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Outline for Today

• Today: The Physical Layer

• How to encode data over a link

• How to detect and correct errors



A Brief Overview of 
Physical Media
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Links - Copper
• Copper-based Media

• Category 3 Twisted Pair up to 100 Mbps

• Category 5 Twisted Pair 10-100Mbps 100m

• ThinNet Coaxial Cable 10-100Mbps 200m

• ThickNet Coaxial Cable 10-100Mbps 500m

twisted pair

copper core
insulation
braided outer conductor
outer insulation

coaxial
cable
(coax)

more twists, less crosstalk, better 
signal over longer distances

More expensive than 
twisted pair

High bandwidth and 
excellent noise 

immunity
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Links - Optical
• Optical Media

• Multimode Fiber 100Mbps 2km

• Single Mode Fiber 100-2400Mbps 40km

glass core (the fiber)
glass cladding
plastic jacket

optical
fiber
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Links - Optical

O(100 microns) thick

core of multimode fiber (same frequency; colors for clarity)

~1 wavelength thick = 
~1 micron

core of single mode fiber

• Single mode fiber

• Expensive to drive (Lasers)

• Lower attenuation (longer 
distances) ≤ 0.5 dB/km 

• Lower dispersion (higher data 
rates)

� Multimode fiber
� Cheap to drive (LED’s)
� Higher attenuation
� Easier to terminate



Encoding



How can two hosts communicate?

• Encode data as variations in electrical/light/EM

• Phase, frequency, and signal strength modulation, and 
combinations thereof

• Simple scheme: voltage encoding

• Encode 1’s and 0’s as variations in voltage

• How to do that?

0.7 Volts

-0.7 Volts
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Non-Return to Zero (NRZ)
• Signal to Data

• High � 1

• Low � 0

• Comments
• Transitions maintain clock synchronization

• Long strings of 0s confused with no signal

• Long strings of 1s causes baseline wander

• Both inhibit clock recovery

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ
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Non-Return to Zero Inverted 
(NRZI)
• Signal to Data

• Transition � 1

• Maintain� 0

• Comments

• Solves series of 1s, but not 0s

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

NRZI
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Manchester Encoding
• Signal to Data

• XOR NRZ data with clock

• High to low transition � 1

• Low to high transition � 0

• Comments

• Used by old 10Mbps Ethernet

• Solves clock recovery problem

• Only 50% efficient ( ½ bit per transition)

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

Clock

Manchester



4B/5B

• Signal to Data

• Encode every 4 consecutive bits as a 5 bit symbol

• Symbols

• At most 1 leading 0

• At most 2 trailing 0s

• Never more than 3 consecutive 0s

• Transmit with NRZI

• Comments

• 16 of 32 possible codes used for data

• At least two transitions for each code

• 80% efficient

• Used by old 100Mbps Ethernet

• Variation (64B/66B) used by modern 10Gbps Ethernet
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4B/5B – Data Symbols

• 0000 ⇒ 11110

• 0001 ⇒ 01001

• 0010 ⇒ 10100

• 0011 ⇒ 10101

• 0100 ⇒ 01010

• 0101 ⇒ 01011

• 0110 ⇒ 01110

• 0111 ⇒ 01111

• 1000 ⇒ 10010 

• 1001 ⇒ 10011

• 1010 ⇒ 10110

• 1011 ⇒ 10111

• 1100 ⇒ 11010

• 1101 ⇒ 11011

• 1110 ⇒ 11100

• 1111 ⇒ 11101

At most 1 leading 0 At most 2 trailing 0s
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4B/5B – Control Symbols

• 11111 ⇒ idle

• 11000 ⇒ start of stream 1

• 10001 ⇒ start of stream 2

• 01101 ⇒ end of stream 1

• 00111 ⇒ end of stream 2

• 00100 ⇒ transmit error

• Other  ⇒ invalid
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Binary Voltage Encodings

• Problem with binary voltage (square wave) encodings

• Wide frequency range required, implying

• Significant dispersion

• Uneven attenuation

• Prefer to use narrow frequency band (carrier frequency)

• Types of modulation

• Amplitude (AM)

• Frequency (FM)

• Phase/phase shift 

• Combinations of these

• Used in wireless Ethernet, optical communications



Example: 
AM/FM for continuous signal

• Original signal

• Amplitude 
modulation

• Frequency 
modulation
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Amplitude Modulation

1 0idle
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Frequency Modulation

1 0idle
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Phase Modulation

1 0idle
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Phase Modulation

180º difference in phase

collapse for 180º shift

phase shift
in carrier
frequency
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Phase Modulation Algorithm
• Send carrier frequency for 

one period

• Perform phase shift

• Shift value encodes symbol

• Value in range [0, 360º)

• Multiple values for multiple 
symbols

• Represent as circle

0º

45º

90º

315º

270º

135º

225º

180º

8-symbol
example
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You can combine modulation 
schemes

45º

15º

Example: QAM 
(Quadrature Amplitude 
Modulation)

For a given symbol: 
• Perform phase shift 

and change to new 
amplitude

2-dimensional 
representation:
• Angle is phase shift
• Radial distance is 

new amplitude



QAM: Example transmission



Real constellation with noise



Sampling

• Suppose you have the following 1Hz signal being 
received

• How fast to sample, to capture the signal?



Sampling

• Sampling a 1 Hz signal at 2 Hz is enough

• Captures every peak and trough



Sampling

• Sampling a 1 Hz signal at 3 Hz is also enough

• In fact, more than enough samples to capture variation in signal



Sampling

• Sampling a 1 Hz signal at 1.5 Hz is not enough

• Why?



Sampling

• Sampling a 1 Hz signal at 1.5 Hz is not enough

• Not enough samples, can’t distinguish between multiple possible 
signals



In general

• Sampling a 1 Hz signal at 2 Hz is both necessary 
and sufficient

• In general: sampling twice rate of signal is enough



What about more complex signals?

• Fourier’s theorem: any continuous signal can be 
decomposed into a sum of sines and cosines at 
different frequencies

• Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
• How fast to sample?



What about more complex signals?

• Fourier’s theorem: any continuous signal can be 
decomposed into a sum of sines and cosines at 
different frequencies

• Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
• How fast to sample?

• Answer: Twice rate of fastest signal (bandwidth): 6 Hz



Nyquist–Shannon sampling 
theorem

• If a function x(t) contains no frequencies higher 
than B hertz, it is completely determined by giving 
its ordinates at a series of points spaced 1/(2B) 
seconds apart

• In other words:

• If the bandwidth of your channel is B

• Your sampling rate should be 2B

• Higher sampling rates are pointless

• Lower sampling rates lead to aliasing/distortion/error



Related Question: How much data 
can you pack into a channel?

• If I sample at a rate of 2B, I can precisely determine 
the signal of bandwidth B

• If I have data coming in at rate 2B, I can encode it in 
a channel of rate B

• Similar argument to above, but in reverse

• Instead of “reading” a sample, we “write” a sample

• More generally:

• Transmitting N distinct signals over a noiseless channel 
with bandwidth B, we can achieve at most a data rate of

• 2B log2 N



Noiseless Capacity

• Nyquist’s theorem: 2B log2 N

• Example 1:  sampling rate of a phone line

• B   =  4000 Hz

• 2B =  8000 samples/sec.

• sample every 125 microseconds

• Example 2:  noiseless capacity

• B   =   1200 Hz  

• N   =  each pulse encodes 16 levels

• C   =  2B log2 (N) = D x log2 (N)

=  2400 x 4  =  9600 bps.
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What can Limit Maximum Data 
Rate?

• Noise

• E.g., thermal noise (in-band noise) can blur symbols

• Transitions between symbols 

• Introduce high-frequency components into the transmitted signal

• Such components cannot be recovered (by Nyquist’s Theorem), 
and some information is lost

• Examples

• Phase modulation

• Single frequency (with different phases) for each symbol

• Transitions can require very high frequencies
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How does Noise affect these 
Bounds?

• In-band (thermal, not high-frequency) noise 

• Blurs the symbols, reducing the number of symbols that can be 
reliably distinguished.

• Claude Shannon (1948)

• Extended Nyquist’s work to channels with additive white 
Gaussian noise (a good model for thermal noise)

channel capacity C = B log2 (1 + S/N)

B is the channel bandwidth

S/N is the ratio between 

the average signal power and 

the average in-band noise power



Noisy Capacity

• Telephone channel 

• 3400 Hz at 40 dB SNR

• C = B log2 (1+S/N) bits/s

• SNR = 40 dB

40 =10 log10 (S/N) 

S/N =10,000

• C = 3400 log2 (10001)  = 44.8 kbps
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Summary of Encoding
• Problems

• Attenuation, dispersion, noise

• Digital transmission allows periodic regeneration

• Variety of binary voltage encodings

• High frequency components limit to short range

• More voltage levels provide higher data rate

• Carrier frequency and modulation

• Amplitude, frequency, phase, and combinations

• Quadrature amplitude modulation: amplitude and phase, many signals

• Nyquist (noiseless) and Shannon (noisy) limits on data rates
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Error 
Detection/Correction
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Error Detection

• Encoding translates symbols to signals

• Framing demarcates units of transfer

• Error detection validates correctness of each 
frame

digital data
(a string of 
symbols)

digital data
(a string of 
symbols)

modulator demodulator

a string
of signals



Error Detection

• Key idea: Add redundant information that can be used to 
determine if errors have been introduced, and potentially 
fix them

• Errors checked at many levels

• Demodulation of signals into symbols (analog)

• Bit error detection/correction (digital)—our main focus

• Within network adapter (CRC check)

• Within IP layer (IP checksum)

• Possibly within application as well

44



Error Detection

• Analog Errors

• Example of signal distortion

• Hamming distance

• Parity and voting

• Hamming codes

• Error bits or error bursts?

• Digital error detection

• Two-dimensional parity 

• Checksums

• Cyclic Redundancy Check (CRC)
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Analog Errors

• Consider RS-232 encoding of character ‘Q’

• ASCII Q = 1100001

• Assume idle wire (-15V) before and after signal
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RS-232 Encoding of 'Q'

-20

-10

0

10

20

Vo
lta

g
e

1 1 1 stop0 0 0 0start
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Limited-Frequency Signal Response
(bandwidth = baud rate)

-20

-10

0

10

20

Vo
lta

ge

1 1 1 stop0 0 0 0start
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Limited-Frequency Signal Response
(bandwidth = baud rate/2)

1 1 1 stop0 0 0 0start
-30

-20

-10

0

10

20

V
ol

ta
ge
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Symbols

+15

-15

0

vo
lta

ge

1

0

? (erasure)

possible binary voltage encoding 
symbol neighborhoods and erasure 

region

possible QAM symbol
neighborhoods in green; all

other space results in erasure



Symbols

• Inputs to digital level

• valid symbols

• erasures

• Hamming distance

• Definition 

• 1-bit error-detection with parity

• 1-bit error-correction with voting

• 2-bit erasure-correction with voting

• Hamming codes (1-bit error correction)
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Hamming Distance

• The Hamming distance between two code words 
is the minimum number of bit flips to move from 
one to the other

• Example:

• 00101 and 00010 

• Hamming distance of 3

CS/ECE 438 52



Detecting bit flips with Parity

• 1-bit error detection with parity

• Add an extra bit to a code to ensure an even (odd) 
number of 1s

• Every code word has an even (odd)  number of 1s

CS/ECE 438 53

01 11

1000

Valid 
code 

words

110

000

011

101

010

100

111

001

Parity 
Encoding:

White – invalid 
(error)



Correcting bit flips with Voting

• 1-bit error correction with voting

• Every codeword is transmitted n times
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000

111
Voting:

White – correct to 1

Blue - correct to 0

110
011

101

010

100
001

0 1
Valid 
code 

words



2-bit Erasure Correction with 
Voting

• Every code word is copied 3 times

55

2-erasure planes in green
remaining bit not 
ambiguous

cannot correct 1-error and 
1-erasure

0??

?0?
001 101

011 111

010 110

100000

??0



Minimum Hamming Distance

• The minimum Hamming distance of a code is the 
minimum distance over all pairs of codewords

• Minimum Hamming Distance for parity

• 2

• Minimum Hamming Distance for voting

• 3
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Coverage

• N-bit error detection

• No code word changed into another code word

• Requires Hamming distance of N+1

• N-bit error correction

• N-bit neighborhood: all codewords within N bit flips

• No overlap between N-bit neighborhoods

• Requires hamming distance of 2N+1
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Hamming Codes

• Linear error-correcting code, Named after Richard 
Hamming

• Simple, commonly used in RAM (e.g., ECC-RAM)

• Can detect up to 2 simultaneous bit errors

• Can correct single-bit errors

• Construction

• number bits from 1 upward

• powers of 2 are check bits

• all others are data bits

• Check bit j is XOR of all bits k such that
(j AND k) = j

• Example: 4 bits of data, 3 check bits
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C

1

C

2

D

3

C

4

D

5

D

6

D

7

C

8

…
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Hamming Codes

C1 = D3 XOR D5 XOR D7
C2 = D3 XOR D6 XOR D7
C4 = D5 XOR D6 XOR D7

C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7



CS/ECE 438 60

Hamming Codes

D3

D5

C1

D6

C2

C4

D7



Error Bits or Bursts?

• Common model of errors

• Probability of error per bit

• Error in each bit independent of others

• Value of incorrect bit independent of others

• Burst model

• Probability of back-to-back bit errors

• Error probability dependent on adjacent bits

• Value of errors may have structure

• Why assume bursts?

• Appropriate for some media (e.g., radio)

• Faster signaling rate enhances such phenomena
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Digital Error Detection Techniques

• Two-dimensional parity

• Detects up to 3-bit errors

• Good for burst errors

• IP checksum

• Simple addition

• Simple in software

• Used as backup to CRC

• Cyclic Redundancy Check (CRC)

• Powerful mathematics

• Tricky in software, simple in hardware

• Used in network adapter
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Two-Dimensional Parity

� Use 1-dimensional parity
� Add one bit to a 7-bit code to 

ensure an even/odd number of 1s

� Add 2nd dimension
� Add an extra byte to frame

� Bits are set to ensure even/odd 
number of 1s in that position 
across all bytes in frame

� Comments
� Can detect and correct any 1-bit 

error
� Can detect any 1-, 2- and 3-bit, 

and most 4-bit errors

1

0

1

1

1

0

Parity 
Bits

1111011 0Parity 
Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data
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Two-Dimensional Parity

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0
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What happens if…

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
Can also correct it!
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What happens if…

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the two-bit error,
But can’t tell which bits are flipped, 
so can’t correct

0

No longer a problem here
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What happens if…

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

Suppose these four parity bits don’t match
Which bits could be in error?

Could be the blue pair, 
OR, could be the orange
pair. So, can’t correct.
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What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
You can correct in this case

0 0
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What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
But you can’t correct (eg if orange bits got
flipped instead of the blue ones)

0 0
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What about 4-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can you think of a 4-bit error
this scheme can’t detect?

1

1

0

Are there any 4-bit errors
this scheme *can* detect?



Internet Checksum

• Idea: Add up all the words, transmit the sum

• Internet Checksum

• Use 1’s complement addition on 16bit codewords

• Example

• Codewords: -5 -3

• 1’s complement binary: 1010 1100

• 1’s complement sum 1000

• Comments

• Small number of redundant bits

• Easy to implement

• Not very robust 
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IP Checksum
u_short cksum(u_short *buf, int count) {

register u_long sum = 0;

while (count--) {

sum += *buf++;

if (sum & 0xFFFF0000) {

/* carry occurred, so wrap around */

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}



Cyclic Redundancy Check (CRC)

• Non-secure hash function based on cyclic codes

• Idea

• Add k bits of redundant data to an n-bit message

• N-bit message is represented as a n-degree polynomial with each 
bit in the message being the corresponding coefficient in the 
polynomial

• Example

• Message = 10011010

• Polynomial 

= 1 ∗x7 + 0 ∗x6 + 0 ∗x5 + 1 ∗x4 + 1 ∗x3 + 0 ∗x2 + 1 ∗x + 0

= x7 + x4 + x3 + x
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Overly simplified CRC-like protocol, 
using regular numbers
• Both endpoints agree in advance on a divisor value C=3

• Sender wants to send a message M=10

• Sender computes a value P=M+X=10+2=12 that is evenly 
divisible by C

• Sender sends P and M to receiver

• Receiver checks to make sure P=12 is evenly divisible by C=3
• If it is not, then there’s error(s)

• If it is, then there are probably no errors

• CRC is vaguely like this, but uses polynomials instead of 
numbers

• CRC can reconstruct M from P and C, so just needs to send P
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CRC Approach

• Given

• Message M(x) 10011010

• Represented as x7 + x4 + x3 + x

1. Select a divisor polynomial C(x) with degree k

• Example with k = 3: 

• C(x) = x3 + x2 + 1

• Represented as 1101

2. Transmit a polynomial P(x) that is evenly divisible by C(x)

• P(x) = M(x) + k bits
How can we determine 

these k bits?



Properties of Polynomial 
Arithmetic

• Divisor

• Any polynomial B(x) can be divided by a polynomial C(x) if B(x) is 
of the same or higher degree than C(x)

• Remainder

• The remainder obtained when B(x) is divided by C(x) is obtained 
by subtracting C(x) from B(x)

• Subtraction

• To subtract C(x) from B(x), simply perform an XOR on each pair of 
matching coefficients

• For example: (x3+1)/(x3+x2+1) = x2
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CRC - Sender
• Given

• M(x) = 10011010 = x7 + x4 + x3 + x

• C(x) = 1101 = x3 + x2 + 1

• Steps

• T(x) = M(x) * xk (add zeros to increase degree of  M(x) by k)

• Find remainder, R(x), from T(x)/C(x)

• P(x) = T(x) – R(x) ⇒ M(x) followed by R(x)

• Example

• T(x) = 10011010000

• R(x) = 101

• P(x) = 10011010101



CRC - Receiver

• Receive Polynomial P(x) + E(x)

• E(x) represents errors

• (if no errors then E(x) = 0)

• Divide (P(x) + E(x)) by C(x)

• If result = 0, either

• No errors (E(x) = 0, and P(x) is evenly divisible by C(x))

• (P(x) + E(x)) is exactly divisible by C(x), error will not be 
detected
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CRC – Example Encoding

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

1101

k + 1 bit check 
sequence c, 

equivalent to a 
degree-k 

polynomial

101

1101Remainder

m mod c

10011010000 Message plus k 
zeros

Result:

Transmit message 
followed by 
remainder:

10011010101

C(x) = x3 ++++ x2 ++++ 1 = 1101 Generator
M(x) = x7 ++++ x4 ++++ x3 ++++ x = 10011010 Message
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CRC – Example Decoding – No 
Errors

1001

1101

1000

1101

1011

1101

1100

1101

1101

1101

1101

k + 1 bit check 
sequence c, 

equivalent to a 
degree-k 

polynomial

0

1101Remainder

m mod c

10011010101 Received 
message, no 

errors

Result:

CRC test is passed

C(x) = x3 ++++ x2 ++++ 1 = 1101 Generator
P(x) = x10 ++++ x7 ++++ x6 ++++ x4 ++++ x2 ++++ 1 = 10011010101 Received Message
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CRC – Example Decoding – with 
Errors

1000

1101

1011

1101

1101

1101

1101

k + 1 bit check 
sequence c, 

equivalent to a 
degree-k 

polynomial

0101

1101

Remainder

m mod c

10010110101 Received 
message

Result:

CRC test failed

Two bit errors

C(x) = x3 ++++ x2 ++++ 1 = 1101 Generator
P(x) = x10 ++++ x7 ++++ x5 ++++ x4 ++++ x2 ++++ 1 = 10010110101 Received Message
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CRC Error Detection

• Properties

• Characterize error as E(x)

• Error detected unless C(x) divides E(x)

• (i.e., E(x) is a multiple of C(x))
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Example of Polynomial 
Multiplication

• Multiply 

• 1101 by 10110

• x3 + x2 + 1 by x4 + x2 + x

1011
10110

1101
1101

1101
00011111110

This is a multiple of c, 
so that if errors occur 

according to this 
sequence, the CRC test 

would be passed



On Polynomial Arithmetic

• Polynomial arithmetic 

• A fancy way to think about addition with no carries.  

• Helps in the determination of a good choice of C(x)

• A non-zero vector is not detected if and only if the error 
polynomial E(x) is a multiple of C(x)

• Implication

• Suppose C(x) has the property that C(1) = 0 (i.e. (x + 1) is a factor 
of C(x))

• If E(x) corresponds to an undetected error pattern, then it must 
be that E(1) = 0

• Therefore, any error pattern with an odd number of error bits is 
detected
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CRC Error Detection

• What errors can we detect?

• All single-bit errors, if xk and x0 have non-zero coefficients

• All double-bit errors, if C(x) has at least three terms

• All odd bit errors, if C(x) contains the factor (x + 1)

• Any bursts of length < k, if C(x) includes a constant term

• Most bursts of length ≥≥≥≥ k
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Common Polynomials for C(x)
CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + x1 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +
x4 + x2 + x1 + 1


