
Layering
CS 438: Spring 2014

Instructor: Matthew Caesar

http://www.cs.illinois.edu/~caesar/cs438

Last time: low-level plumbing

Today: top-down architecting of the Internet

• Goals

• Layering

• Protocols

• The end-to-end principle

Outline

• Architecture is not the implementation itself

• Architecture is how we structure implementations

• what functions?, where?, what interfaces?

• Architecture is the modular design of the network

Recall from Lecture #1

How would you go about designing

the Internet?

Sit down and…

• List your goals

• Prioritize them

• Hence define the service you will offer

• Architect a solution that implements the service

Of course, the original designers of the Internet
didn’t do anything of the sort…

Reality

• The lessons accrued over time; many contributors

• 1961: packet switching (Baran and Kleinrock)

• 1967: vision of a robust network (ARPANET)

• 1972: “best effort inter-networking” proposed (Kahn)

• 1974: TCP/IP paper (Cerf/Kahn)

Reality

• The lessons accrued over time; many contributors

• Many of the lessons were learnt “on the job”

• E.g., TCP’s congestion control algorithms were developed in
response to the Internet meltdowns of the early 1980s

Reality

• The lessons accrued over time; many contributors

• Many of the lessons were learnt “on the job”

• Consensus didn’t come easy

• 1961: packet switching is proposed

• 1972: best-effort communication is advocated

• 1980: IP adopted as the defense standard

• 1985: NSFnet picks IP

• 199x: Circuit switching rises (and falls) in the form of ATM

• 199x: `Quality of Service’ (QoS) rises and falls

Reality

• The lessons accrued over time; many contributors

• Many of the lessons were learnt “on the job”

• Consensus didn’t come easy

• And progress was ad-hoc

• “rough consensus and running code.”

Reality

• The lessons accrued over time; many contributors

• Many of the lessons were learnt “on the job”

• Consensus didn’t come easy

• And progress was ad-hoc

• Yet, there was also

• constant dialogue

• constant introspection

• constant experimentation, leading to…

• A strong consistency of vision emerging by the ‘80s,
driven by D. Clark, chair of the Internet Arch. Board

Internet Design Goals
(from Clark’s SIGCOMM 1988 paper)

• Connect existing networks

• Robust in face of failures

• Support multiple types of delivery services

• Accommodate a variety of networks

• Allow distributed management

• Cost effective

• Easy host attachment

• Allow resource accountability

Connect Existing Networks

• Wanted a single unifying interface that could be
used to connect any pair of (existing) networks

• Interface to be compatible with existing networks

• couldn’t demand performance capabilities not
supported by existing networks

• had to support existing packet switched networks

• Led to focus on an inter-networking service based
on the best-effort delivery of packets

How would you go about designing

the Internet?

Sit down and…

• List your goals

• Prioritize them

• Hence define the service you will offer

• Architect a solution that implements the service

Three steps

• Decompose the problem into tasks

• Organize these tasks

• Assign tasks to entities (who does what)

What does it take to send packets across the globe?

•Bits on wire

•Packets on wire

•Delivery packets within a single physical network

•Deliver packets across multiple networks

•Ensure the destination received the data

•Do something with the data

This is decomposition…

Now, how do we organize these tasks?

Decomposition

Datalink

Network

Transport

Application

Physical

Dear John,

Your days are numbered.

--Pat

Inspiration…

• CEO A writes letter to CEO B

• Folds letter and hands it to administrative aide

• Aide:

• Puts letter in envelope with CEO B’s full name

• Takes to FedEx

• FedEx Office

• Puts letter in larger envelope

• Puts name and street address on FedEx envelope

• Puts package on FedEx delivery truck

• FedEx delivers to other company

CEO

Aide

FedEx

CEO

Aide

FedExLocationFedex Envelope (FE)

The Path of the Letter

Letter

Envelope

Semantic Content

Identity

“Peers” on each side understand the same things
No one else needs to

Lowest level has most packaging

The Path Through FedEx

Truck

Sorting

Office

Airport

FE

Sorting

Office

Airport

Truck

Sorting

Office

Airport

Crate Crate

FE

New

Crate
Crate

FE

Deepest Packaging (Envelope+FE+Crate)

at the Lowest Level of Transport

The Path Through FedEx

Truck

Sorting

Office

Airport

FE

Sorting

Office

Airport

Truck

Sorting

Office

Airport

Crate Crate

FE

New

Crate
Crate

FE

Higher “Stack ”
at Ends

Partial “Stack ”
During Transit

Deepest Packaging (Envelope+FE+Crate)

at the Lowest Level of Transport

Highest Level of
“Transit Stack ”

is Routing

In the context of the Internet

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7

This is
not a typonope,

not a typo

In the context of the Internet

Application

Presentation

Session

Transport

Network

Data link

Physical1

2

3

4

5

6

7

The Open Systems Interconnect (OSI) model developed

by the ISO included two additional layers that are often

implemented as part of the application

Protocols and Layers

Communication between peer layers on
different systems is defined by protocols

Application

Transport

Network

Data link

Physical L1

L2

L3

L4

L7Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7

Friendly
greeting

Time?

2pm

Thank
you

Friendly
greeting

What is a Protocol?

What is a Protocol?

• E.g., the destination address is in the 1st four bytes
of the packet

• When A sends B a packet of type X…

…B should return a packet of type Y to A

… then A should respond with Z

….

What is a Protocol?

• An agreement between parties on how to communicate

• Include syntax and semantics

• how a communication is specified and structured

• what a communication means

• Protocols exist at many hardware, software, all levels!

• Defined by a variety of standards bodies
• IETF (ietf.org), IEEE, ITU, …

Next: what gets implemented where?

Application

Transport

Network

Data link

Physical L1

L2

L3

L4

L7Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7

So we have decomposition

and organization

Distributing Layers Across Network

�Layers are simple if only on a single machine

�Just stack of modules interacting with those above/below

�But we need to implement layers across machines

�Hosts

�Routers (switches)

�What gets implemented where?

What gets implemented at the

end host

• Bits arrive on wire, must make it up to application

• Therefore, all layers must exist at host!

What gets implemented in

the network?

• Bits arrive on wire

• Physical layer necessary

• Packets must be delivered to next-hop and across
local networks

• Datalink layer necessary

• Packets must be delivered between networks for
global delivery

• Network layer necessary

• The network doesn’t support reliable delivery

• Transport layer (and above) not supported

28

Switches vs. Routers

• Switches do what routers do, except they don’t participate
in global delivery, just local delivery

• Switches only need to support Physical and Datalink

• Don’t need to support Network layer

• Routers support Physical, Datalink and Network layers

• Won’t focus on the router/switch distinction

• When I say switch, I almost always mean router

• Almost all boxes support network layer these days

• Lower three layers implemented everywhere

• Top two layers implemented only at hosts

Transport

Network

Datalink

Physical

Transport

Network

Datalink

Physical

Network

Datalink

Physical

Application Application

Host A Host BRouter

Simple diagram

Application

Transport

Network

Data link

Physical

Looking a little closer

• At the end host

• Application

• user space: web server, browser, mail, game

• Transport and network.

• Typically part of the operating system

• Datalink

• Often written by vendor of the network interface
hardware

• Physical

• Hardware: network interface card and link

32

• Layers interacts with peer’s corresponding layer

Transport

Network

Datalink

Physical

Transport

Network

Datalink

Physical

Network

Datalink

Physical

Application Application

Host A Host BRouter

Logical Communication

33

• Communication goes down to physical network

• Then from network peer to peer

• Then up to relevant layer

Transport

Network

Datalink

Physical

Transport

Network

Datalink

Physical

Network

Datalink

Physical

Application Application

Host A Host BRouter

Physical Communication

Trans: Connection ID

Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Layer Encapsulation

Protocols at different layers

There is just one network-layer protocol, IP

The “narrow waist” of the Internet hourglass

Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L7 SMTP HTTP DNS NTP

TCP UDP

IP

Ethernet FDDI PPP

optical copper radio PSTN

Implications of Hourglass

Single network-layer protocol (IP)

�Allows arbitrary networks to interoperate

�Any network that supports IP can exchange packets

�Decouples applications from low-level networking
technologies

�applications to function on all networks

�Supports simultaneous innovations above and below
IP

�But changing IP itself is hard (e.g., IPv4 � IPv6)

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

A Protocol-Centric Diagram

What are some of the benefits of

protocols and layering?

Interoperability

• Many implementations of many technologies
• Hosts running FreeBSD, Linux, Windows, MacOS, …

• People using Mozilla, Explorer, Opera, …

• Routers made by cisco, juniper, …

• Hardware made by IBM, Dell, Apple, …

• And it changes all the time.

• Phew!

But they can all talk together because they use the
same protocol(s)

Abstraction & Reuse

• Multiple choices of protocol at many layers
• Physical: copper, fiber, air, carrier pigeon

• Link: ethernet, token ring, SONET, FDDI

• Transport: TCP, UDP, SCTP

• But we don’t want to have to write “a web (HTTP)
browser for TCP networks running IP over
Ethernet on Copper” and another for the fiber
version…

• Protocols provide a standard interface to write to

• Layers hide the details of the protocols below

Decoupling aids innovation

• Technologies at each layer pursued by very different
communities

• Innovation at each layer can proceed in parallel

What are some of the drawbacks of

protocols and layering?

Drawbacks of Layering

• Layer N may duplicate lower layer functionality

• e.g., error recovery to retransmit lost data

• Information hiding may hurt performance

• e.g., packet loss due to corruption vs. congestion

• Headers start to get really big

• e.g., typical TCP+IP+Ethernet is 54 bytes

• Layer violations when the gains too great to resist

• e.g., TCP-over-wireless

• Layer violations when network doesn’t trust ends

• e.g., firewalls

• Hugely influential paper: “End-to-End Arguments in System
Design” by Saltzer, Reed, and Clark (‘84)

• articulated the “End-to-End Principle” (E2E)

• Endless debate over what it means

• Everyone cites it as supporting their position

Where to place network

functionality?

• Some application requirements can only be correctly
implemented end-to-end

• reliability, security, etc.

• Implementing these in the network is hard

• every step along the way must be fail proof

• Hosts

• Can satisfy the requirement without network’s help

• Will/must do so, since they can’t rely on the network

Basic Observation

• Solution 1: make each step reliable, and string them
together to make reliable end-to-end process

• Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

Example: Reliable File Transfer

• Solution 1 (make each step reliable) is incomplete

• What happens if any network element misbehaves?

• Receiver has to do the check anyway!

• Solution 2 (end to end check) is complete

• Full functionality can be entirely implemented at application layer
with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?

Discussion

• Implementing functionality (e.g., reliability) in the network

• Doesn’t reduce host implementation complexity

• Does increase network complexity

• Probably increases delay and overhead on all applications even if
they don’t need the functionality (e.g. VoIP)

• However, implementing in the network can improve
performance in some cases

• e.g., consider a very lossy link

Summary of End-to-End Principle

• Don’t implement a function at the lower levels of
the system unless it can be completely
implemented at this level

• Unless you can relieve the burden from hosts, don’t

bother

“Only if sufficient” interpretation

“Only if necessary” interpretation

• Don’t implement anything in the network that can
be implemented correctly by the hosts

• Make network layer absolutely minimal

• This E2E interpretation trumps performance issues

• Increases flexibility, since lower layers stay simple

• If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement

• But do so only if it does not impose burden on
applications that do not require that functionality

“Only if useful” interpretation

Taking stock of where
we’re at…

First Step:

Basic Concepts and Decisions

• Plumbing: links, switches

• Packet Switching winner over circuit switching

• Best-effort service model

Second Step:

Architectural Principles

• Protocols and Layering

• End-to-End Principle

Third Step:

Design Challenges and Solutions

• Let’s go layer by layer

• Physical

• Datalink

• Network

• Transport

• Application

Two Layers We’ll

Worry About Less

• Physical:

• Technology dependent

• Lots of possible solutions

• Not specific to the Internet

• Application:

• Application-dependent

• Lots of possible solutions

Datalink and Network Layers

• Both support best-effort delivery

• Datalink over local scope

• Network over global scope

• Key challenge: scalable, robust routing

• How do we address destinations

• How to direct packets to destination

Transport Layer

• Provide reliable delivery over unreliable network

