CS/ECE 438: Communication Networks

Internet QoS

Syed Faisal Hasan, PhD

(Research Scholar Information Trust Institute) Visiting Lecturer ECE

Introduction

- The Internet only provides a 'best effort' service model
 - It does not provide any guarantee in terms of delay and/or bandwidth.
- This service model is not suitable for many applications
 - Interactive sessions like live audio/video conferencing, real-time applications require strict delay and bandwidth guarantee

Quality of Service (QoS)

 QoS is all about providing different class of services in IP networks

Each class may support different subclasses

- Applications and/or users will specify the service they require from the network and the network will provide that.
- QoS is a superset of 'best effort' service model
 - It requires additional features/mechanisms on the end host and routing devices

QoS Architechtures

- There are two prominent architectures for QoS:
 - Integrated Services (IntServ)
 - Differentiated Services (DiffServ)
- They differ in their granularity of service
 - IntServ provides per flow guarantees
 - DiffServ provides aggregated service classes
- DiffServ is more popular than IntServ
 - IntServ is not scalable and incremental deployment is not possible

Integrated Services (IntServ)

- Packets with same source, destination IP address, port number and protocol number are identified as flows
- Two level of service class for each flow:
 - Controlled load service: as good as an unloaded network
 - Guaranteed service: provides firm guarantees
- Makes use of Resource Reservation Protocol (RSVP)
 - RSVP reserves resources for a particular flow in all the routers in a particular path between a source and destination
 - All the in-path routers must store per flow resource reservation information
- IntServ has scalability and deployment problem
 - This is an end-to-end model
 - All in-path routers must also classify packets into flows

IntServ: Mechanism

 Signaling and/or admission control: A signaling protocol RSVP is required for reservation of resources. Admission control blocks incoming traffic if the desired QoS cannot be met.

Differentiated Services (DiffServ)

- Provides per hop behavior instead of end-to-end
 - No signaling/reservation needed.
 - No need to classify packets into flows
- Support a small number of forwarding classes at each router
 - Service models to be accomplished through provisioning
- Edge routers map packets into forwarding classes based on service level agreement (SLA).
 - Forwarding class is encoded in the packet header.
 - Six bits in the TOS file in the IP packet is used in DiffServ:
 - Examples of forwarding classes:
 - 101 110 Expedited Forwarding
 - 010 010 Assured forwarding
 - Problems with DiffServ:
 - end-to-end service guaranteed is hard to

DiffServ Code Point (DSCP)

Mechanisms for QoS

- The mechanisms need to be in place to augment the network with QoS capabilities:
 - Signaling and/or admission control: A signaling protocol is required for reservation of resources. Admission control blocks incoming traffic if the desired QoS cannot be met.
 - Packet classification/marking: Packet classifiers select packets in a traffic stream based on the content of some portion of the packet header
 - traffic conditioning. Traffic conditioning performs metering, shaping, policing and/or re-marking to ensure that the traffic entering the DS domain conforms to the rules

Mechanisms Contnd..

- **Marking:** the process of setting the DS codepoint in a packet based on defined rules; pre-marking, re-marking.
- Metering: the process of measuring the temporal properties (e.g., rate) of a traffic stream selected by a classifier
- **Shaping**: the process of delaying packets within a traffic stream to cause it to conform to some defined traffic profile.

Assure Forwarding (AF)

- A general use DiffServ Per-Hop-Behavior (PHB) Group defined by RFC 2597
 - The AF PHB group provides delivery of IP packets in four independently forwarded AF classes
 - Within each AF class IP packets are marked with one of three possible drop precedence values
- In a DS node, the level of forwarding assurance of an IP packet thus depends on
 - how much forwarding resources has been allocated to the AF class that the packet belongs to
 - what is the current load of the AF class, and, in case of congestion within the class
 - what is the drop precedence of the packet.

AF Example

 Recommended values of AF DS code points (DSCP)

> AF11 = '001010', AF12 = '001100', AF13 = '001110', AF21 = '010010', AF22 = '010100', AF23 = '010110', AF31 = '011010', AF32 = '011100', AF33 = '011110', AF41 = '100010', AF42 = '100100', AF43 = '100110'.

	Class I	Class Z	LIASS J	LIASS 4
--	---------	---------	---------	---------

Low Drop Prec	001010	010010	011010	100010
Medium Drop Prec	001100	010100	011100	100100
High Drop Prec	001110	010110	011110	100110

Example AF configuration

		Subclass 1		Subclass 2		Subclass 3	
Class	Resources	In	Out	In	Out	In	Out
1	40%	2%	50%	3%	60%	4%	70%
2	25%	2%	60%	4%	80%	5%	80%
3	20%	3%	70%	5%	80%	10%	90%
4	15%	3%	100%	6%	100%	10%	100%

- The drop precedence level of a packet could be assigned, for example, by using a token bucket /leaky bucket traffic policer, which has as its parameters a rate and a size, which is the sum of two burst values: a committed information rate (CIR) and Peak Information Rate (PIR)
- Token Bucket Animation

Token Bucket Usage

Expedited Forwarding (EF) PHB

- The EF PHB (RFC 2475) can be used to build a low loss, low latency, low jitter, assured bandwidth, end-to-end service through DS domains.
 - Codepoint 101110 is recommended for the EF PHB.
- Creating such a service has two parts:
 - Configuring nodes so that the aggregate has a welldefined minimum departure rate. ("Well-defined" means independent of the dynamic state of the node. In particular, independent of the intensity of other traffic at the node.)
 - Conditioning the aggregate (via policing and shaping) so that its arrival rate at any node is always less than that node's configured minimum departure rate.

AF/EF Queuing Mechanism

- Several types of queue scheduling mechanisms may be employed to deliver the forwarding behavior:
 - Class Based Queue (CBQ)
 - Token Bucket Flow (TBF)
 - Clark-Shenker-Zhang (CSZ)
 - First In First Out (FIFO)
 - Priority Traffic Equalizer (TEQL)
 - Stochastic Fair Queuing (SFQ)
 - Asynchronous Transfer Mode (ATM)
 - Random Early Detection (RED)
 - Generalized RED (GRED)

FIFO Queuing

Priority Queuing

Random Early Drop (RED) Queuing

Other approaches to QoS

- Multi Protocol Label Switching (MPLS)
- Traffic Engineering
- Constraint Based Routing
- Software Defined Networking

Critics of QoS

- QoS is a highly debated issue
- Its unlikely that Internet wide QoS will ever be deployed
- On the other hand, QoS has been hugely successful in private/enterprise networks
- Net-neutrality vs QoS is an ongoing issue.

Questions?

Syed Faisal Hasan hasansf@illinois.edu