Wireless Media Access Protocols

Wired Communication

Pros

- Very reliable
 - For Ethernet, medium HAS TO PROVIDE a Bit Error Rate (BER) of 10⁻¹² (one error for every trillion bits!)
 - Insulated wires; wires placed underground and in walls
 - Error Correction Techniques
- Very high transfer rates currently up to 100 Gbit/s
- Long distance Up to 40km in 10-Gbit/s Ethernet

Cons

- Expensive to set up infrastructure
- Infrastructure is fixed once set up
- No physical mobility

Wireless Communication

Pros

- Allows mobility
- Much cheaper and easier to deploy, change, and upgrade!

Cons

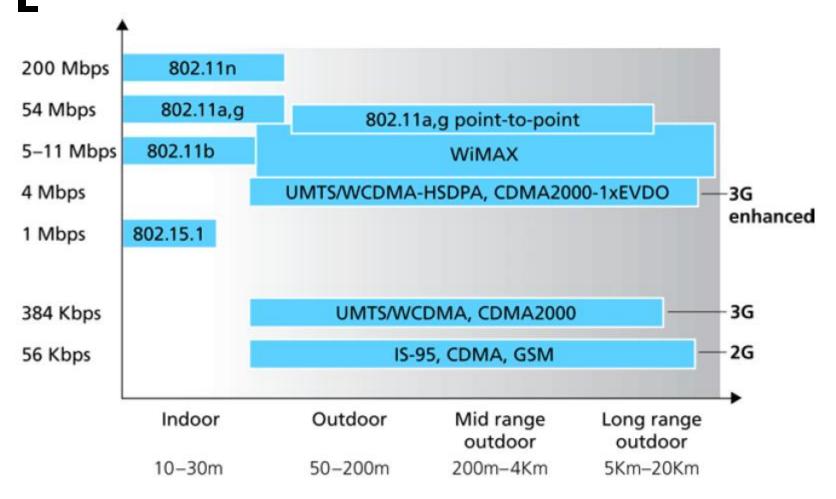
- Exposed (unshielded) medium
 - Susceptible to physical phenomena (interference)
 - Variable BER Error correction may not suffice in all cases
- Slower data rates for wider distances
- Link layer, and higher-layers, designed for wired medium
 - E.g. TCP assumes loss = congestion
 - Difficult to "hide" underlying behavior
- Security: anyone in range hears transmission

Wireless

- FCC oversees all wireless communication
- Licensed Bands
 - Cellular phones, 3G, AM/FM radio, broadcast television, satellites, WiMax
 - Use of resources left to "owner" of band
- Unlicensed Bands
 - 802.11, Bluetooth, ZigBee, IR, WiMax
 - No license needed free for all!
 - Restrictions to limit interference
 - Limit on transmission power
 - Spread spectrum communication

Unlicensed Bands
900 MHz
Industrial, Scientific
and Medical (ISM)

2.4 GHz 5.4 GHz 10 – 66 GHz



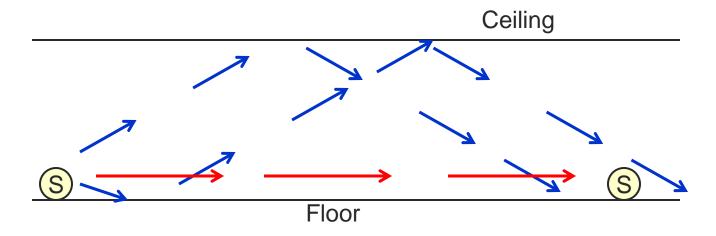
Wireless Communication Standards (Alphabet Soup)

- Cellular (2G): GSM, CDMA, GPRS
- 3G: CDMA2000, W-CDMA, EDGE
- 4G: WiMAX, LTE
- IEEE 802.11
 - A: 5.0Ghz band, max 54Mbps
 - B: 2.4Ghz band, max 11Mbps
 - o G: 2.4Ghz, max 54Mbps
 - N: 2.4/5Ghz, max 600Mbps
 - Many other versions
- IEEE 802.15 lower power wireless
 - 802.15.1: 2.4Ghz, max 2.1 Mbps (Bluetooth)
 - 802.15.4: 2.4Ghz, max 250 Kbps (Sensor Networks)

Wireless Link Characteristics

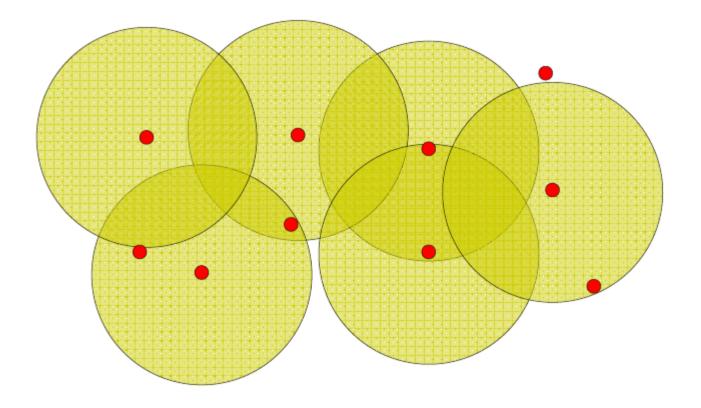
Challenges of wireless

- Path loss
 - Signal attenuation as a function of distance
 - Signal-to-noise ratio (SNR—Signal Power/Noise Power) decreases, make signal unrecoverable
- Multipath propagation
 - Signal reflects off surfaces, effectively causing self-interference
- Internal interference (from other users)
 - Hosts within range of each other collide with one another's transmission
- External interference
 - Microwave is turned on and blocks your signal

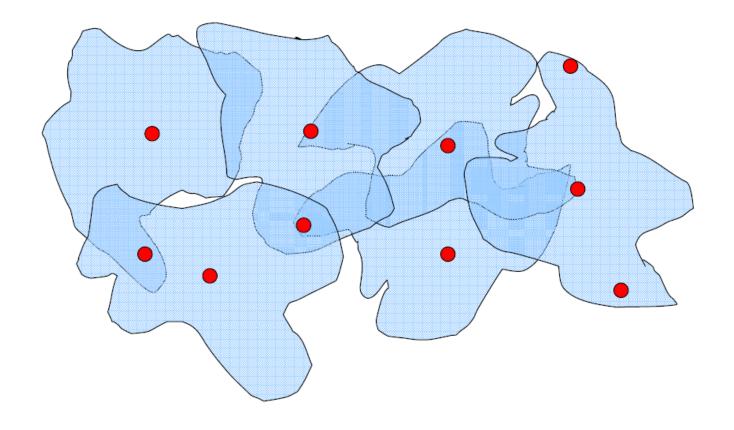


Path Loss

- Signal power attenuates by about ~r² factor for omni-directional antennas in free space
 - r is the distance between the sender and the receiver
- The exponent in the factor is different depending on placement of antennas
 - Less than 2 for directional antennas
 - Faster attenuation
 - Exponent > 2 when antennas are placed on the ground
 - Signal bounces off the ground and reduces the power of the signal


Multipath Effects

- Signals bounce off surfaces and interfere with one another
- What if signals are out of phase?
 - Orthogonal signals cancel each other and nothing is received!



What is a Wireless "Link"?

What is a Wireless "Link"?

Wireless Bit Errors

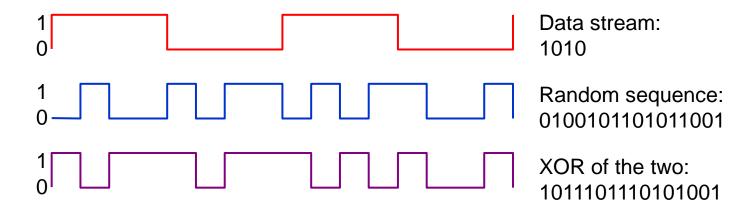
- The lower the SNR (Signal/Noise) the higher the Bit Error Rate (BER)
- How can we deal with this?
 - Make the signal stronger
- Why is this not always a good idea?
 - Increased signal strength requires more power
 - Increases the interference range of the sender, so you interfere with more nodes around you
- Error correction can correct some problems

Spread Spectrum

- Direct Sequence Spread Spectrum
 - Spread the signal over a wider frequency band than required
 - Originally designed to thwart jamming
 - Original 802.11 uses 83 MHz in 2.4 GHz band
- Frequency-Hopped Spread Spectrum
 - Uses 80 1MHz sub-bands in 2.4 GHz band
 - Transmit over a random sequence of frequencies

Spread Spectrum

- Direct
 - Srth:
 - O
 - O
- Frec
 - U:
 - o Tr fr∈


- Frequency hopping had many inventors
 - 1942: actress Hedy Lamarr and composer George Antheil patented Secret Communications System
 - Piano-roll to change between 88 frequencies, and was intended to make radio-guided torpedoes harder for enemies to detect or to jam
 - The patent was rediscovered in the 1950s during patent searches when private companies independently developed Code Division Multiple Access, a civilian form of spread-spectrum

Direct Sequence Spread Spectrum

Spread Spectrum

- For each bit, send XOR of that bit and n random bits
- Random sequence is known to both sender and receiver
- Called n-bit chipping code (802.11 uses 11bit code)

Current Wireless Technologies

- IEEE 802.11
 - Wireless LAN (WLAN)
 - MAC layer based on Ethernet
 - Originally called "wireless Ethernet"

	Max Rate	Frequency	Range	Energy
Pre-802.11	2 Mbps	900 Mhz	100 m	100 mW
IEEE 802.11b	11 Mbps	2.4 GHz	35/150 m	100 mW
IEEE 802.11g	54 Mbps	2.4 GHz	35/150 m	100 mW
IEEE 802.11a	54 Mbps	5 GHz	10 /120 m	100 mW
IEEE 802.11n	600 Mbps	2.4/5 GHz	70 /250 m	100 mW

IEEE 802.11 - Physical Layer

- IEEE 802.11 b
 - Direct Sequence Spread Spectrum
 - Uses 83 MHz in 2.4 GHz band
 - Spread the signal over a wider frequency band than required
 - Originally designed to prevent jamming
 - 3 orthogonal channels
- IEEE 802.11 g
 - Frequency-Hopped Spread Spectrum
 - Uses 80 1MHz sub-bands in 2.4 GHz band
 - Transmit over a random sequence of frequencies
 - Hop 10 times a second
 - Originally designed to avoid snooping
 - 3 orthogonal channels

IEEE 802.11 - Physical Layer

- IEEE 802.11 a
 - Orthogonal Frequency Division Multiplexing (OFDM)
 - 13 orthogonal channels
- IEEE 802.11 n
 - Works on both 802.11a and 802.11g spectrum
 - MIMO Multi-input, Multi-output antenna
 - Up to 4 antenna

IEEE 802.11 - Physical Layer

- Channel Rate vs. Signal strength
 - All versions of IEEE 802.11 can reduce the rate to increase the signal strength
 - IEEE 802.11 b
- 1, 2, 5.5, 11 Mbps
 - IEEE 802.11 a, g

- 6, 9, 12, 18, 24, 36, 48, or 54 Mbps
- Increased range → lower signal → lower rate

IEEE 802.11 Extensions

- IEEE 802.11e
 - Enhancements: QoS, including packet bursting
- IEEE 802.11i
 - Enhanced security
- IEEE 802.11p
 - WAVE Wireless Access for the Vehicular Environment
- IEEE 802.11s
 - ESS Mesh Networking
- IEEE 802.11u
 - Interworking with non-802 networks (for example, cellular)
- IEEE 802.11 ac
 - Provides high throughput in the 5 GHz band
 - Wider RF bandwidth, more streams (up to 8), and high-density modulation (up to 256 QAM)

Current Wireless Technologies

- BlueTooth IEEE 802.15.1
 - Originally designed as a cable replacement technology
 - Master/Slave configuration
 - Piconets

	Max Rate	Frequency	Range	Energy
BlueTooth	3 Mbps	2.4 GHz	100 m	100 mW
			10 m	2.5 mW
			1 m	1 mW

BlueTooth

- Physical Layer
 - Frequency-Hopped Spread Spectrum
 - Uses 79 1MHz sub-bands in 2.4 GHz band
 - Transmit over a random sequence of frequencies
 - Hop 1600 times a second
 - 5 orthogonal sub-hopping sets
- MAC Layer
 - Slotted
 - Managed by the master
 - Single slot packet
 - Max data rate of 172Kbps
 - Multislot frames
 - Support higher rates of 721Kbps

Current Wireless Technologies

- ZigBee IEEE 802.15.4
 - Low power, short range
 - Sensor networks
 - Personal area networks

	Max Rate	Frequency	Range	Energy
ZigBee (IEEE 802.15.4)	250 kbps	2.4 GHz	10 - 100 m	1 mW
	40 Kbps	915 MHz	10 - 100 m	1 mW
	20 Kbps	868 MHz	10 - 100 m	1 mW

ZigBee

- Physical Layer
 - Direct Sequence Spread Spectrum
 - 2.4 GHz 16 orthogonal channels
 - 915 MHz 10 orthogonal channels
 - 868 MHz 1 channel
- MAC Layer
 - CSMA/CA
 - Battery Life Extension (BLE) mode
 - Limit the back-off exponent to max 2

Current Wireless Technologies

- InfraRed
 - Directional

	Max Rate	Frequency	Range	Energy
InfraRed – IrDA	9600 bps – 16 Mbps		< 1 m	Low

Current Wireless Technologies

RFID

- Passive technology
- Used for inventory control

	Max Rate	Frequency	Range	Energy
RFID – Near Field			< 10 cm	Self-powered
RFID – Far Field			< 3 m	Self-powered

RFID

RFID Basics

- Reader powers the "tag"
- Antenna "captures" the energy for a response
- Simple MAC
 - All tags respond
- Contention-based MAC
 - Use ALOHA or Tree-splitting algorithm to avoid collisions
- Near field
 - Magnetic induction
 - Range < 10 cm</p>
- Far field
 - Electromagnetic wave capture
 - Range < 3 m</p>

Current Wireless Technologies

- WiMAX IEEE 802.16
 - Wireless Metropolitan Area Networks (WMAN)
 - May require line-of sight (LOS)

	Max Rate	Frequency	Range	Energy
WiMAX -LOS	70 Mbps	10-66 GHz	50 km	Very high
WiMAX Non- LOS		2-11 GHz		Very high

Communication Characteristics

- Rate
 - Defines the communication speeds
- Frequency
 - Defines the behavior in the physical environment
- Range
 - Defines the physical communication area
- Power
 - Defines the cost in terms of energy

Communication Characteristics

Rate

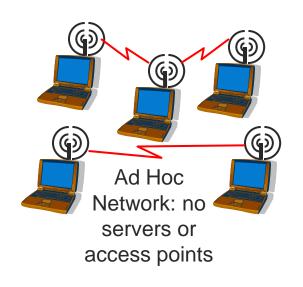
- Defines the communication speeds
- Channel Bandwidth
 - Defined by the specifications of the technology
- Available Bandwidth
 - Defined by the current use of the communication channel
 - Channel competition MAC layer
 - Bandwidth competition Transport layer
- Which is better?
 - IEEE 802.11a or IEEE 802.11b

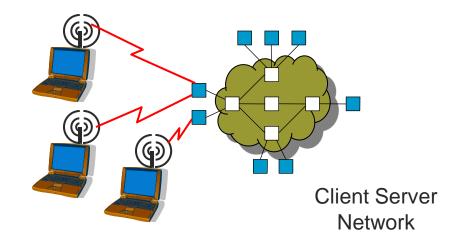
Communication Characteristics J

- Frequency/signal characteristics
 - Defines the behavior in the physical environment
 - Does the signal go through walls?
 - Is the signal susceptible to multipath fading?
 - Challenge
 - Many technologies use the same frequency
- Which is better?
 - Environment: a home with WiFi and cordless phones
 - Bluetooth or 802.11?

Communication Characteristics

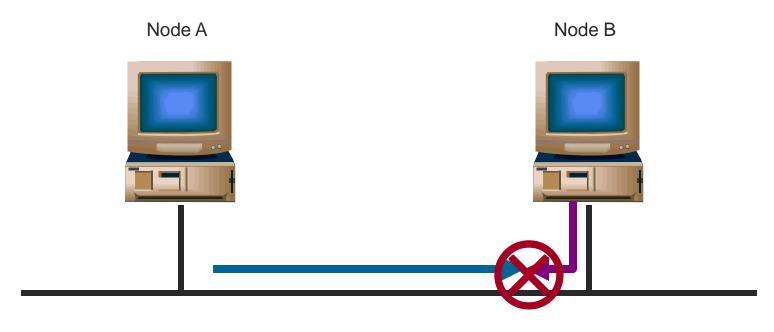
- Range
 - Defines the physical communication area
 - May be affected by buildings, walls, people
 - May be affected by distance
- Which is better?
 - InfraRed or ZigBee?


Communication Characteristics


- Power
 - Defines the cost in terms of energy
 - Power can be adapted to save energy
 - Inversely affects range
- Which is better?
 - IEEE 802.11g or ZigBee?

Medium Access Control

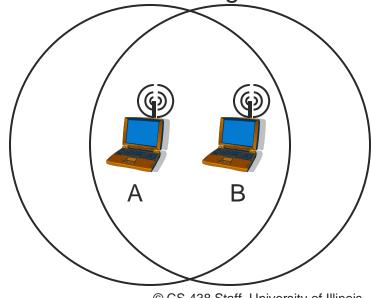
- IEEE 802.11
 - A physical and multiple access layer standard for wireless local area networks (WLAN)



Medium Access Control

- Wireless channel is a shared medium
- Need access control mechanism to avoid interference
- Why not CSMA/CD?

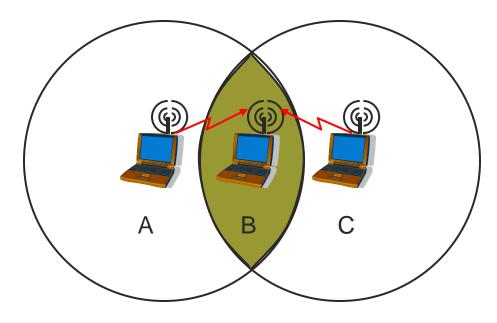
Ethernet MAC Algorithm



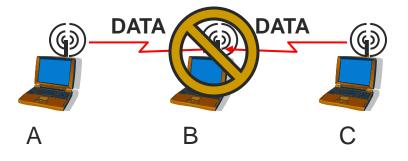
- Listen for carrier sense before transmitting
- Collision: What you hear is not what you sent!

CSMA/CD in WLANs?

- Most (if not all) radios are half-duplex
 - Listening while transmitting is not possible
- Collision might not occur at sender
 - Collision at receiver might not be detected by sender!

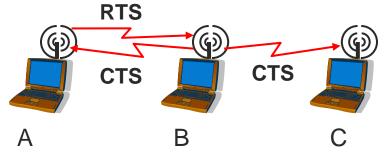

Wireless Ethernet - CSMA/CA

- CS Carrier Sense
 - Nodes can distinguish between an idle and a busy link
- MA Multiple Access
 - A set of nodes send and receive frames over a shared link
- CA Collision Avoidance
 - Nodes use protocol to prevent collisions from occurring

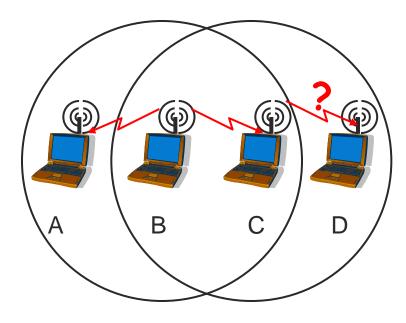

-IEEE 802.11 MAC Layer Standard

- Similar to Ethernet
- But consider the following:

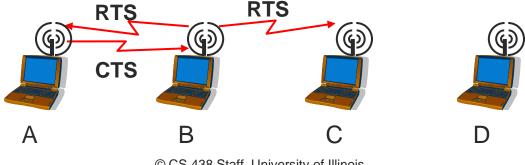
Hidden Terminal Problem


- Node B can communicate with both A and C
- A and C cannot hear each other
- When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
- If C transmits, collision will occur at node B

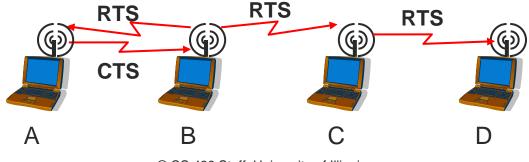
-MACA Solution for Hidden Terminal Problem


- When node A wants to send a packet to node B
 - Node A first sends a Request-to-Send (RTS) to A
- On receiving RTS
 - Node A responds by sending Clear-to-Send (CTS)
 - provided node A is able to receive the packet
- When a node C overhears a CTS, it keeps quiet for the duration of the transfer

-IEEE 802.11 MAC Layer Standard


But we still have a problem

Exposed Terminal Problem


- B talks to A
- C wants to talk to D
- C senses channel and finds it to be busy
- C stays quiet (when it could have ideally transmitted)

-MACA Solution for Exposed Terminal Problem

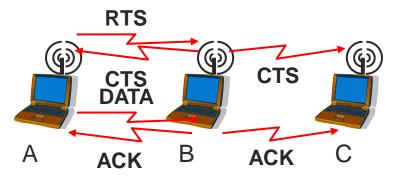
- Sender transmits Request to Send (RTS)
- Receiver replies with Clear to Send (CTS)
- Neighbors
 - See CTS Stay quiet
 - See RTS, but no CTS OK to transmit

IEEE 802.11 MAC Layer Standard

- MACAW Multiple Access with Collision Avoidance for Wireless
 - Sender transmits Request to Send (RTS)
 - Receiver replies with Clear to Send (CTS)
 - Neighbors
 - See CTS
 - Stay quiet
 - See RTS, but no CTS
 - OK to transmit
 - Receiver sends ACK for frame
 - Neighbors stay silent until they hear ACK

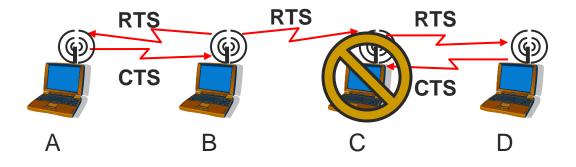
Collisions

- Still possible
 - RTS packets can collide!
- Binary exponential backoff
 - Backoff counter doubles after every collision and reset to minimum value after successful transmission
 - Performed by stations that experience RTS collisions
- RTS collisions not as bad as data collisions in CSMA
 - Since RTS packets are typically much smaller than DATA packets


Reliability

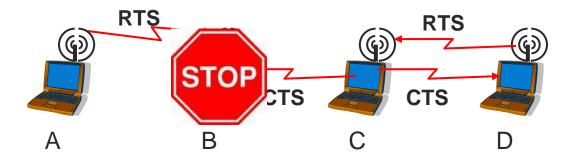
- Wireless links are prone to errors
 - High packet loss rate detrimental to transport-layer performance
- Mechanisms needed to reduce packet loss rate experienced by upper layers

-A Simple Solution to Improve Reliability - MACAW


- When node B receives a data packet from node A, node B sends an Acknowledgement (ACK)
- If node A fails to receive an ACK
 - Retransmit the packet

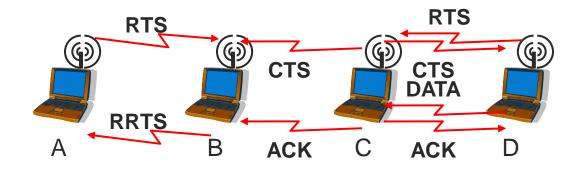
Revisiting the Exposed Terminal Problem

- Problem
 - Exposed terminal solution doesn't consider CTS at node C
- With RTS-CTS, C doesn't wait since it doesn't hear A's CTS
 - With B transmitting DATA, C can't hear intended receiver's CTS
 - C trying RTS while B is transmitting is useless

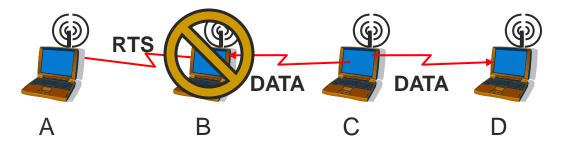

Revisiting the Exposed Terminal Problem - MACAW

- One solution
 - Have C use carrier sense before RTS
- Alternative
 - B sends DS (data sending) packet before DATA
 - Short packet lets C know that B received A's CTS
 - Includes length of B's DATA so C knows how long to wait

Deafness


- For the scenario below
 - Node A sends an RTS to B
 - While node C is receiving from D,
 - Node B cannot reply with a CTS
 - B knows that D is sending to C
 - A keeps retransmitting RTS and increasing its own BO timeout

Request for RTS - MACAW


- Have B do contention on behalf of A
 - If B receives RTS for which it must defer CTS reply
 - Then B later sends RRTS to A when it can send
 - A responds by starting normal RTS-CTS
 - Others hearing RRTS defer long enough for RTS-CTS

Another MACAW Proposal

- This approach, however, does not work in the scenario below
 - Node B may not receive the RTS from A at all, due to interference with transmission from C

Broadcast/Multicast

Problem

- Basic RTS-CTS only works for unicast transmissions
- For multicast
 - RTS would get CTS from each intended receiver
 - Likely to cause (many) collisions back at sender

Multicast - MACAW

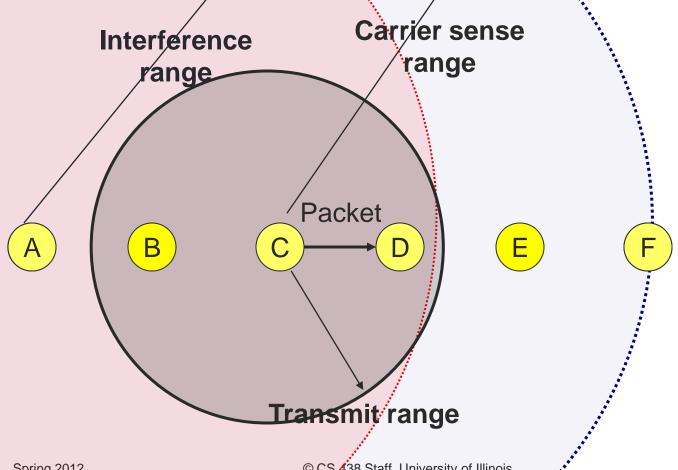
- Sort-of solution
 - Don't use CTS for multicast data
- Receivers recognize multicast destination in RTS
 - Don't return CTS
 - Sender follows RTS immediately by DATA
 - After RTS, all receivers defer for long enough for DATA
- Helps, but doesn't fully solve problem
 - Like normal CSMA, only those in range of sender will defer
 - Others in range of receiver will not defer

IEEE 802.11 Wireless MAC

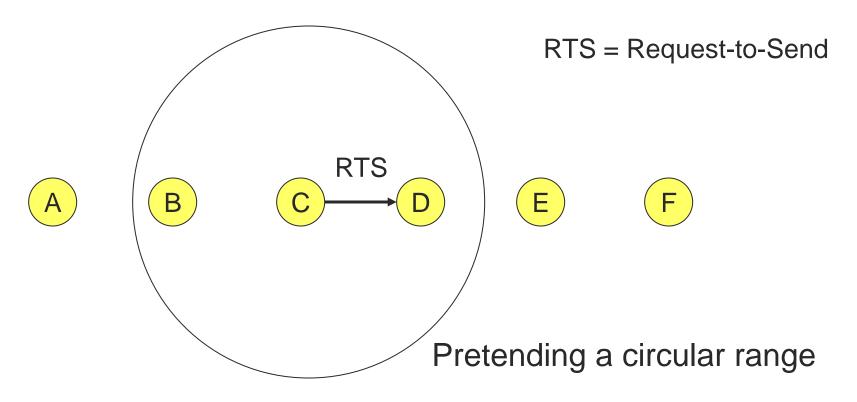
- Distributed and centralized MAC components
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- DCF suitable for multi-hop ad hoc networking
- DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol

IEEE 802.11 DCF

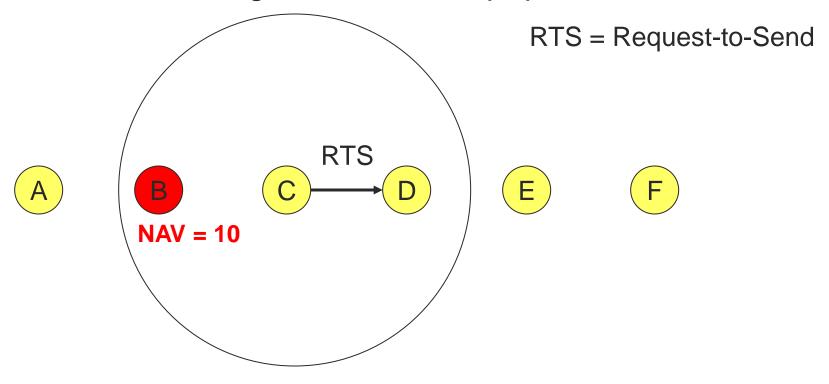
- Uses RTS-CTS exchange to avoid hidden terminal problem
 - Any node overhearing a CTS cannot transmit for the duration of the transfer
- Uses ACK to achieve reliability
- Any node receiving the RTS cannot transmit for the duration of the transfer
 - To prevent collision with ACK when it arrives at the sender
 - When B is sending data to C, node A keeps quite

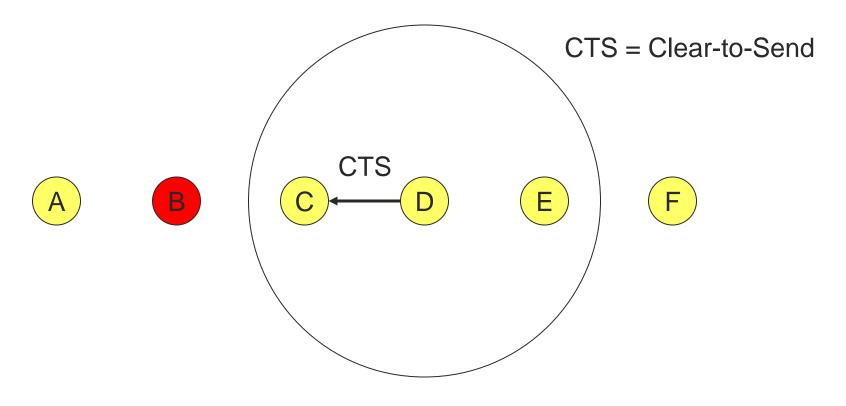


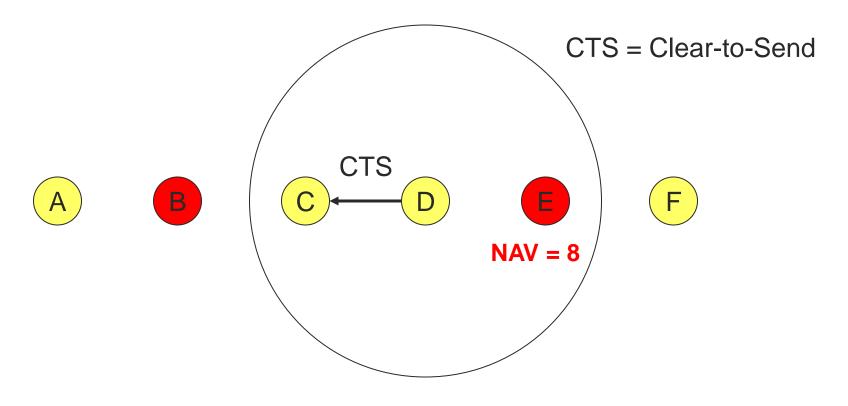
IEEE 802.11 CSMA/CA


- Nodes stay silent when carrier sensed
 - Physical carrier sense
 - Virtual carrier sense
 - Network Allocation Vector (NAV)
 - NAV is updated based on overheard RTS/CTS/DATA/ACK packets, each of which specified duration of a pending transmission
- Backoff intervals used to reduce collision probability

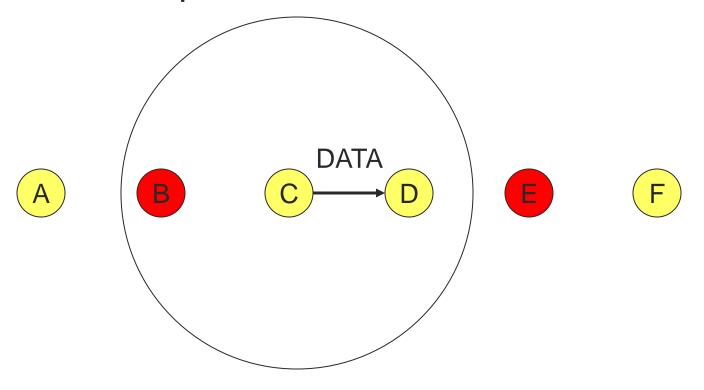
FIEEE 802.11 Physical Carrier Sense



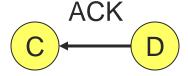




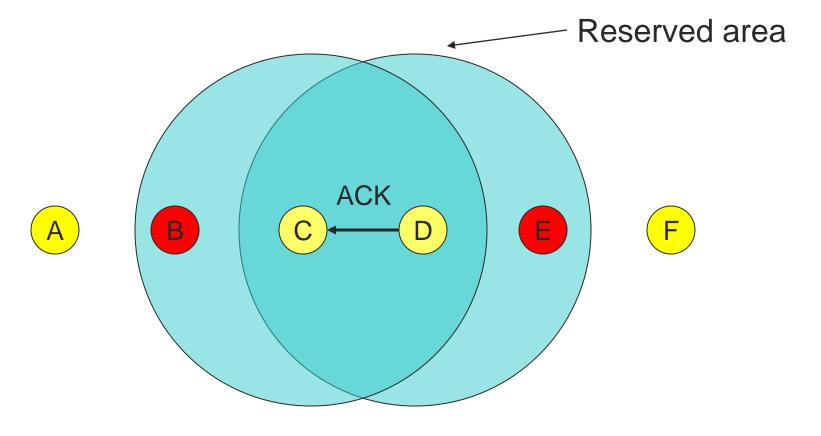
NAV = remaining duration to keep quiet

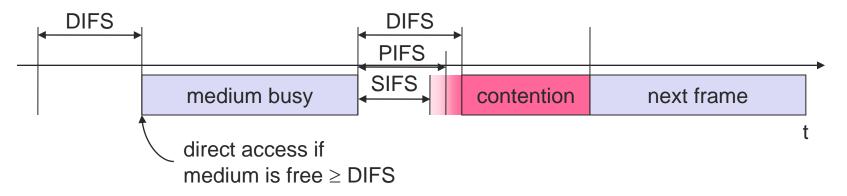


DATA packet follows CTS

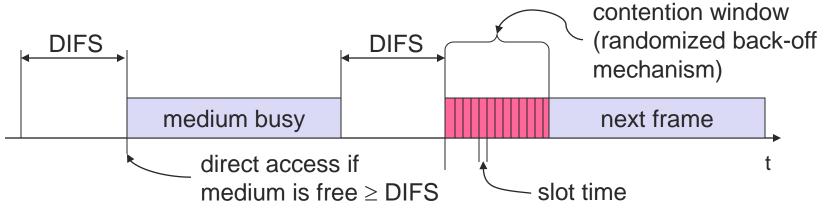


Successful data reception acknowledged using ACK




IEEE 802.11

Interframe Spacing


- Interframe spacing
 - Plays a large role in coordinating access to the transmission medium
- Varying interframe spacings
 - Creates different priority levels for different types of traffic!
- 802.11 uses 4 different interframe spacings

IEEE 802.11 - CSMA/CA

- Sensing the medium
- If free for an Inter-Frame Space (IFS)
 - Station can start sending (IFS depends on service type)
- If busy
 - Station waits for a free IFS, then waits a random back-off time (collision avoidance, multiple of slot-time)
- If another station transmits during back-off time
 - The back-off timer stops (fairness)

Types of IFS

SIFS

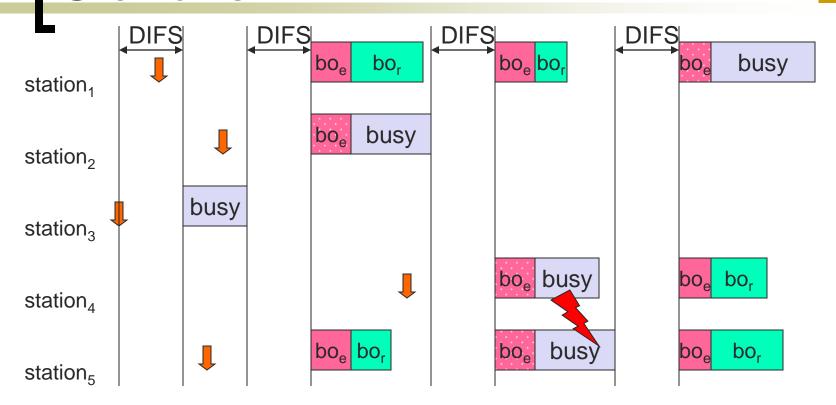
- Short interframe space
- Used for highest priority transmissions
- RTS/CTS frames and ACKs

DIFS

- DCF interframe space
- Minimum idle time for contention-based services (> SIFS)

Types of IFS

PIFS


- PCF interframe space
- Minimum idle time for contention-free service (>SIFS, <DIFS)

EIFS

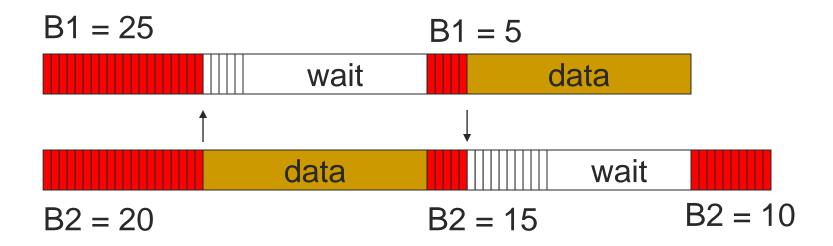
- Extended interframe space
- Used when there is an error in transmission

IEEE 802.11 - Competing Stations

medium not idle (frame, ack etc.)

packet arrival at MAC

residual backoff time



Backoff Interval

- When transmitting a packet, choose a backoff interval in the range [0,CW]
 - CW is contention window
- Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
- When backoff interval reaches 0, transmit RTS

DCF Example

CW = 31

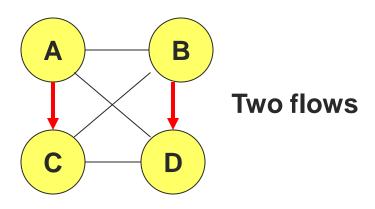
B1 and B2 are backoff intervals at nodes 1 and 2

Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead
- Large CW
 - Large backoff intervals
 - Can result in larger overhead
- Small CW
 - Larger number of collisions (when two nodes count down to 0 simultaneously)

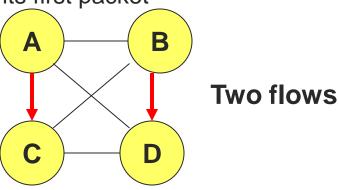
Backoff Interval

- The number of nodes attempting to transmit simultaneously may change with time
 - Some mechanism to manage contention is needed
- IEEE 802.11 DCF
 - Contention window CW is chosen dynamically depending on collision occurrence


Binary Exponential Backoff in DCF

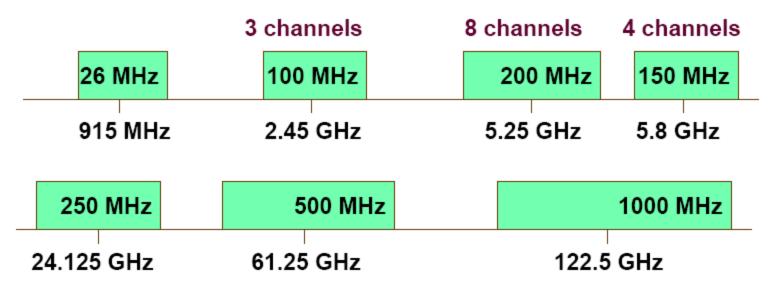
- When a node fails to receive CTS in response to its RTS, it increases the contention window
 - cw is doubled (up to an upper bound)
- When a node successfully completes a data transfer, it restores cw to CW_{min}
 - cw follows a sawtooth curve

Fairness Issue


- Many definitions of fairness plausible
- Simplest definition
 - All nodes should receive equal bandwidth

Fairness Issue

- Assume that initially, A and B both choose a backoff interval in range [0,31] but their RTSs collide
- Nodes A and B then choose from range [0,63]
 - Node A chooses 4 slots and B choose 60 slots
 - After A transmits a packet, it next chooses from range [0,31]
 - It is possible that A may transmit several packets before B transmits its first packet


Fairness Issue

- Unfairness occurs when one node has backed off much more than some other node
- MACAW Solution
 - When a node transmits a packet
 - Append the cw value to the packet
 - all nodes hearing that CW value use it for their future transmission attempts

Channelization of spectrum

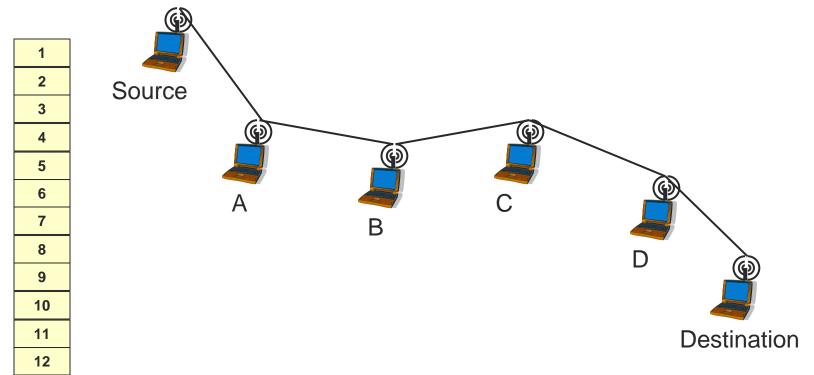
- Typically, available frequency spectrum is split into multiple channels
- Some channels may overlap

Preventing Collisions Altogether

- Frequency Spectrum partitioned into several channels
 - Nodes within interference range can use separate channels
 - Now A can send to B while C sends to D without any interference!
 - Aggregate Network throughput doubles

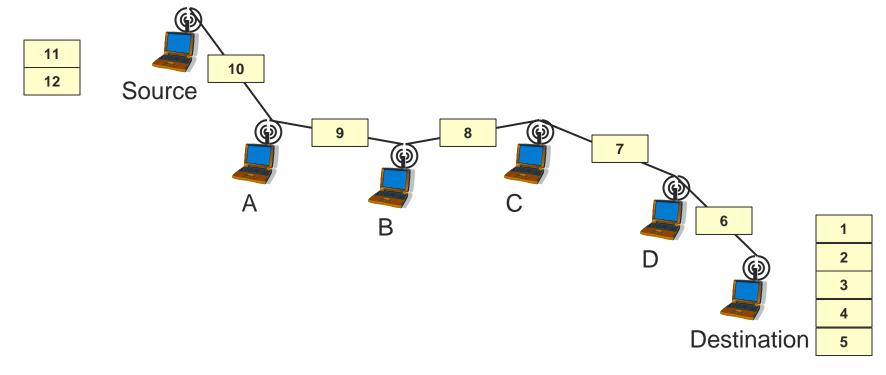
Using Multiple Channels

- 802.11: AP's on different channels
 - Usually manually configured by administrator
 - Automatic Configuration may cause problems
- Most cards have only 1 transceiver
 - Not Full Duplex: Cannot send and receive at the same time
- Multichannel MAC Protocols
 - Automatically have nodes negotiate channels
 - Channel coordination amongst nodes is necessary
 - Introduces negotiation and channel-switching latency that reduce throughput

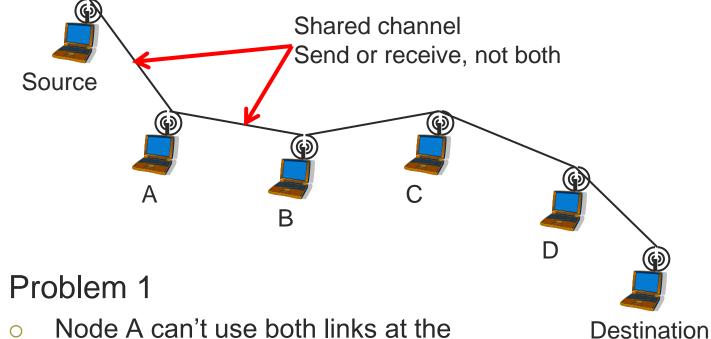


Wireless Multihop Networks

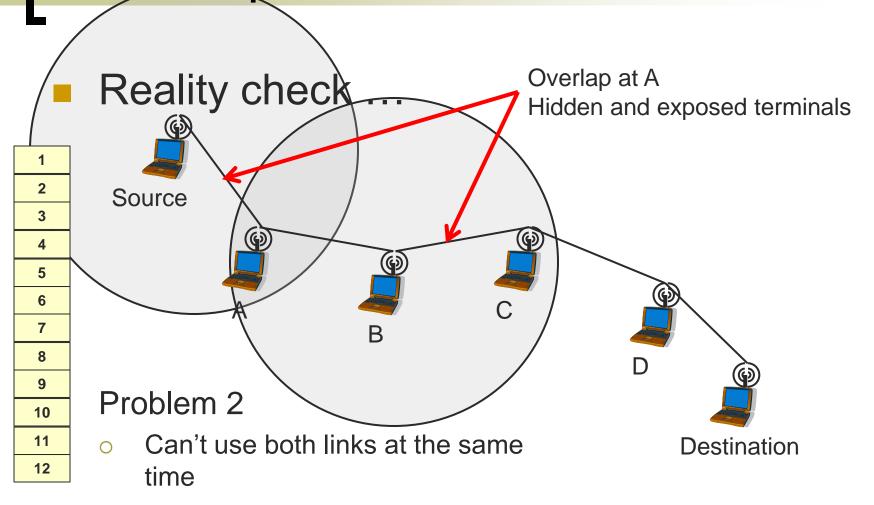
- Vehicular Networks
 - Delay Tolerant (batch) sending over several hops carry data to a base station
- Common in Sensor Network for periodically transmitting data
 - Infrastructure Monitoring
 - E.g., structural health monitoring of the Golden Gate Bridge
- Multihop networking for Internet connection sharing
 - Routing traffic over several hops to base station connected to Internet



In an ideal world ...



In an ideal world ...



Reality check

 Node A can't use both links at the same time

Reality check

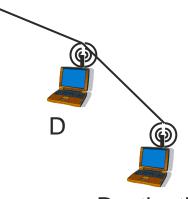
RTS/CTS helps with contention but wastes resources

5

7

9

10


11

Problem 3

Source

Lots of contention for the channels

Everyone wants to send

Destination

RTS/CTS helps with Reality check ... contention but wastes resources 2 Source 4 5 6 7 8 9 Problem 4 10 11 TCP uses ACKS and bidirectional channels

12

Even more contention!