
Physical Layer
CS 438: Spring 2014

Instructor: Matthew Caesar

http://courses.engr.illinois.edu/cs438/

Course Outline

Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7

Today

~ Feb 15

~ Feb 26

~ Mar 21

~ Apr 16

Outline for Today

• Today: The Physical Layer

• How to encode data over a link

• How to detect and correct errors

A Brief Overview of
Physical Media

5

CS/ECE 438 6

Links - Copper
• Copper-based Media

• Category 3 Twisted Pair up to 100 Mbps

• Category 5 Twisted Pair 10-100Mbps 100m

• ThinNet Coaxial Cable 10-100Mbps 200m

• ThickNet Coaxial Cable 10-100Mbps 500m

twisted pair

copper core
insulation
braided outer conductor
outer insulation

coaxial
cable
(coax)

more twists, less crosstalk, better
signal over longer distances

More expensive than
twisted pair

High bandwidth and
excellent noise

immunity

CS/ECE 438 7

Links - Optical
• Optical Media

• Multimode Fiber 100Mbps 2km

• Single Mode Fiber 100-2400Mbps 40km

glass core (the fiber)
glass cladding
plastic jacket

optical
fiber

CS/ECE 438 8

Links - Optical

O(100 microns) thick

core of multimode fiber (same frequency; colors for clarity)

~1 wavelength thick =
~1 micron

core of single mode fiber

• Single mode fiber

• Expensive to drive (Lasers)

• Lower attenuation (longer
distances) ≤ 0.5 dB/km

• Lower dispersion (higher data
rates)

� Multimode fiber
� Cheap to drive (LED’s)
� Higher attenuation
� Easier to terminate

Encoding

How can two hosts communicate?

• Encode data as variations in electrical/light/EM

• Phase, frequency, and signal strength modulation, and
combinations thereof

• Simple scheme: voltage encoding

• Encode 1’s and 0’s as variations in voltage

• How to do that?

0.7 Volts

-0.7 Volts

CS/ECE 438 11

Non-Return to Zero (NRZ)
• Signal to Data

• High � 1

• Low � 0

• Comments
• Transitions maintain clock synchronization

• Long strings of 0s confused with no signal

• Long strings of 1s causes baseline wander

• Both inhibit clock recovery

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

CS/ECE 438 12

Non-Return to Zero Inverted
(NRZI)
• Signal to Data

• Transition � 1

• Maintain� 0

• Comments

• Solves series of 1s, but not 0s

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

NRZI

CS/ECE 438 13

Manchester Encoding
• Signal to Data

• XOR NRZ data with clock

• High to low transition � 1

• Low to high transition � 0

• Comments

• Used by old 10Mbps Ethernet

• Solves clock recovery problem

• Only 50% efficient (½ bit per transition)

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

Clock

Manchester

4B/5B

• Signal to Data

• Encode every 4 consecutive bits as a 5 bit symbol

• Symbols

• At most 1 leading 0

• At most 2 trailing 0s

• Never more than 3 consecutive 0s

• Transmit with NRZI

• Comments

• 16 of 32 possible codes used for data

• At least two transitions for each code

• 80% efficient

• Used by old 100Mbps Ethernet

• Variation (64B/66B) used by modern 10Gbps Ethernet

CS/ECE 438 15

4B/5B – Data Symbols

• 0000 ⇒ 11110

• 0001 ⇒ 01001

• 0010 ⇒ 10100

• 0011 ⇒ 10101

• 0100 ⇒ 01010

• 0101 ⇒ 01011

• 0110 ⇒ 01110

• 0111 ⇒ 01111

• 1000 ⇒ 10010

• 1001 ⇒ 10011

• 1010 ⇒ 10110

• 1011 ⇒ 10111

• 1100 ⇒ 11010

• 1101 ⇒ 11011

• 1110 ⇒ 11100

• 1111 ⇒ 11101

At most 1 leading 0 At most 2 trailing 0s

CS/ECE 438 16

4B/5B – Control Symbols

• 11111 ⇒ idle

• 11000 ⇒ start of stream 1

• 10001 ⇒ start of stream 2

• 01101 ⇒ end of stream 1

• 00111 ⇒ end of stream 2

• 00100 ⇒ transmit error

• Other ⇒ invalid

CS/ECE 438 17

Binary Voltage Encodings

• Problem with binary voltage (square wave) encodings

• Wide frequency range required, implying

• Significant dispersion

• Uneven attenuation

• Prefer to use narrow frequency band (carrier frequency)

• Types of modulation

• Amplitude (AM)

• Frequency (FM)

• Phase/phase shift

• Combinations of these

• Used in wireless Ethernet, optical communications

Example:
AM/FM for continuous signal

• Original signal

• Amplitude
modulation

• Frequency
modulation

CS/ECE 438 19

Amplitude Modulation

1 0idle

CS/ECE 438 20

Frequency Modulation

1 0idle

CS/ECE 438 21

Phase Modulation

1 0idle

CS/ECE 438 22

Phase Modulation

180º difference in phase

collapse for 180º shift

phase shift
in carrier
frequency

CS/ECE 438 23

Phase Modulation Algorithm
• Send carrier frequency for

one period

• Perform phase shift

• Shift value encodes symbol

• Value in range [0, 360º)

• Multiple values for multiple
symbols

• Represent as circle

0º

45º

90º

315º

270º

135º

225º

180º

8-symbol
example

24

You can combine modulation
schemes

45º

15º

Example: QAM
(Quadrature Amplitude
Modulation)

For a given symbol:
• Perform phase shift

and change to new
amplitude

2-dimensional
representation:
• Angle is phase shift
• Radial distance is

new amplitude

QAM: Example transmission

Real constellation with noise

Sampling

• Suppose you have the following 1Hz signal being
received

• How fast to sample, to capture the signal?

Sampling

• Sampling a 1 Hz signal at 2 Hz is enough

• Captures every peak and trough

Sampling

• Sampling a 1 Hz signal at 3 Hz is also enough

• In fact, more than enough samples to capture variation in signal

Sampling

• Sampling a 1 Hz signal at 1.5 Hz is not enough

• Why?

Sampling

• Sampling a 1 Hz signal at 1.5 Hz is not enough

• Not enough samples, can’t distinguish between multiple possible
signals

In general

• Sampling a 1 Hz signal at 2 Hz is both necessary
and sufficient

• In general: sampling twice rate of signal is enough

What about more complex signals?

• Fourier’s theorem: any continuous signal can be
decomposed into a sum of sines and cosines at
different frequencies

• Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
• How fast to sample?

What about more complex signals?

• Fourier’s theorem: any continuous signal can be
decomposed into a sum of sines and cosines at
different frequencies

• Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
• How fast to sample?

• Answer: Twice rate of fastest signal (bandwidth): 6 Hz

Nyquist–Shannon sampling
theorem

• If a function x(t) contains no frequencies higher
than B hertz, it is completely determined by giving
its ordinates at a series of points spaced 1/(2B)
seconds apart

• In other words:

• If the bandwidth of your channel is B

• Your sampling rate should be 2B

• Higher sampling rates are pointless

• Lower sampling rates lead to aliasing/distortion/error

Related Question: How much data
can you pack into a channel?

• If I sample at a rate of 2B, I can precisely determine
the signal of bandwidth B

• If I have data coming in at rate 2B, I can encode it in
a channel of rate B

• Similar argument to above, but in reverse

• Instead of “reading” a sample, we “write” a sample

• More generally:

• Transmitting N distinct signals over a noiseless channel
with bandwidth B, we can achieve at most a data rate of

• 2B log2 N

Noiseless Capacity

• Nyquist’s theorem: 2B log2 N

• Example 1: sampling rate of a phone line

• B = 4000 Hz

• 2B = 8000 samples/sec.

• sample every 125 microseconds

• Example 2: noiseless capacity

• B = 1200 Hz

• N = each pulse encodes 16 levels

• C = 2B log2 (N) = D x log2 (N)

= 2400 x 4 = 9600 bps.

CS/ECE 438 37

What can Limit Maximum Data
Rate?

• Noise

• E.g., thermal noise (in-band noise) can blur symbols

• Transitions between symbols

• Introduce high-frequency components into the transmitted signal

• Such components cannot be recovered (by Nyquist’s Theorem),
and some information is lost

• Examples

• Phase modulation

• Single frequency (with different phases) for each symbol

• Transitions can require very high frequencies

CS/ECE 438 38

CS/ECE 438 39

How does Noise affect these
Bounds?

• In-band (thermal, not high-frequency) noise

• Blurs the symbols, reducing the number of symbols that can be
reliably distinguished.

• Claude Shannon (1948)

• Extended Nyquist’s work to channels with additive white
Gaussian noise (a good model for thermal noise)

channel capacity C = B log2 (1 + S/N)

B is the channel bandwidth

S/N is the ratio between

the average signal power and

the average in-band noise power

Noisy Capacity

• Telephone channel

• 3400 Hz at 40 dB SNR

• C = B log2 (1+S/N) bits/s

• SNR = 40 dB

40 =10 log10 (S/N)

S/N =10,000

• C = 3400 log2 (10001) = 44.8 kbps

CS/ECE 438 40

Summary of Encoding
• Problems

• Attenuation, dispersion, noise

• Digital transmission allows periodic regeneration

• Variety of binary voltage encodings

• High frequency components limit to short range

• More voltage levels provide higher data rate

• Carrier frequency and modulation

• Amplitude, frequency, phase, and combinations

• Quadrature amplitude modulation: amplitude and phase, many signals

• Nyquist (noiseless) and Shannon (noisy) limits on data rates

CS/ECE 438 41

Error
Detection/Correction

CS/ECE 438 43

Error Detection

• Encoding translates symbols to signals

• Framing demarcates units of transfer

• Error detection validates correctness of each
frame

digital data
(a string of
symbols)

digital data
(a string of
symbols)

modulator demodulator

a string
of signals

Error Detection

• Key idea: Add redundant information that can be used to
determine if errors have been introduced, and potentially
fix them

• Errors checked at many levels

• Demodulation of signals into symbols (analog)

• Bit error detection/correction (digital)—our main focus

• Within network adapter (CRC check)

• Within IP layer (IP checksum)

• Possibly within application as well

44

Error Detection

• Analog Errors

• Example of signal distortion

• Hamming distance

• Parity and voting

• Hamming codes

• Error bits or error bursts?

• Digital error detection

• Two-dimensional parity

• Checksums

• Cyclic Redundancy Check (CRC)

CS/ECE 438 45

Analog Errors

• Consider RS-232 encoding of character ‘Q’

• ASCII Q = 1100001

• Assume idle wire (-15V) before and after signal

CS/ECE 438 46

CS/ECE 438 47

RS-232 Encoding of 'Q'

-20

-10

0

10

20

Vo
lta

g
e

1 1 1 stop0 0 0 0start

CS/ECE 438 48

Limited-Frequency Signal Response
(bandwidth = baud rate)

-20

-10

0

10

20

Vo
lta

ge

1 1 1 stop0 0 0 0start

CS/ECE 438 49

Limited-Frequency Signal Response
(bandwidth = baud rate/2)

1 1 1 stop0 0 0 0start
-30

-20

-10

0

10

20

V
ol

ta
ge

CS/ECE 438 50

Symbols

+15

-15

0

vo
lta

ge

1

0

? (erasure)

possible binary voltage encoding
symbol neighborhoods and erasure

region

possible QAM symbol
neighborhoods in green; all

other space results in erasure

Symbols

• Inputs to digital level

• valid symbols

• erasures

• Hamming distance

• Definition

• 1-bit error-detection with parity

• 1-bit error-correction with voting

• 2-bit erasure-correction with voting

• Hamming codes (1-bit error correction)

CS/ECE 438 51

Hamming Distance

• The Hamming distance between two code words
is the minimum number of bit flips to move from
one to the other

• Example:

• 00101 and 00010

• Hamming distance of 3

CS/ECE 438 52

Detecting bit flips with Parity

• 1-bit error detection with parity

• Add an extra bit to a code to ensure an even (odd)
number of 1s

• Every code word has an even (odd) number of 1s

CS/ECE 438 53

01 11

1000

Valid
code

words

110

000

011

101

010

100

111

001

Parity
Encoding:

White – invalid
(error)

Correcting bit flips with Voting

• 1-bit error correction with voting

• Every codeword is transmitted n times

CS/ECE 438 54

000

111
Voting:

White – correct to 1

Blue - correct to 0

110
011

101

010

100
001

0 1
Valid
code

words

2-bit Erasure Correction with
Voting

• Every code word is copied 3 times

55

2-erasure planes in green
remaining bit not
ambiguous

cannot correct 1-error and
1-erasure

0??

?0?
001 101

011 111

010 110

100000

??0

Minimum Hamming Distance

• The minimum Hamming distance of a code is the
minimum distance over all pairs of codewords

• Minimum Hamming Distance for parity

• 2

• Minimum Hamming Distance for voting

• 3

CS/ECE 438 56

Coverage

• N-bit error detection

• No code word changed into another code word

• Requires Hamming distance of N+1

• N-bit error correction

• N-bit neighborhood: all codewords within N bit flips

• No overlap between N-bit neighborhoods

• Requires hamming distance of 2N+1

CS/ECE 438 57

Hamming Codes

• Linear error-correcting code, Named after Richard
Hamming

• Simple, commonly used in RAM (e.g., ECC-RAM)

• Can detect up to 2 simultaneous bit errors

• Can correct single-bit errors

• Construction

• number bits from 1 upward

• powers of 2 are check bits

• all others are data bits

• Check bit j is XOR of all bits k such that
(j AND k) = j

• Example: 4 bits of data, 3 check bits
CS/ECE 438 58

C

1

C

2

D

3

C

4

D

5

D

6

D

7

C

8

…

CS/ECE 438 59

Hamming Codes

C1 = D3 XOR D5 XOR D7
C2 = D3 XOR D6 XOR D7
C4 = D5 XOR D6 XOR D7

C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7

CS/ECE 438 60

Hamming Codes

D3

D5

C1

D6

C2

C4

D7

Error Bits or Bursts?

• Common model of errors

• Probability of error per bit

• Error in each bit independent of others

• Value of incorrect bit independent of others

• Burst model

• Probability of back-to-back bit errors

• Error probability dependent on adjacent bits

• Value of errors may have structure

• Why assume bursts?

• Appropriate for some media (e.g., radio)

• Faster signaling rate enhances such phenomena

CS/ECE 438 61

Digital Error Detection Techniques

• Two-dimensional parity

• Detects up to 3-bit errors

• Good for burst errors

• IP checksum

• Simple addition

• Simple in software

• Used as backup to CRC

• Cyclic Redundancy Check (CRC)

• Powerful mathematics

• Tricky in software, simple in hardware

• Used in network adapter

CS/ECE 438 62

CS/ECE 438 63

Two-Dimensional Parity

� Use 1-dimensional parity
� Add one bit to a 7-bit code to

ensure an even/odd number of 1s

� Add 2nd dimension
� Add an extra byte to frame

� Bits are set to ensure even/odd
number of 1s in that position
across all bytes in frame

� Comments
� Can detect and correct any 1-bit

error
� Can detect any 1-, 2- and 3-bit,

and most 4-bit errors

1

0

1

1

1

0

Parity
Bits

1111011 0Parity
Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data

CS/ECE 438 64

Two-Dimensional Parity

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

CS/ECE 438 65

What happens if…

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
Can also correct it!

CS/ECE 438 66

What happens if…

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect the two-bit error,
But can’t tell which bits are flipped,
so can’t correct

0

No longer a problem here

CS/ECE 438 67

What happens if…

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

Suppose these four parity bits don’t match
Which bits could be in error?

Could be the blue pair,
OR, could be the orange
pair. So, can’t correct.

CS/ECE 438 68

What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
You can correct in this case

0 0

CS/ECE 438 69

What about 3-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can detect exactly which bit flipped
But you can’t correct (eg if orange bits got
flipped instead of the blue ones)

0 0

CS/ECE 438 70

What about 4-bit errors?

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

1

Can you think of a 4-bit error
this scheme can’t detect?

1

1

0

Are there any 4-bit errors
this scheme *can* detect?

Internet Checksum

• Idea: Add up all the words, transmit the sum

• Internet Checksum

• Use 1’s complement addition on 16bit codewords

• Example

• Codewords: -5 -3

• 1’s complement binary: 1010 1100

• 1’s complement sum 1000

• Comments

• Small number of redundant bits

• Easy to implement

• Not very robust
CS/ECE 438 71

CS/ECE 438 72

IP Checksum
u_short cksum(u_short *buf, int count) {

register u_long sum = 0;

while (count--) {

sum += *buf++;

if (sum & 0xFFFF0000) {

/* carry occurred, so wrap around */

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}

Cyclic Redundancy Check (CRC)

• Non-secure hash function based on cyclic codes

• Idea

• Add k bits of redundant data to an n-bit message

• N-bit message is represented as a n-degree polynomial with each
bit in the message being the corresponding coefficient in the
polynomial

• Example

• Message = 10011010

• Polynomial

= 1 ∗x7 + 0 ∗x6 + 0 ∗x5 + 1 ∗x4 + 1 ∗x3 + 0 ∗x2 + 1 ∗x + 0

= x7 + x4 + x3 + x

CS/ECE 438 73

Overly simplified CRC-like protocol,
using regular numbers
• Both endpoints agree in advance on a divisor value C=3

• Sender wants to send a message M=10

• Sender computes a value P=M+X=10+2=12 that is evenly
divisible by C

• Sender sends P and M to receiver

• Receiver checks to make sure P=12 is evenly divisible by C=3
• If it is not, then there’s error(s)

• If it is, then there are probably no errors

• CRC is vaguely like this, but uses polynomials instead of
numbers

• CRC can reconstruct M from P and C, so just needs to send P

CS/ECE 438 75

CRC Approach

• Given

• Message M(x) 10011010

• Represented as x7 + x4 + x3 + x

1. Select a divisor polynomial C(x) with degree k

• Example with k = 3:

• C(x) = x3 + x2 + 1

• Represented as 1101

2. Transmit a polynomial P(x) that is evenly divisible by C(x)

• P(x) = M(x) + k bits
How can we determine

these k bits?

Properties of Polynomial
Arithmetic

• Divisor

• Any polynomial B(x) can be divided by a polynomial C(x) if B(x) is
of the same or higher degree than C(x)

• Remainder

• The remainder obtained when B(x) is divided by C(x) is obtained
by subtracting C(x) from B(x)

• Subtraction

• To subtract C(x) from B(x), simply perform an XOR on each pair of
matching coefficients

• For example: (x3+1)/(x3+x2+1) = x2

CS/ECE 438 76

?

CS/ECE 438 77

CRC - Sender
• Given

• M(x) = 10011010 = x7 + x4 + x3 + x

• C(x) = 1101 = x3 + x2 + 1

• Steps

• T(x) = M(x) * xk (add zeros to increase degree of M(x) by k)

• Find remainder, R(x), from T(x)/C(x)

• P(x) = T(x) – R(x) ⇒ M(x) followed by R(x)

• Example

• T(x) = 10011010000

• R(x) = 101

• P(x) = 10011010101

CRC - Receiver

• Receive Polynomial P(x) + E(x)

• E(x) represents errors

• (if no errors then E(x) = 0)

• Divide (P(x) + E(x)) by C(x)

• If result = 0, either

• No errors (E(x) = 0, and P(x) is evenly divisible by C(x))

• (P(x) + E(x)) is exactly divisible by C(x), error will not be
detected

CS/ECE 438 78

CS/ECE 438 79

CRC – Example Encoding

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

1101

k + 1 bit check
sequence c,

equivalent to a
degree-k

polynomial

101

1101Remainder

m mod c

10011010000 Message plus k
zeros

Result:

Transmit message
followed by
remainder:

10011010101

C(x) = x3 ++++ x2 ++++ 1 = 1101 Generator
M(x) = x7 ++++ x4 ++++ x3 ++++ x = 10011010 Message

CS/ECE 438 80

CRC – Example Decoding – No
Errors

1001

1101

1000

1101

1011

1101

1100

1101

1101

1101

1101

k + 1 bit check
sequence c,

equivalent to a
degree-k

polynomial

0

1101Remainder

m mod c

10011010101 Received
message, no

errors

Result:

CRC test is passed

C(x) = x3 ++++ x2 ++++ 1 = 1101 Generator
P(x) = x10 ++++ x7 ++++ x6 ++++ x4 ++++ x2 ++++ 1 = 10011010101 Received Message

CS/ECE 438 81

CRC – Example Decoding – with
Errors

1000

1101

1011

1101

1101

1101

1101

k + 1 bit check
sequence c,

equivalent to a
degree-k

polynomial

0101

1101

Remainder

m mod c

10010110101 Received
message

Result:

CRC test failed

Two bit errors

C(x) = x3 ++++ x2 ++++ 1 = 1101 Generator
P(x) = x10 ++++ x7 ++++ x5 ++++ x4 ++++ x2 ++++ 1 = 10010110101 Received Message

CS/ECE 438 82

CRC Error Detection

• Properties

• Characterize error as E(x)

• Error detected unless C(x) divides E(x)

• (i.e., E(x) is a multiple of C(x))

CS/ECE 438 83

Example of Polynomial
Multiplication

• Multiply

• 1101 by 10110

• x3 + x2 + 1 by x4 + x2 + x

1011
10110

1101
1101

1101
00011111110

This is a multiple of c,
so that if errors occur

according to this
sequence, the CRC test

would be passed

On Polynomial Arithmetic

• Polynomial arithmetic

• A fancy way to think about addition with no carries.

• Helps in the determination of a good choice of C(x)

• A non-zero vector is not detected if and only if the error
polynomial E(x) is a multiple of C(x)

• Implication

• Suppose C(x) has the property that C(1) = 0 (i.e. (x + 1) is a factor
of C(x))

• If E(x) corresponds to an undetected error pattern, then it must
be that E(1) = 0

• Therefore, any error pattern with an odd number of error bits is
detected

CS/ECE 438 84

CS/ECE 438 85

CRC Error Detection

• What errors can we detect?

• All single-bit errors, if xk and x0 have non-zero coefficients

• All double-bit errors, if C(x) has at least three terms

• All odd bit errors, if C(x) contains the factor (x + 1)

• Any bursts of length < k, if C(x) includes a constant term

• Most bursts of length ≥≥≥≥ k

CS/ECE 438 86

Common Polynomials for C(x)
CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + x1 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +
x4 + x2 + x1 + 1

