Physical Layer

CS 438: Spring 2014
Instructor: Matthew Caesar
http://courses.engr.illinois.edu/cs438/

Course Outline

Outline for Today

- Today: The Physical Layer
- How to encode data over a link
- How to detect and correct errors

A Brief Overview of Physical Media

Links - Copper
 - Copper-based Media

- Category 3 Twisted Pair
- Category 5 Twisted Pair
- ThinNet Coaxial Cable
- ThickNet Coaxial Cable
more twists, less crosstalk, better signal over longer distances
10-100Mbps 100 m
$10-100 \mathrm{Mbps} \quad 200 \mathrm{~m}$
$10-100 \mathrm{Mbps} \quad 500 \mathrm{~m}$

More expensive than twisted pair
High bandwidth and excellent noise immunity

Links - Optical

- Optical Media
- Multimode Fiber 100Mbps 2km
- Single Mode Fiber $100-2400 \mathrm{Mbps} \quad 40 \mathrm{~km}$

Links - Optical

- Single mode fiber
- Expensive to drive (Lasers)
- Lower attenuation (longer distances) $\leq 0.5 \mathrm{~dB} / \mathrm{km}$
- Lower dispersion (higher data rates)
- Multimode fiber
- Cheap to drive (LED's)
- Higher attenuation
- Easier to terminate
core of single mode fiber

~ 1 wavelength thick = ~ 1 micron
core of multimode fiber (same frequency; colors for clarity)

Encoding

How can two hosts communicate?

$\longleftarrow \quad 0.7$ Volts
-0.7 Volts

- Encode data as variations in electrical/light/EM
- Phase, frequency, and signal strength modulation, and combinations thereof
- Simple scheme: voltage encoding
- Encode 1's and 0's as variations in voltage
- How to do that?

Non-Return to Zero (NRZ)

- Signal to Data
$\begin{array}{lll}\text { - High } & \Rightarrow & 1 \\ \text { - Low } & \Rightarrow & 0\end{array}$
- Comments
- Transitions maintain clock synchronization
- Long strings of Os confused with no signal
- Long strings of 1s causes baseline wander
- Both inhibit clock recovery

Non-Return to Zero Inverted (NRZI)
 - Signal to Data

- Transition
$\Rightarrow \quad 1$
- Maintain \Rightarrow

0

- Comments
- Solves series of 1s, but not 0s

Manchester Encoding
 - Signal to Data

- XOR NRZ data with clock
- High to low transition \Rightarrow

1

- Low to high transition \Rightarrow
- Comments
- Used by old 10Mbps Ethernet
- Solves clock recovery problem
- Only 50% efficient ($1 / 2$ bit per transition)

4B/5B

- Signal to Data
- Encode every 4 consecutive bits as a 5 bit symbol
- Symbols
- At most 1 leading 0
- At most 2 trailing 0s
- Never more than 3 consecutive Os
- Transmit with NRZI
- Comments
- 16 of 32 possible codes used for data
- At least two transitions for each code
- 80% efficient
- Used by old 100Mbps Ethernet
- Variation (64B/66B) used by modern 10Gbps Ethernet

4B/5B - Data Symbols
At most 2 trailing 0 s

- $0000 \Rightarrow 11110$
- $0001 \Rightarrow 01001$
- $0010 \Rightarrow 10100$
- $0011 \Rightarrow 10101$
- $0100 \Rightarrow 01010$
- $0101 \Rightarrow 01011$
- $0110 \Rightarrow 01110$
- $0111 \Rightarrow 01111$
- $1000 \Rightarrow 10010$
- $1001 \Rightarrow 10011$
- $1010 \Rightarrow 10110$
- $1011 \Rightarrow 10111$
- $1100 \Rightarrow 11010$
- $1101 \Rightarrow 11011$
- $1110 \Rightarrow 11100$
- $1111 \Rightarrow 11101$

4B/5B - Control Symbols

- $11111 \Rightarrow \quad$ idle
- $11000 \Rightarrow \quad$ start of stream 1
- $10001 \Rightarrow \quad$ start of stream 2
- $01101 \Rightarrow \quad$ end of stream 1
- $00111 \Rightarrow \quad$ end of stream 2
- $00100 \Rightarrow$ transmit error
- Other $\Rightarrow \quad$ invalid

Binary Voltage Encodings

- Problem with binary voltage (square wave) encodings
- Wide frequency range required, implying
- Significant dispersion
- Uneven attenuation
- Prefer to use narrow frequency band (carrier frequency)
- Types of modulation
- Amplitude (AM)
- Frequency (FM)
- Phase/phase shift
- Combinations of these
- Used in wireless Ethernet, optical communications

Example:

AM/FM for continuous signal

- Original signal

- Amplitude modulation
- Frequency
 modulation

Amplitude Modulation

Frequency Modulation

Phase Modulation

Phase Modulation

Phase Modulation Algorithm

- Send carrier frequency for one period
- Perform phase shift
- Shift value encodes symbol

- Value in range [0, 360ㅇ)
- Multiple values for multiple symbols
- Represent as circle

You can combine modulation

schemes

Example: QAM
(Quadrature Amplitude Modulation)

For a given symbol:

- Perform phase shift and change to new amplitude

2-dimensional representation:

- Angle is phase shift
- Radial distance is new amplitude

QAM: Example transmission

Real constellation with noise

Sampling

- Suppose you have the following 1 Hz signal being received
- How fast to sample, to capture the signal?

Sampling

- Sampling a 1 Hz signal at 2 Hz is enough
- Captures every peak and trough

Sampling

- Sampling a 1 Hz signal at 3 Hz is also enough
- In fact, more than enough samples to capture variation in signal

Sampling

- Sampling a 1 Hz signal at 1.5 Hz is not enough
- Why?

- Sampling a 1 Hz signal at 1.5 Hz is not enough
- Not enough samples, can't distinguish between multiple possible signals

In general

- Sampling a 1 Hz signal at 2 Hz is both necessary and sufficient
- In general: sampling twice rate of signal is enough

What about more complex signals?

- Fourier's theorem: any continuous signal can be decomposed into a sum of sines and cosines at different frequencies
- Example: Sum of $1 \mathrm{~Hz}, 2 \mathrm{~Hz}$, and 3 Hz sines
- How fast to sample?

What about more complex signals?

- Fourier's theorem: any continuous signal can be decomposed into a sum of sines and cosines at different frequencies
- Example: Sum of $1 \mathrm{~Hz}, 2 \mathrm{~Hz}$, and 3 Hz sines
- How fast to sample?
- Answer: Twice rate of fastest signal (bandwidth): 6 Hz

Nyquist-Shannon sampling theorem

- If a function $x(t)$ contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced $1 /(2 B)$ seconds apart
- In other words:
- If the bandwidth of your channel is B
- Your sampling rate should be 2B
- Higher sampling rates are pointless
- Lower sampling rates lead to aliasing/distortion/error

Related Question: How much data can you pack into a channel?

- If I sample at a rate of $2 \mathrm{~B}, \mathrm{I}$ can precisely determine the signal of bandwidth B
- If I have data coming in at rate $2 \mathrm{~B}, \mathrm{I}$ can encode it in a channel of rate B
- Similar argument to above, but in reverse
- Instead of "reading" a sample, we "write" a sample
- More generally:
- Transmitting N distinct signals over a noiseless channel with bandwidth B, we can achieve at most a data rate of
- 2B $\log 2 N$

Noiseless Capacity

- Nyquist's theorem: $2 \mathrm{~B} \log _{2} \mathrm{~N}$
- Example 1: sampling rate of a phone line
- $B=4000 \mathrm{~Hz}$
- $2 B=8000$ samples $/$ sec.
- sample every 125 microseconds
- Example 2: noiseless capacity
- $B=1200 \mathrm{~Hz}$
- $\mathrm{N}=$ each pulse encodes 16 levels
- $C=2 B \log _{2}(N)=D x \log _{2}(N)$
$=2400 \times 4=9600 \mathrm{bps}$.

What can Limit Maximum Data Rate?

- Noise
- E.g., thermal noise (in-band noise) can blur symbols
- Transitions between symbols
- Introduce high-frequency components into the transmitted signal
- Such components cannot be recovered (by Nyquist's Theorem), and some information is lost
- Examples
- Phase modulation
- Single frequency (with different phases) for each symbol
- Transitions can require very high frequencies

How does Noise affect these Bounds?

- In-band (thermal, not high-frequency) noise
- Blurs the symbols, reducing the number of symbols that can be reliably distinguished.
- Claude Shannon (1948)
- Extended Nyquist's work to channels with additive white Gaussian noise (a good model for thermal noise)

$$
\text { channel capacity } \mathrm{C}=\mathrm{B} \log _{2}(1+\mathrm{S} / \mathrm{N})
$$

B is the channel bandwidth
S / N is the ratio between
the average signal power and

Noisy Capacity

- Telephone channel

$$
\operatorname{SNR}(\mathrm{dB})=10 \log _{10}\left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)
$$

- 3400 Hz at 40 dB SNR
- $\mathrm{C}=\mathrm{B} \log _{2}(1+\mathrm{S} / \mathrm{N}) \mathrm{bits} / \mathrm{s}$
- $S N R=40 \mathrm{~dB}$

$$
\begin{aligned}
& 40=10 \log _{10}(S / N) \\
& S / N=10,000
\end{aligned}
$$

- $C=3400 \log _{2}(10001)=44.8 \mathrm{kbps}$

Summary of Encoding

- Problems
- Attenuation, dispersion, noise
- Digital transmission allows periodic regeneration
- Variety of binary voltage encodings
- High frequency components limit to short range
- More voltage levels provide higher data rate
- Carrier frequency and modulation
- Amplitude, frequency, phase, and combinations
- Quadrature amplitude modulation: amplitude and phase, many signals
- Nyquist (noiseless) and Shannon (noisy) limits on data rates

Error
Detection/Correction

Error Detection

- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Error detection validates correctness of each frame

Error Detection

- Key idea: Add redundant information that can be used to determine if errors have been introduced, and potentially fix them
- Errors checked at many levels
- Demodulation of signals into symbols (analog)
- Bit error detection/correction (digital)-our main focus
- Within network adapter (CRC check)
- Within IP layer (IP checksum)
- Possibly within application as well

Error Detection

- Analog Errors
- Example of signal distortion
- Hamming distance
- Parity and voting
- Hamming codes
- Error bits or error bursts?
- Digital error detection
- Two-dimensional parity
- Checksums
- Cyclic Redundancy Check (CRC)

Analog Errors

- Consider RS-232 encoding of character ' Q '
- ASCII Q = 1100001
- Assume idle wire (-15V) before and after signal

RS-232 Encoding of 'Q'

Limited-Frequency Signal Response
(bandwidth = baud rate)

Limited-Frequency Signal Response
(bandwidth = baud rate/2)

Symbols

possible binary voltage encoding possible QAM symbol symbol neighborhoods and erasure neighborhoods in green; all region other space results in erasure

Symbols

- Inputs to digital level
- valid symbols
- erasures
- Hamming distance
- Definition
- 1-bit error-detection with parity
- 1-bit error-correction with voting
- 2-bit erasure-correction with voting
- Hamming codes (1-bit error correction)

Hamming Distance

- The Hamming distance between two code words is the minimum number of bit flips to move from one to the other
- Example:
- 00101 and 00010
- Hamming distance of 3

Detecting bit flips with Parity

- 1-bit error detection with parity
- Add an extra bit to a code to ensure an even (odd) number of 1 s
- Every code word has an even (odd) number of 1 s

Correcting bit flips with Voting

- 1-bit error correction with voting
- Every codeword is transmitted n times

2-bit Erasure Correction with Voting

- Every code word is copied 3 times

2-erasure planes in green
remaining bit not
ambiguous
cannot correct 1-error and
1 -erasure

Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
- Minimum Hamming Distance for parity
- 2
- Minimum Hamming Distance for voting
- 3

Coverage

- N -bit error detection
- No code word changed into another code word
- Requires Hamming distance of $\mathrm{N}+1$
- N-bit error correction
- N -bit neighborhood: all codewords within N bit flips
- No overlap between N-bit neighborhoods
- Requires hamming distance of $2 \mathrm{~N}+1$

Hamming Codes

- Linear error-correcting code, Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2 simultaneous bit errors
- Can correct single-bit errors

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	
C	C	D	C	D	D	D	C	\ldots

- Construction
- number bits from 1 upward
- powers of 2 are check bits
- all others are data bits
- Check bit j is XOR of all bits k such that (j AND k) = j
- Example: 4 bits of data, 3 check bits

Hamming Codes

C 1 = D3 XOR D5 XOR D7
$\mathrm{C} 2=\mathrm{D} 3 \times O R \mathrm{D} 6 \times O R \mathrm{D} 7$
$\mathrm{C} 4=\mathrm{D} 5$ XOR D6 XOR D7

Hamming Codes

Error Bits or Bursts?

- Common model of errors
- Probability of error per bit
- Error in each bit independent of others
- Value of incorrect bit independent of others
- Burst model
- Probability of back-to-back bit errors
- Error probability dependent on adjacent bits
- Value of errors may have structure
- Why assume bursts?
- Appropriate for some media (e.g., radio)
- Faster signaling rate enhances such phenomena

Digital Error Detection Techniques

- Two-dimensional parity
- Detects up to 3-bit errors
- Good for burst errors
- IP checksum
- Simple addition
- Simple in software
- Used as backup to CRC
- Cyclic Redundancy Check (CRC)
- Powerful mathematics
- Tricky in software, simple in hardware
- Used in network adapter

Two-Dimensional Parity

- Use 1-dimensional parity

- Add one bit to a 7-bit code to ensure an even/odd number of 1 s
- Add 2nd dimension
- Add an extra byte to frame
- Bits are set to ensure even/odd number of 1 s in that position across all bytes in frame
- Comments
- Can detect and correct any 1-bit error
- Can detect any 1-, 2- and 3-bit, and most 4-bit errors

Two-Dimensional Parity

0	1	0	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What happens if
Can detect exactly which bit flipped Can also correct it!

0	1	Q^{1}	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

Cardolathtarepipems if... But can't tell which bits are flipped, so can't correct

No longer a problem here

0	1	2^{1}	0	0	1^{0}	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

Supposeatese forpparity bits ifont match Which bits could be in error?

Could be the blue pair, OR, could be the orange pair. So, can't correct.

0	1	0	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What about 3-bit errors? $\begin{gathered}\text { endetecteratly which hit flipped } \\ \text { rou can correct in this case }\end{gathered}$

0	1	Q^{1}	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What about 3nloitcerfucrsinch bit tipped But you can't correct (eg if orange bits got flipped instead of the blue ones)

0	1	9^{1}	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

Aretmereanty abritutrs 4-bit errors? this scheme *can* detect? this scheme can't detect?

Q^{1}	1	Q^{1}	0	0	1	1	1
0	1	1	0	1	1	1	1
Q^{1}	1	1^{0}	0	1	1	1	1
0	1	1	0	0	1	0	0
0	1						
0	0						
0	0	1	0	0	0	1	1

Internet Checksum

- Idea: Add up all the words, transmit the sum
- Internet Checksum
- Use 1's complement addition on 16bit codewords
- Example
- Codewords: -5 -3
- 1's complement binary: 10101100
- 1's complement sum 1000
- Comments
- Small number of redundant bits
- Easy to implement
- Not very robust

IP Checksum

```
u_short cksum(u_short *buf, int count) {
```

 register u_long sum \(=0\);
 while (count--) \{
 sum += *buf++;
 if (sum \& OxFFFFOOOO) \{
 /* carry occurred, so wrap around */
 sum \& \(=0 \times P F F F ;\)
 sum++;
 \}
 \}
 return ~(sum \& OxFFFF);
 \}

Cyclic Redundancy Check (CRC)

- Non-secure hash function based on cyclic codes
- Idea
- Add \mathbf{k} bits of redundant data to an \mathbf{n}-bit message
- \mathbf{N}-bit message is represented as a \mathbf{n}-degree polynomial with each bit in the message being the corresponding coefficient in the polynomial
- Example
- Message $=10011010$
- Polynomial

$$
\begin{aligned}
& =1 * x^{7}+0 * x^{6}+0 * x^{5}+1 * x^{4}+1 * x^{3}+0 * x^{2}+1 * x+0 \\
& =x^{7}+x^{4}+x^{3}+x
\end{aligned}
$$

Overly simplified CRC-like protocol, using regular numbers

- Both endpoints agree in advance on a divisor value $\mathrm{C}=3$
- Sender wants to send a message $M=10$
- Sender computes a value $\mathrm{P}=\mathrm{M}+\mathrm{X}=10+2=12$ that is evenly divisible by C
- Sender sends P and M to receiver
- Receiver checks to make sure $P=12$ is evenly divisible by $C=3$
- If it is not, then there's error(s)
- If it is, then there are probably no errors
- CRC is vaguely like this, but uses polynomials instead of numbers
- CRC can reconstruct M from P and C, so just needs to send P

CRC Approach

- Given
- Message $\mathrm{M}(\mathrm{x}) \quad 10011010$
- Represented as $x^{7}+x^{4}+x^{3}+x$

1. Select a divisor polynomial $\mathrm{C}(\mathrm{x})$ with degree k

- Example with $\mathrm{k}=3$:
- $\mathrm{C}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}^{2}+1$
- Represented as 1101

2. Transmit a polynomial $P(x)$ that is evenly divisible by $C(x)$

- $P(x)=M(x)-k$ bits

How can we determine these k bits?

Properties of Polynomial Arithmetic

- Divisor
- Any polynomial $B(x)$ can be divided by a polynomial $C(x)$ if $B(x)$ is of the same or higher degree than $\mathrm{C}(\mathrm{x})$
- Remainder
- The remainder obtained when $\mathrm{B}(\mathrm{x})$ is divided by $\mathrm{C}(\mathrm{x})$ is obtained by subtracting $\mathrm{C}(\mathrm{x})$ from $\mathrm{B}(\mathrm{x})$
- Subtraction
- To subtract $C(x)$ from $B(x)$, simply perform an XOR on each pair of matching coefficients
- For example: $\left(x^{3}+1\right) /\left(x^{3}+x^{2}+1\right)=?$?

CRC - Sender

- Given
- $M(x)=10011010=x^{7}+x^{4}+x^{3}+x$
- $C(x)=1101=x^{3}+x^{2}+1$
- Steps
- $\quad T(x)=M(x) * x^{k}$ (add zeros to increase degree of $M(x)$ by k)
- Find remainder, $R(x)$, from $T(x) / C(x)$
- $P(x)=T(x)-R(x) \Rightarrow M(x)$ followed by $R(x)$
- Example
- $T(x)=10011010000$
- $R(x)=101$
- $P(x)=10011010101$

CRC - Receiver

- Receive Polynomial $P(x)+E(x)$
- $E(x)$ represents errors
- (if no errors then $E(x)=0$)
- Divide $(P(x)+E(x))$ by $C(x)$
- If result $=0$, either
- No errors $(E(x)=0$, and $P(x)$ is evenly divisible by $C(x))$
- $(P(x)+E(x))$ is exactly divisible by $C(x)$, error will not be detected

CRC - Example Encoding

$\begin{aligned} & C(x)= \\ & M(x)= \end{aligned}$	$\begin{aligned} & x^{3}+x^{2}+1 \\ & x^{7}+x^{4}+x^{3}+x \end{aligned}$	$\begin{aligned} & =1101 \\ & =10011010 \end{aligned}$	Generato Message
\int^{1101}	$\begin{aligned} & 10011010000 \\ & 1101 \end{aligned}$	Message plus k zeros	
k+1 bit check sequence c,	$\begin{aligned} & 1001 \\ & 1101 \\ & \hline \end{aligned}$		
equivalent to a degree-k	$\begin{aligned} & 1000 \\ & 1101 \\ & \hline \end{aligned}$	Result:	
polynomial	$\begin{array}{r} 1011 \\ 1101 \\ \hline \end{array}$	Transmit message followed by remainder:	
	$\begin{aligned} & 1100 \\ & 1101 \\ & \hline \end{aligned}$		
Remain	$\begin{array}{r} 1000 \\ 1101 \\ \hline \end{array}$		
	$\longrightarrow \xrightarrow[101]{ }$	100	10101

CRC - Example Decoding - No

Errors

CRC - Example Decoding - with

Errors

CRC Error Detection

- Properties
- Characterize error as $\mathrm{E}(\mathrm{x})$
- Error detected unless $\mathrm{C}(\mathrm{x})$ divides $\mathrm{E}(\mathrm{x})$
- (i.e., $\mathrm{E}(\mathrm{x})$ is a multiple of $\mathrm{C}(\mathrm{x})$)

Example of Polynomial Multiplication

- Multiply
- 1101 by 10110
- $x^{3}+x^{2}+1$ by $x^{4}+x^{2}+x$

On Polynomial Arithmetic

- Polynomial arithmetic
- A fancy way to think about addition with no carries.
- Helps in the determination of a good choice of $\mathrm{C}(\mathrm{x})$
- A non-zero vector is not detected if and only if the error polynomial $E(x)$ is a multiple of $C(x)$
- Implication
- Suppose $C(x)$ has the property that $C(1)=0$ (i.e. $(x+1)$ is a factor of $C(x)$)
- If $\mathrm{E}(\mathrm{x})$ corresponds to an undetected error pattern, then it must be that $E(1)=0$
- Therefore, any error pattern with an odd number of error bits is detected

CRC Error Detection

- What errors can we detect?
- All single-bit errors, if x^{k} and x^{0} have non-zero coefficients
- All double-bit errors, if $\mathrm{C}(\mathrm{x})$ has at least three terms
- All odd bit errors, if $C(x)$ contains the factor $(x+1)$
- Any bursts of length $<k$, if $C(x)$ includes a constant term
- Most bursts of length $\geq k$
Common

CRC	C(x) (x)
CRC-8	$x^{8}+x^{2}+x^{1}+1$
CRC-10	$x^{10}+x^{9}+x^{5}+x^{4}+x^{1}+1$
CRC-12	$x^{12}+x^{11}+x^{3}+x^{2}+x^{1}+1$
CRC-16	$x^{16}+x^{15}+x^{2}+1$
CRC-CCITT	$x^{16}+x^{12}+x^{5}+1$
CRC-32	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+$ $x^{4}+x^{2}+x^{1}+1$

