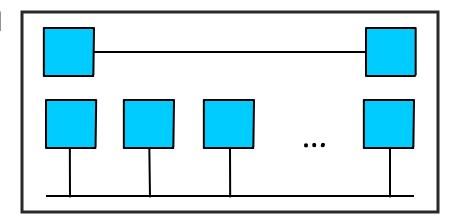

Direct Link Networks

Reading: Peterson and Davie, Chapter 2

Where are we?



Today

Direct Link Networks

- All hosts are directly connected by a physical medium
- Key points
 - Encoding and Modulation
 - Framing
 - Error Detection
 - Medium Access Control

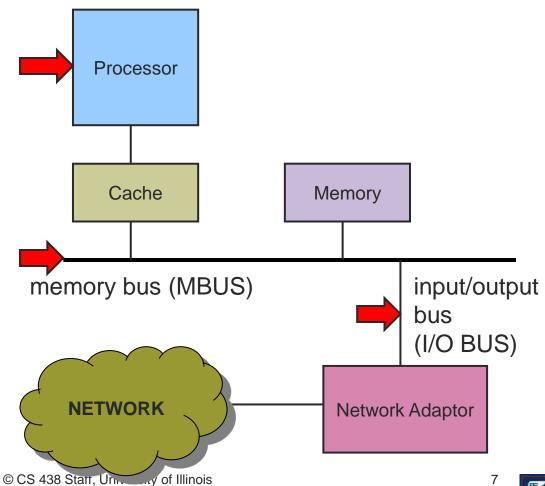
Internet Protocols

Framing, error detection, Encoding medium access control **Application** User-level software Presentation Session **Transport** Kernel software (device driver) **Network** Data Link Hardware (network adapter) **Physical**

Direct Link Networks - Outline

- Hardware building blocks
- Encoding
- Framing
- Error detection
- Multiple access media (MAC examples)
- Network adapters

Hardware Building Blocks


Nodes

- Hosts: general purpose computers
- Switches: typically special purpose hardware
- Routers: varied

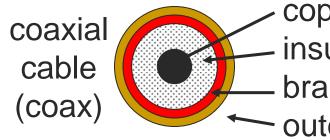
Nodes: Workstation Architecture

- Finite memory
 - Scarce resource
- Runs at memory speeds, NOT processor speeds

Hardware Building Blocks

- Links
 - Physical medium carrying
 - Media
 - Copper wire with electronic signaling
 - Glass fiber with optical signaling
 - Wireless with electromagnetic (radio, infrared, microwave) signaling

Links - Copper

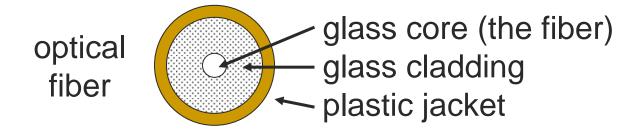

- Copper-based Media
 - Category 5 Twisted Pair
 - ThinNet Coaxial Cable
 - ThickNet Coaxial Cable

more twists, less crosstalk, better signal over longer distances

10-100Mbps 100m

10-100Mbps 200m

10-100Mbps 500m


copper core insulation braided outer conduction

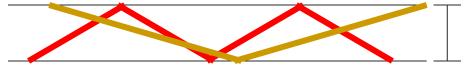
More expensive than twisted pair
High bandwidth and excellent noise immunity

Links - Optical

- Optical Media
 - Multimode Fiber 100Mbps 2km
 - Single Mode Fiber 100-2400Mbps 40km

Links - Optical

- Single mode fiber
 - Expensive to drive (Lasers)
 - Lower attenuation (longer distances) ≤ 0.5 dB/km
 - Lower dispersion (higher data rates)


- Multimode fiber
 - Cheap to drive (LED's)
 - Higher attenuation
 - Easier to terminate

core of single mode fiber

~1 wavelength thick =

~1 micron

core of multimode fiber (same frequency; colors for clarity)

O(100 microns) thick

Links - Optical

- Advantages of optical communication
 - Higher bandwidths
 - Superior attenuation properties
 - Immune from electromagnetic interference
 - No crosstalk between fibers
 - Thin, lightweight, and cheap (the fiber, not the optical-electrical interfaces)

Leased Lines

POTS 64Kbps

ISDN 128Kbps

ADSL1.5-8Mbps/16-640Kbps

Cable Modem 0.5-2Mbps

DS1/T1 1.544Mbps

DS3/T3 44.736Mbps

STS-1 51.840Mbps

STS-3 (ATM rate) 155.250Mbps (ATM)

STS-12 (ATM rate) 622.080Mbps (ATM)

OC-48 2.5 Gbps

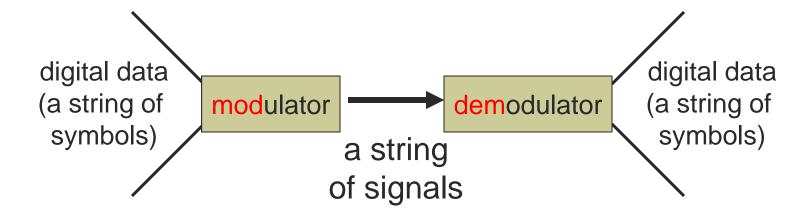
OC-192 10 Gbps

Wireless

Cell	lul	lar
------	-----	-----

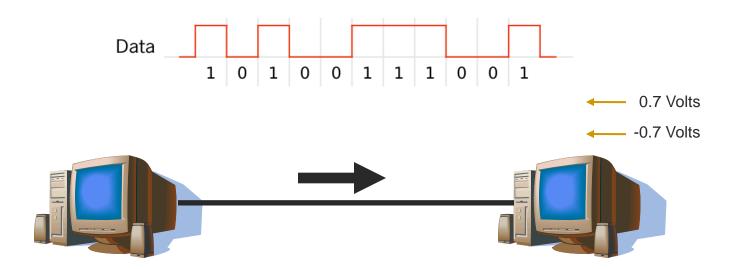
0	AMPS	13Kbps	3km
0	PCS, GSM	300Kbps	3km

Wireless Local Area Networks (WLAN)


		(
0	Infrared	4Mbps	10m
0	900Mhz	2Mbps	150m
0	2.4GHz	2Mbps	150m
0	2.4Ghz	11Mbps	80m
0	2.4Ghz	54Mbps	75m
0	5Ghz	54Mbps	30m
0	Bluetooth	700Kbps	10m

Satellites

0	Geosynchronous satellite	600-1000 Mbps	continent
0	Low Earth orbit (LEO)	~400 Mbps	world


Encoding

- Problems with signal transmission
 - Attenuation: Signal power absorbed by medium
 - Dispersion: A discrete signal spreads in space
 - Noise: Random background "signals"

-How can two hosts communicate?

- Encode information on modulated "Carrier signal"
 - Phase, frequency, and/or amplitude modulation
 - Ethernet: self-clocking Manchester coding
 - Technologies: copper, optical, wireless

Encoding

Goal

 Understand how to connect nodes in such a way that bits can be transmitted from one node to another

Idea

- The physical medium is used to propagate signals
 - Modulate electromagnetic waves
 - Vary voltage, frequency, wavelength
- Data is encoded in the signal

Analog vs. Digital Transmission

- Analog and digital correspond roughly to continuous and discrete
- Data: entities that convey meaning
 - Analog: continuously varying patterns of intensity (e.g., voice and video)
 - Digital: discrete values (e.g., integers, ASCII text)
- Signals: electric or electromagnetic encoding of data
 - Analog: continuously varying electromagnetic wave
 - May be propagated over a variety of media
 - Digital: sequence of voltage pulses
 - May be transmitted over a wire medium

Analog vs. Digital Transmission

- Advantages of digital transmission over analog
 - Cheaper
 - Suffers more attenuation
 - But reasonably low-error rates over arbitrary distances
 - Calculate/measure effects of transmission problems
 - Periodically interpret and regenerate signal
 - Simpler for multiplexing distinct data types (audio, video, e-mail, etc.)
 - Easier to encrypt
- Two examples based on modulator-demodulators (modems)
 - Electronic Industries Association (EIA) standard: RS-232
 - International Telecommunications Union (ITU)
 V.32 9600 bps modem standard

Bauds and Bits

Baud rate

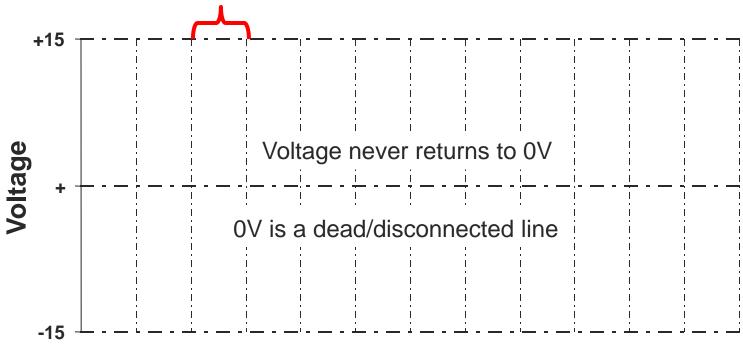
 Number of physical symbols transmitted per second

Bit rate

 Actual number of data bits transmitted per second

Relationship

Depends on the number of bits encoded in each symbol

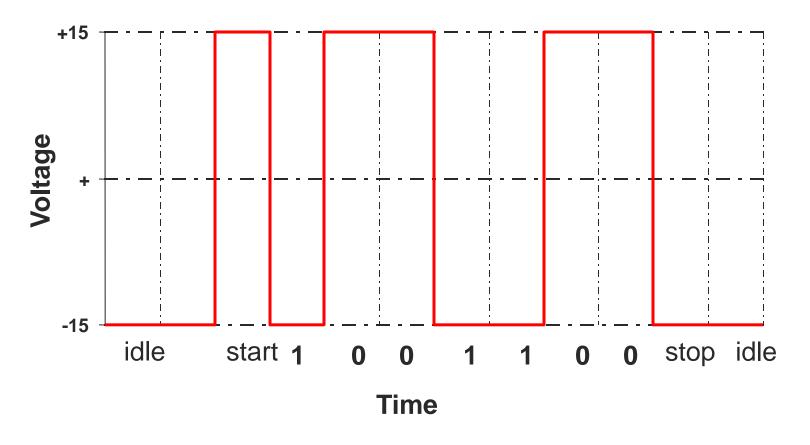

RS-232

- Communication between computer and modem
- Uses two voltage levels (+15V, -15V), a binary voltage encoding
- Data rate limited to 19.2 kbps (RS-232-C); raised in later standards
- Characteristics
 - Serial
 - One signaling wire, one bit at a time
 - Asynchronous
 - Line can be idle, clock generated from data
 - Character-based
 - Send data in 7- or 8-bit characters

RS-232 Timing Diagram

-15V is both "idle" and "1"

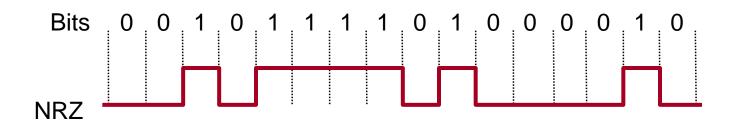
Time



RS-232

- Initiate send by
 - Push to 15V for one clock (start bit)
- Minimum delay between character transmissions
 - Idle for one clock at -15V (stop bit)
- One character
 - 2+ voltage transitions
- Total Bits
 - 9 bits for 7 bits of data (78% efficient)
- Start and stop bits also provide framing

RS-232 Timing Diagram

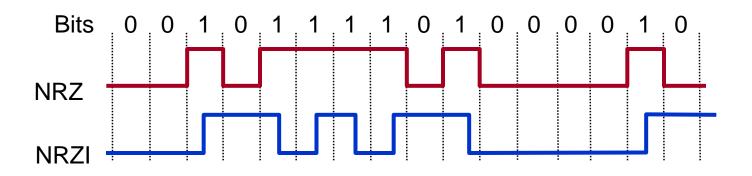

Voltage Encoding

- Binary voltage encoding
 - Done with RS-232 example
 - Generalize before continuing with V.32 (not a binary voltage encoding)
- Common binary voltage encodings
 - Non-return to zero (NRZ)
 - NRZ inverted (NRZI)
 - Manchester (used by IEEE 802.3—10 Mbps Ethernet)
 - 4B/5B

Non-Return to Zero (NRZ)

- Signal to Data
 - o High ⇒ ′
 - o Low ⇒ C
- Comments
 - Transitions maintain clock synchronization
 - Long strings of 0s confused with no signal
 - Long strings of 1s causes baseline wander
 - Both inhibit clock recovery

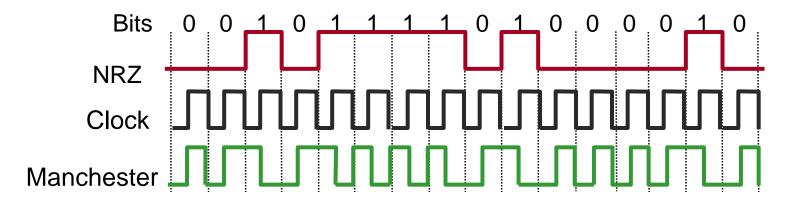
Non-Return to Zero Inverted (NRZI)


- Signal to Data
 - Transition

 \Rightarrow 1

Maintain

⇒ 0


- Comments
 - Solves series of 1s, but not 0s

Manchester Encoding

- Signal to Data
 - XOR NRZ data with clock
 - High to low transition
 - Low to high transition⇒0
- Comments
 - (used by IEEE 802.3—10 Mbps Ethernet)
 - Solves clock recovery problem
 - Only 50% efficient (½ bit per transition)

4B/5B

Signal to Data

Encode every 4 consecutive bits as a 5 bit symbol

Symbols

- At most 1 leading 0
- At most 2 trailing 0s
- Never more than 3 consecutive 0s
- Transmit with NRZI

Comments

- 16 of 32 possible codes used for data
- At least two transitions for each code
- 80% efficient

4B/5B - Data Symbols

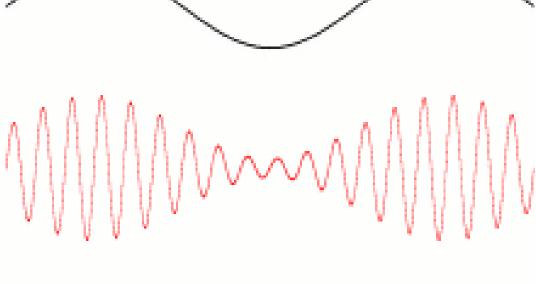
At most 1 leading 0

At most 2 trailing 0s

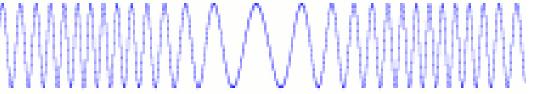
4B/5B - Control Symbols

- 11111 ⇒
- **■** 11000 ⇒
- 10001 ⇒
- 01101 ⇒
- 00111 ⇒
- 00100 ⇒
- Other ⇒

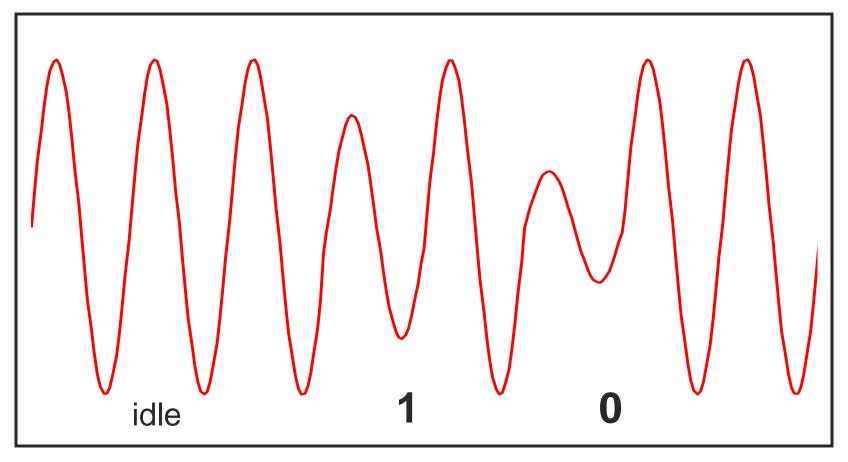
- idle
- start of stream 1
- start of stream 2
- end of stream 1
- end of stream 2
- transmit error
- invalid


Binary Voltage Encodings

- Problem with binary voltage (square wave) encodings
 - Wide frequency range required, implying
 - Significant dispersion
 - Uneven attenuation
 - Prefer to use narrow frequency band (carrier frequency)
- Types of modulation
 - Amplitude (AM)
 - Frequency (FM)
 - Phase/phase shift
 - Combinations of these

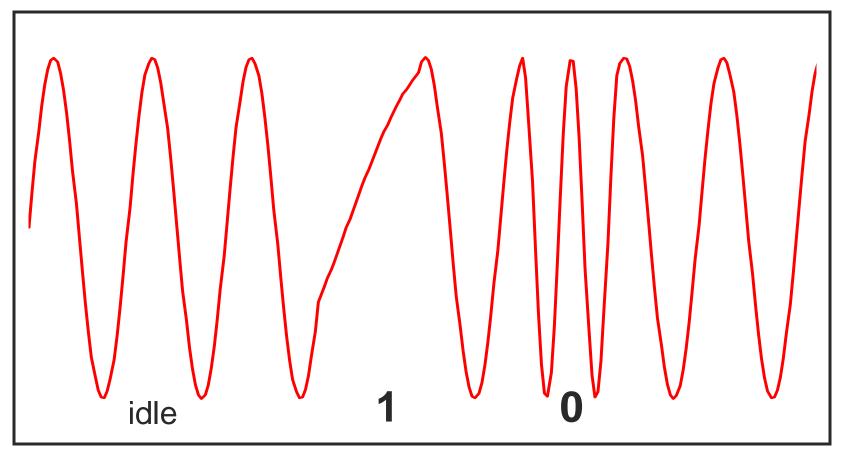

Example: AM/FM for continuous signal

Original signal

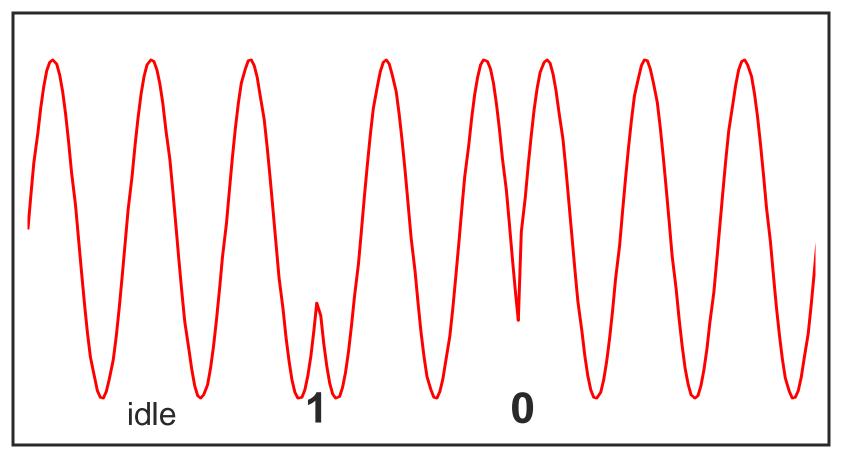


Amplitude modulation

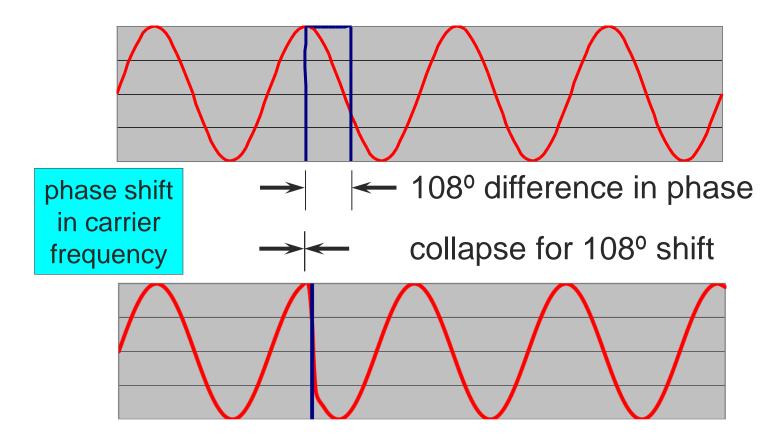
Frequency modulation



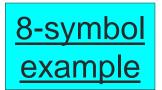
Amplitude Modulation

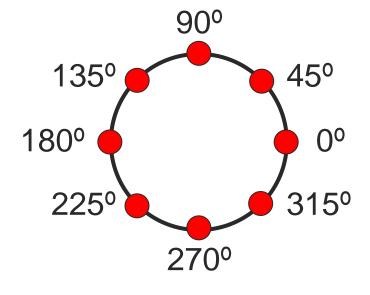


Frequency Modulation



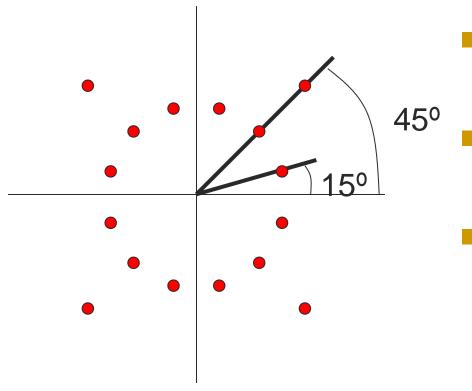
Phase Modulation


Phase Modulation



Phase Modulation Algorithm

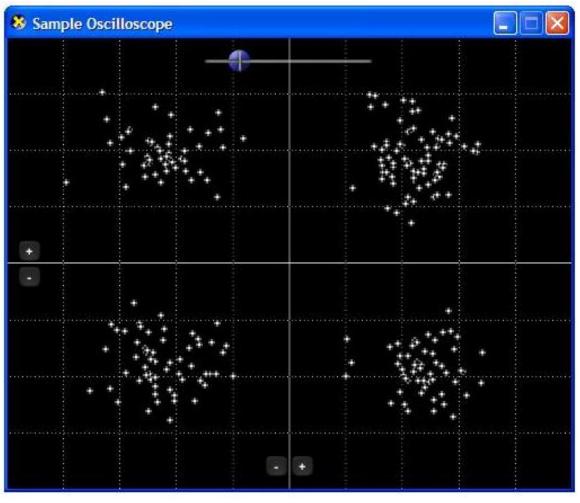
- Send carrier frequency for one period
 - Perform phase shift
 - Shift value encodes symbol
 - Value in range [0, 360°)
 - Multiple values for multiple symbols
 - Represent as circle



V.32 9600 bps

- Communication between modems
- Analog phone line
- Uses a combination of amplitude and phase modulation
 - Known as Quadrature Amplitude Modulation (QAM)
- Sends one of 16 signals each clock cycle

Constellation Pattern for V.32 QAM



16-symbol example

- Same algorithm as phase modulation
- Can also change signal amplitude
- 2-dimensional representation
 - Angle is phase shift
 - Radial distance is new amplitude

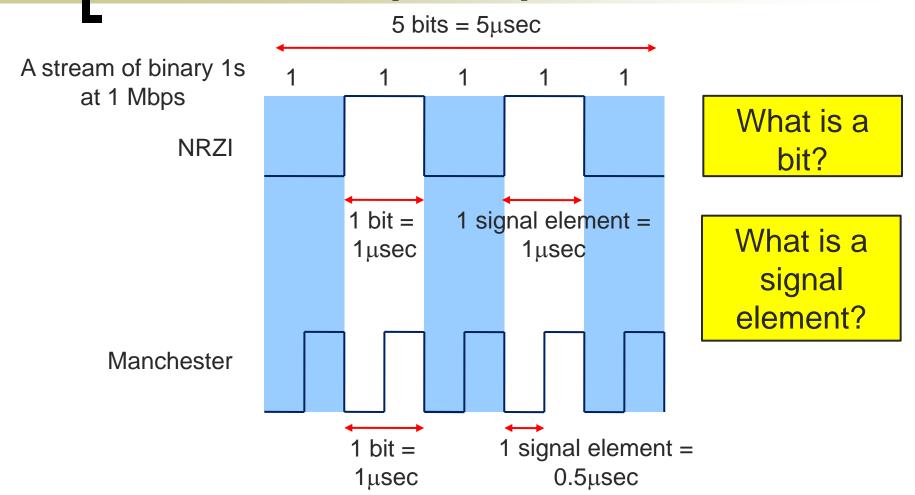
Example constellation

Comments on V.32

- V.32 transmits at 2400 baud
 - o i.e., 2,400 symbols per second
- How many bits per symbols?
 - Each symbol contains log₂ 16 = 4 bits
- What is the data rate?
 - \circ 4 x 2400 = 9600 bps
- Points in constellation diagram
 - Chosen to maximize error detection
 - Process called trellis coding

Generalizing the Examples

- What limits baud rate?
- What data rate can a channel sustain?
- How is data rate related to bandwidth?
- How does noise affect these bounds?
- What else can limit maximum data rate?



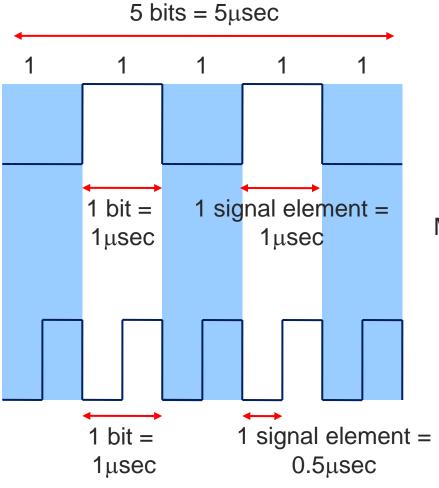
What Limits Baud Rate?

- Baud rate
 - Typically limited by electrical signaling properties
- Changing voltages takes time
 - No matter how small the voltage or how short the wire
- Electronics
 - Slow compared to optics
- Note
 - Baud rate can be as high as twice the frequency (bandwidth) of communication
 - One cycle can contain two symbols

Modulation (Baud) Rate

Modulation (Baud) Rate

A stream of binary 1s at 1 Mbps

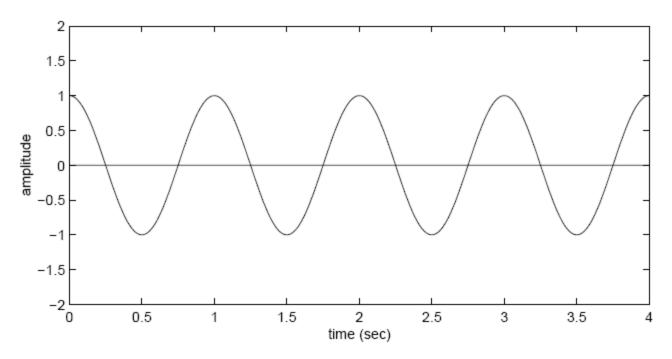

<u>NRZI</u>

What is the data rate?

Data Rate (R)

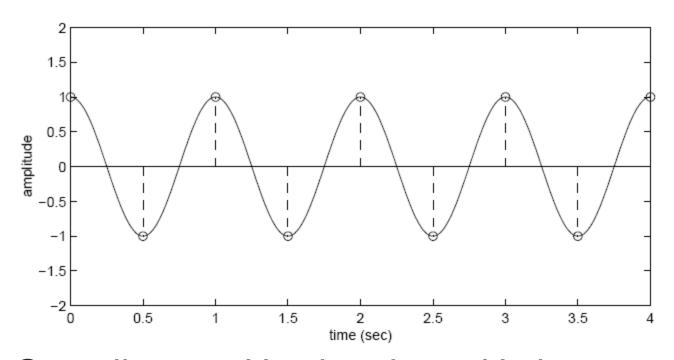
- = bits/sec
- = 1 Mbps for both

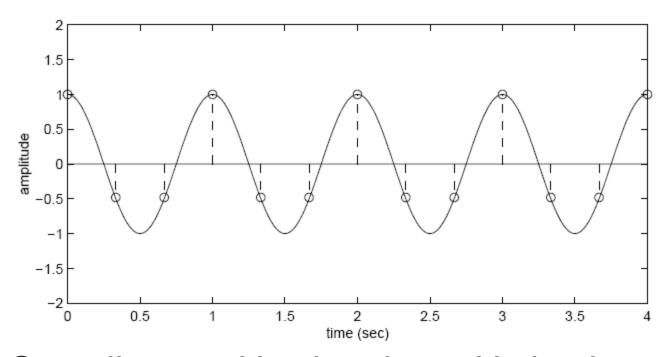
Manchester

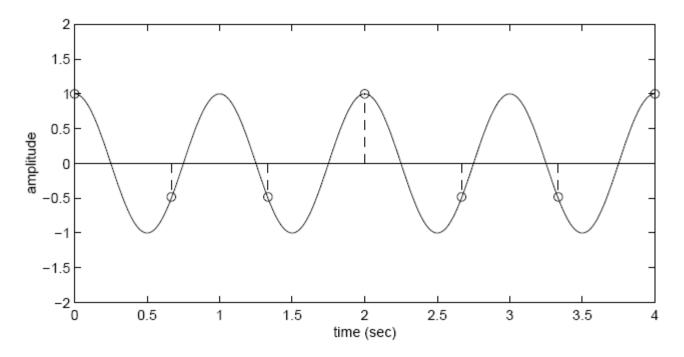


What is the modulation rate?

Modulation Rate

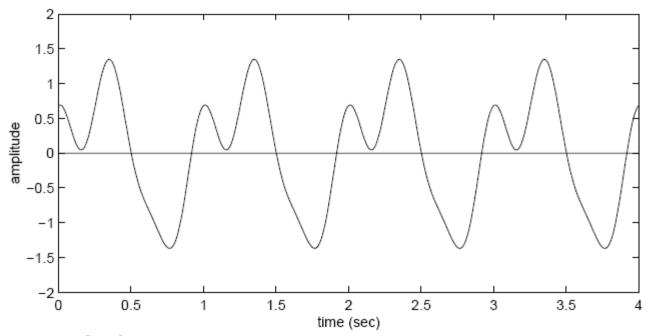

- = Baud Rate
- = Rate at which signal elements are generated
- = R (NRZI)
- = 2R (Manchester)


- Suppose you have the following 1Hz signal being received
- How fast to sample, to capture the signal?

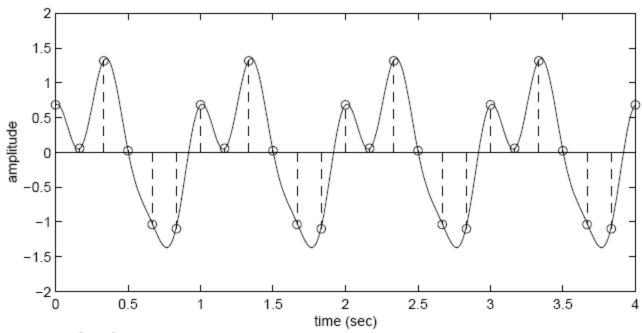

- Sampling a 1 Hz signal at 2 Hz is enough
 - Captures every peak and trough

- Sampling a 1 Hz signal at 3 Hz is also enough
 - In fact, more than enough samples to capture variation in signal

- Sampling a 1 Hz signal at 1.5 Hz is not enough
 - Why?



- Sampling a 1 Hz signal at 1.5 Hz is not enough
 - Can't distinguish between multiple possible signals
 - Problem known as aliasing


-What about more complex signals?

- Fourier's theorem
 - Any continuous signal can be decomposed into a sum of sines and cosines at different frequencies
- Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
 - o How fast to sample?

-What about more complex signals?

- Fourier's theorem
 - Any continuous signal can be decomposed into a sum of sines and cosines at different frequencies
- Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
 - o How fast to sample? --> answer: 6 Hz

What Data Rate can a Channel Sustain? How is Data Rate Related to Bandwidth?

 Transmitting N distinct signals over a noiseless channel with bandwidth B, we can achieve at most a data rate of

2B log₂ N

- Nyquist's Sampling Theorem (H. Nyquist, 1920's)
 - B = highest frequency of signal
 - Sampling rate of 2B captures all information

Noiseless Capacity

- Nyquist's theorem: 2B log₂ N
- Example 1: sampling rate of a phone line
 - \circ B = 4000 Hz
 - 2B = 8000 samples/sec.
 - sample every 125 microseconds

Noiseless Capacity

- Nyquist's theorem: 2B log₂ N
- Example 2: noiseless capacity
 - \circ B = 1200 Hz
 - N = each pulse encodes 16 levels
 - $C = 2B \log_2(N) = D \times \log_2(N)$
 - $= 2400 \times 4 = 9600 \text{ bps}$

-What else (Besides Noise) can Limit Maximum Data Rate?

- Transitions between symbols
 - Introduce high-frequency components into the transmitted signal
 - Such components cannot be recovered (by Nyquist's Theorem), and some information is lost
- Examples
 - Phase modulation
 - Single frequency (with different phases) for each symbol
 - Transitions can require very high frequencies

How does Noise affect these Bounds?

- In-band (not high-frequency) noise
 - Blurs the symbols, reducing the number of symbols that can be reliably distinguished.
- Claude Shannon (1948)
 - Extended Nyquist's work to channels with additive white Gaussian noise (a good model for thermal noise)

channel capacity $C = B \log_2 (1 + S/N)$

where

B is the channel bandwidth

S/N is the ratio between signal power and in-band noise power

Noisy Capacity

$$SNR(dB) = 10 \log_{10} \left(\frac{P_{signal}}{P_{noise}} \right)$$

- Telephone channel
 - 3400 Hz at 40 dB SNR
 - \circ C = B log₂ (1+S/N) bits/s
 - SNR = 40 dB $40 = 10 \log_{10} (S/N)$ S/N = 10,000
 - \circ C = 3400 log₂ (10001) = 44.8 kbps

Summary of Encoding

- Problems: attenuation, dispersion, noise
- Digital transmission allows periodic regeneration
- Variety of binary voltage encodings
 - High frequency components limit to short range
 - More voltage levels provide higher data rate
- Carrier frequency and modulation
 - Amplitude, frequency, phase, and combinations
 - Quadrature amplitude modulation: amplitude and phase, many signals
- Nyquist (noiseless) and Shannon (noisy) limits on data rates

