S :
2 If $D(w) + c(w,v) < D(v)$ then
D(v) = D(w) + c(w,v); p(v) = w;
until all nodes in S;

Step	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	¥	¥
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3	ADEB					
4	ADEBC					
5						

→ 8	Loop
9	find w not in S s.t. D(w) is a minimum;
10	add w to S;
11	update D(v) for all v adjacent
	to w and not in S :
12	If $D(w) + c(w,v) < D(v)$ then
13	D(v) = D(w) + c(w,v); p(v) = w;
<u> 14 </u>	until all nodes in S;

Step	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	¥	¥
1	AD		4,D		2,D	
2	ADE		3,E			4,E
3	ADEB					
4	ADEBC					
5	ADEBCF					

8 **Loop**

. . .

- 9 find **w** not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:

12 If
$$D(w) + c(w,v) < D(v)$$
 then

3
$$D(v) = D(w) + c(w,v); p(v) = w;$$

14 until all nodes in S;

To determine path $A \rightarrow C$ (say), work backward from C via p(v)

The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the *forwarding table*

Destination	Link		
В	(A,B)		
С	(A,D)		
D	(A,D)		
E	(A,D)		
F	(A,D)		

Issue #1: Scalability

- How many messages needed to flood link state messages?
 - O(N x E), where N is #nodes; E is #edges in graph
- Processing complexity for Dijkstra's algorithm?
 - O(N²), because we check all nodes w not in S at each iteration and we have O(N) iterations
 - more efficient implementations: O(N log(N))
- How many entries in the LS topology database? O(E)
- How many entries in the forwarding table? O(N)

Issue#2: Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops

In regular link-state, routers maintain map of entire topology

Distance Vector

Learn-By-Doing

Let's try to collectively develop distance-vector routing from first principles

Experiment

- Your job: find the youngest person in the room
- Ground Rules
 - You may not leave your seat, nor shout loudly across the class
 - You may talk with your immediate neighbors (hint: "exchange updates" with them)
- At the end of **5** minutes, I will pick a victim and ask:
 - who is the youngest person in the room? (name, date)
 - which one of your neighbors first told you this info.?

Go!

Distance-Vector

Example of Distributed

Distance Vector Routing

- Each router knows the links to its neighbors
 - Does not flood this information to the whole network
- Each router has provisional "shortest path" to every other router
 - E.g.: Router A: "I can get to router B with cost 11"
- Routers exchange this distance vector information with their neighboring routers
 - Vector because one entry per destination
- Routers look over the set of options offered by their neighbors and select the best one
- Iterative process converges to set of shortest paths

Distance vector: convergence

- How many updates would link-state require?
- Is link-state better or worse than distance vector?
- Which should be used for intra-domain routing? What about inter-domain routing?

Bellman-Ford Algorithm

- INPUT:
 - Link costs to each neighbor (Not full topology)
- OUTPUT:
 - Next hop to each destination and the corresponding cost (Not the complete path to the destination)
- My neighbors tell me how far they are from dest'n
 - Compute: (cost to nbr) plus (nbr's cost to destination)
 - Pick minimum as my choice
 - Advertise that cost to my neighbors

Bellman-Ford Overview

- Each router maintains a table
 - Best known distance from X to Y,
 via Z as next hop = D_Z(X,Y)
- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor
- Notify neighbors only if least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor) *recompute* distance table if least cost path to any dest has changed, *notify* neighbors

Bellman-Ford Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ⇒ best known distance from X to Y, via Z as next hop = D₇(X,Y)

Bellman-Ford Overview

- Each router maintains a table
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ⇒ best known distance from X to Y, via Z as next hop = D_Z(X,Y)

Distance Vector Algorithm (cont'd)

1 Initialization:

 c(i,j): link cost from node i to j 2 for all neighbors V do 3 if V adjacent to A D₇(A,V): cost from A to V via Z $\mathsf{D}(A, V) = \mathsf{c}(A, V);$ 4 D(A,V): cost of A's best path to V 5 else 6 $D(A, V) = \infty;$ 7 **send** D(A, Y) to all neighbors loop: 8 wait (until A sees a link cost change to neighbor V /* case 1 */ or until A receives update from neighbor V) /* case 2 */ 9 if (c(A, V) changes by $\pm d$) /* \leftarrow case 1 */ 10 11 for all destinations Y that go through V do 12 $D_{V}(A, Y) = D_{V}(A, Y) \pm d$ else if (update D(V, Y) received from V) /* \leftarrow case 2 */ 13 /* shortest path from V to some Y has changed */ $D_V(A,Y) = D_V(A,V) + D(V,Y);$ /* **may** also change D(A,Y) */ 14 if (there is a new minimum for destination Y) 15 16 send D(A, Y) to all neighbors forever 17

Distance Vector Algorithm (cont'd)

Each node: initialize, then

Wait for (change in local link cost or msg from neighbor)

recompute distance table

if least cost path to any dest has changed, *notify* neighbors

Distance Vector Algorithm (cont'd)

1 Initialization:

 c(i,j): link cost from node i to j 2 for all neighbors V do 3 if V adjacent to A D_Z(A,V): cost from A to V via Z $\mathsf{D}(A, V) = \mathsf{c}(A, V);$ 4 D(A,V): cost of A's best path to V 5 else 6 $D(A, V) = \infty;$ 7 **send** D(A, Y) to all neighbors loop: wait (until A sees a link cost change to neighbor V /* case 1 */ 8 or until A receives update from neighbor V) /* case 2 */ 9 if (c(A, V) changes by $\pm d$) /* \leftarrow case 1 */ 10 11 for all destinations Y that go through V do 12 $D_{V}(A, Y) = D_{V}(A, Y) \pm d$ else if (update D(V, Y) received from V) /* \leftarrow case 2 */ 13 /* shortest path from V to some Y has changed */ $D_V(A,Y) = D_V(A,V) + D(V,Y);$ /* **may** also change D(A,Y) */ 14 if (there is a new minimum for destination Y) 15 16 send D(A, Y) to all neighbors forever 17

Example: Initialization

	В	С
В	2	8
С	8	7
D	∞	∞

Noda A

Node B

	A	С	D
А	2	8	8
С	∞	1	8
D	∞	8	3

1 Initialization:

- 2 for all neighbors V do
- 3 **if** *V* adjacent to *A*

$$\mathsf{D}(A, V) = \mathsf{c}(A,$$

4

5

6

7

 $D(A, V) = \infty;$

send D(A, Y) to all neighbors

V);

Node D

	В	С
А	8	8
В	3	8
С	8	1

Example: C sends update to A

Example: Now B sends update to A

Example: After 1st Full Exchange

Example: Now

 $\mathsf{D}_{\mathsf{A}}(\mathsf{B},\,\mathsf{C})=\mathsf{D}_{\mathsf{A}}(\mathsf{B},\mathsf{A})+\mathsf{D}(\mathsf{A},\,\mathsf{C})\ =2+3=5$

$$D_A(B, D) = D_A(B,A) + D(A, D) = 2 + 5 = 7$$

7 *loop:*

14
$$D_A(B, Y) = D_A(B, A) + D(A, Y);$$

- 15 if (new min. for destination Y)
- 16 send D(B, Y) to all neighbors

		А	В	D
)	А	7	3	8
	В	9	1	4
•	D	8	4	1

Node C

Node	D
------	---

	В	С
А	5	8
В	3	2
С	4	1

Example: End of 2nd Full Exchange

Example: End of 3rd Full Exchange

Intuition

- Initial state: best one-hop paths
- One simultaneous round: best two-hop paths
- Two simultaneous rounds: best three-bon paths The key here is that the starting point is not the initialization, but some other set of entries. Convergence could be different!
- Must eventually converge
 - as soon as it reaches longest bes
-but how does it respond to changes in cost?

How to deal with count-to infinity problem?

- Option 1: if router X advertises router Y a route, Y should not advertise that route back to X
 - Called split horizon
 - Can be fooled by 3-node loops
- Option 2: if one of my routes is disappeared, I should advertise that route to all my neighbors with infinite costs
 - Called poison reverse
 - Useful for networks where routes only disappear after a timeout (so it's not necessary if you're using a protocol with triggered updates)
 - Or, can alternatively have an explicit "withdrawal" message

DV: Link Cost Changes

Link cost changes here

"good news travels fast"

DV: Count to Infinity Problem

Link cost changes here

"bad news travels slowly" (not yet converged)

60

-A

DV: Poisoned Reverse

- If B routes through C to get to A:
 - B tells C its (B's) distance to A is infinite (so C won't route to A via B)

Link cost changes here

Note: this converges after C receives another update from B

Will Poison-Reverse Completely Solve the Count-to-Infinity Problem?

A few other inconvenient aspects

- What if we use a non-additive metric?
 - E.g., maximal capacity
- What if routers don't use the same metric?
 - I want low delay, you want low loss rate?
- What happens if nodes lie?

Can You Use Any Metric?

- I said that we can pick any metric. Really?
- What about maximizing capacity?

What Happens Here?

Problem: "cost" does not change around loop

No agreement on metrics?

- If the nodes choose their paths according to different criteria, then bad things might happen
- Example
 - Node A is minimizing latency
 - Node B is minimizing loss rate
 - Node C is minimizing price
- Any of those goals are fine, if globally adopted
 - Only a problem when nodes use different criteria
- Consider a routing algorithm where paths are described by delay, cost, loss

What Happens Here?

Must agree on loop-avoiding metric

- When all nodes minimize same metric
- And that metric increases around loops
- Then process is guaranteed to converge

What happens when routers lie?

- What if a router claims a 1-hop path to everywhere?
- All traffic from nearby routers gets sent there
- How can you tell if they are lying?
- Can this happen in real life?
 - It has, several times....

Link State vs. Distance Vector

- Core idea
 - LS: tell all nodes about your immediate neighbors
 - DV: tell your immediate neighbors about (your least cost distance to) all nodes

Link State vs. Distance Vector

- LS: each node learns the complete network map; each node computes shortest paths independently and in parallel
- DV: no node has the complete picture; nodes cooperate to compute shortest paths in a distributed manner

→LS has higher messaging overhead
→LS has higher processing complexity
→LS is less vulnerable to looping

Link State vs. Distance Vector

Message complexity

- LS: O(NxE) messages;
 - N is #nodes; E is #edges
- DV: O(#Iterations x E)
 - where #Iterations is ideally O(network diameter) but varies due to routing loops or the count-to-infinity problem

Processing complexity

- LS: O(N²)
- DV: O(#Iterations x N)

Robustness: what happens if router malfunctions?

- LS:
 - node can advertise incorrect *link* cost
 - each node computes only its own table
- DV:
 - node can advertise incorrect *path* cost
 - each node's table used by others; error propagates through network

Routing: Just the Beginning

- Link state and distance-vector are the deployed routing paradigms for intra-domain routing
- Next lecture: inter-domain routing (BGP)
 - new constraints: policy, privacy
 - new solutions: path vector routing
 - new pitfalls: truly ugly ones

What are desirable goals for a routing solution?

- "Good" paths (least cost)
- Fast convergence after change/failures
 - no/rare loops
- Scalable
 - #messages
 - table size
 - processing complexity
- Secure
- Policy
- Rich metrics (more later)

Delivery models

- What if a node wants to send to more than one destination?
 - broadcast: send to all
 - multicast: send to all members of a group
 - anycast: send to any member of a group
- What if a node wants to send along more than one path?

Metrics

- Propagation delay
- Congestion
- Load balance
- Bandwidth (available, capacity, maximal, bbw)
- Price
- Reliability
- Loss rate
- Combinations of the above

In practice, operators set abstract "weights" (much like our costs); how exactly is a bit of a black art