
ECE/CS 438: Communication Networks Fall 2025

Machine Problem 0

Handed Out: August 27th, 2025 Due: Never

Student Name:

Abstract

This machine problem introduces you to socket programming in C and
the mechanism for submitting assignments. We use Docker containers to
simulate multiple network entities. This assignment will help you prepare
your environment so that all subsequent assignments will be simpler to code
and submit. Since this assignment has all the preparatory material, the TAs
will not help you understand this part in subsequent machine problems.

1 Introduction
The purpose of this machine problem is to familiarize you with network program-
ming in the environment to be used in the class and to acquaint you with the
procedure for handing in machine problems. The problem is intended as an in-
troductory exercise to test your background in C programming. You will obtain,
compile, run, and extend a simple network program. The extensions to the code
will introduce you to one method of framing data into individual messages when
using a byte stream abstraction such as TCP for communication.

2 What Is Expected in this MP?
Inside the release folder, You will find a folder named mp0, which contains the
programs client.c, server.c, talker.c, and listener.c — all from Beej’s Guide
to Network Programming:

(http://beej.us/guide/bgnet/).

Beej’s guide is an excellent introduction to socket programming, and very approachable.
Compile the files using gcc to create the executable files client, server, talker, and
listener . We provide a Makefile that will compile all 4 (simply run make inside the
directory). The real assignments will require you to submit a Makefile, so if you aren’t
already experienced with make, please familiarize yourself with the provided Makefile, and
ensure that you can adapt it to a new project. Login to two different machines (Virtual
Machines), and execute client on one and server on the other. This makes a TCP
connection. Next, execute talker on one machine and listener on the other. This sends
a UDP packet.

Note that the connection oriented pair, server and client, use a different port than the
datagram oriented pair, listener and talker. Try using the same port for each pair, and
run the pairs simultaneously. Do the pairs of programs interfere with each other?

Next, change server.c to accept a file name as a command line argument and to deliver
the length and contents of the file to each client. Assume that the file contains no more
than 100 bytes of data. Send the length of the file (an integer between 0 and 100) as an
8-bit integer. Change client.c to read first the length, then that number of bytes from
the TCP socket, and then print what was received.
The client output should look like this:

1



client: connecting to <hostname>
client: received <filelen> bytes
This is a sample file that is sent over a TCP connection.

where <hostname> is the address of the server, <filelen> is the number of bytes received,
and the rest of the output is the file contents. That’s it. Sounds simple, doesn’t it? Indeed,
for experienced Unix/C programmers this MP is trivial. Others should find it a nice way
to get started on network programming.

You will need to have (or quickly acquire) a good knowledge of the ANSI C programming
language, including the use of pointers, structures, typedef, and header files. If you have
taken CS241 you should already have the necessary background. Don’t simply download
the source code and compile the programs, but make sure that you read and understand
how the sockets are created and the connection established. Beej’s guide is a very useful
tool in this sense.

3 Git Instructions

3.1 Course Setup (only once for the entire semester)
The first time you’re accessing the ECE438 repository this semester, you will need to have
a ECE438 repository set up for you. This process is simple:

1. Visit https://edu.cs.illinois.edu/create-gh-repo/fa25_cs438 and follow the
instructions to create a repo on GitHub. You will be required to log in both UIUC
account and Github account to associate them.

2. The web service will generate your ECE 438 repository
and provide you with your repository name. It’s usually
https://github.com/illinois-cs-coursework/fa25_cs438_NETID.

3. Please choose between one of the followings to run your git command:

(a) SSH Link: Add a SSH key to your GitHub account, so you don’t need to
enter your credentials everytime you run the git command. Please follow this
instruction to add the key:
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding
-a-new-ssh-key-to-your-github-account. After adding the key, please
authorized the key to organization "illinois-cs-coursework" with these steps:
https://docs.github.com/en/enterprise-cloud@latest/authentication/authenticating
-with-saml-single-sign-on/authorizing-an-ssh-key-for-use-with-saml-single-sign-on

(b) HTTPS Link: GitHub does not allow the password authentication on git com-
mands, so you need to create a personal access token in replace of the password
via:
https://github.com/settings/tokens, also please authorize the key to or-
ganization "illinois-cs-coursework".

3.2 Workspace Setup (necessary only once per computer/di-
rectory)

Cloning your repository:

To setup your computer to work on an MP or a lab, you will need to clone your repository
onto your comptuer. The URL of your repository will be based on your NetID and you
will need to replace NETID with your NetID. To clone your repository, run git clone inside
your desired directory:

git clone git@github.com:illinois-cs-coursework/fa25_cs438_NETID.git
folderName

2



you can replace folderName with whatever folder you want created (for example ece438).
You can submit this MP and all subsequent ones through this repository.

Username and password entry:

Your username is your NetID. On some systems, git (and other command line programs)
will not display anything when you type your password. This is expected: type in your
password as normal, and then hit Enter .

Finally, move into the directory you just cloned:

cd folderName

Released code:

The code we release as a starting point for any MP will be present in the release repository.
You need to add this repository as a remote:

git remote add release git@github.com:illinois-cs-coursework/fa25_cs438_.release.git

You’re now all set to begin to work on your assignment!

3.3 Assignment Setup (necessary only once)
To retrieve the latest assignments for ECE 438, you need to fetch and merge the release
repository into your repository. This can be done with the following commands:

git pull

git fetch release

git merge release/main -m "Merging release" –-allow-unrelated-histories

If this doesn’t work, or you get the error message:

merge: allow unrelated histories not something we can merge

then directly pull the release repository using:

git pull release main –-allow-unrelated-histories

to get all the release files. Do not modify README.release.md. You can then
add and commit all these release files to your repository. Please merge the release
repository before proceeding to start the autograder.

3.4 Assignment Submission (do this often!)
The first step in assignment submission is to increment the version number in your
config.ini file for that MP to a number greater than 0. Your code will not be picked
up by the autograder if you fail to increment the version number. This number must be
incremented every time you would like the autograder to grade your submission.

Every time you want to submit your work, you will need to add, commit, and push your
work to your git repository. This can always be done using the following commands on a
command line while within your ECE 438 directory:

git add -u

git commit -m "your commit message"

git push origin main

You can also check the working tree status of your repository by running git status after
each step to make sure everything has been added, commited and pushed. Be sure not to
skip origin main when trying to push/pull.

3



3.5 Verifying Submission
You can always verify your submission by visiting
https://github.com/illinois-cs-coursework/ and viewing the files in your repository.
Only the files that appear on your github repository will be graded.

3.6 How to See Your Grade?
The autograder runs periodically on all new submissions (again, don’t forget to update
the version number!). The results are updated in a different branch (_grades) inside your
directory.

For your convenience, we have created a script to see the results: ./see_results.sh

The script swaps the branch to _grades, shows the results, and swaps the branch back. If
you run the see_results.sh file on mp0 before the autograder has run, your directory will
move to the _grades branch. You will have to manually execute git checkout main to
get back to your working branch. DO NOT work on the _grades branch!

Tests generally take 1-4 minutes, and there may be a queue of students. You can see where
you are in the queue at

http://cs438fa22.csl.illinois.edu:8080/queue/queue_mp0.html. This is a UIUC-
private IP. If your device is not accessing it through campus network, please use Illinois
VPN to get a private IP.

Caution: During the hours leading up to the submission deadline the queues could be
multiple hours long. So it is advisable to get your work done early.

3.7 Final Grade for an MP
To finalize the grade for an MP, either keep the final_grade_version in your config.ini
file as NULL to choose your final submitted version for grading, or replace NULL with
the version number you would like to use instead. Remember that points will be deducted
based on how many days after the deadline you submitted that particular version.

4 Docker Instructions
This section covers the basics of how to set up docker for running the MPs. The autograder
uses this setup for grading. This is not a detailed instruction guide, you may have to adapt
these instructions based on your device.

4.1 Docker Setup
• Docker can be installed from this link:

https://docs.docker.com/engine/install/
There should be tutorial online if there is any inconvenience. For now, we will stick
to running docker from the command line.

• Once you have installed docker, you can check the current images on your machine
using the command:
docker images

• To check running containers, use command
docker ps

• (Option 1) Sample image:
https://courses.grainger.illinois.edu/cs438/fa2024/files/ece438_v2.tar
use command
docker load < ece438_v2.tar for linux and

4



docker load -i ece438_v2.tar for windows
and you should see image ece438_v2 in your images.

• (Option 2) To download the latest ubuntu 24.04 image, use command
docker pull ubuntu:24.04
This should show up as the ubuntu image with tag 24.04

Docker uses containers instead of launching full-fledged virtual machines. These images
are temporary instances, and their storage is destroyed when you stop the container. If
we want persistent storage, we need to mount a hard drive corresponding to a folder in
your machine.

• First, create two working directories on your machine, one for each container in-
stance. The MPs in this course require two separate virtual machines/ containers.

• Then launch your Docker container using the following command:
docker run -dit –-cap-add=NET_ADMIN –-net <network name> -v
’<persistant/directory>:/main’ –-user $(id -u):$(id -g) –-ip <ip
address> –-name <container name> <image name>

• This command means the following:

– docker run -dit - starts the container with image <image name>

– <container name> - specifies the name of the container

– -v - specifies the host directory that will be used as persistent storage for the
container. This can be found inside the docker container in folder /main

– –-net <network name> is an internal docker network described in Section 4.3.

• Once the container is launched, we can connect to it using the command:
docker attach <container name>
This should open a bash shell

• To exit the container shell without shutting down the container, use command
control+P followed by control+Q

• To shutdown the container, you can type exit from inside its bash shell. To restart
it, use command
docker restart <container name>

• To check all containers, even those that are shutdown, use command
docker container ls –all

4.2 First steps
Once you have connected to the container, you can install all the dependencies using
apt-get. The container is extremely lightweight, so you should check if any commands
you normally find installed in Ubuntu by default are still available. Text editors may not
be available, so install those too. The other dependencies specified in the earlier part of
the MP should also be installed.

We also suggest setting up the git ssh keys during the first-time setup. Once all your
dependencies are installed, we would like to create a new image on top of the ubuntu image
that we can use for doing the assignments. Remember, only the persistent directory /main/
is retained after the container is deleted. All other files, including the install files and ssh
keys will be destroyed when the container is deleted. To create a new image:

• From the host command line, run command:
docker commit <container name> <new container image name>
To create a new ubuntu image with all your installs. You will be using this image
from now on for your MPs. This will save time since you don’t have to create a new
container with all the dependency installs.

5



• You can now use the previously created image to create a duplicate container you
will need to run the MPs.

4.3 Networking across containers
To allow docker instances to communicate with each other, they will need to be added to
the same network.

• To create a docker network, use command:
docker network create <network name>

• To connect your container to this network, use
docker network connect <network name> <container name>

• To check network properties, such as the IP address of the container, use command
docker network inspect <network name>

You should now be able to connect one container to another correctly. Try using ping to
check connectivity.

5 What Tips and Tricks Will be Useful?
Copy-pasting directly from pdf files is a bad idea. Dashes, quotes, and kerned characters
may get completely mis-represented when pasted in a terminal.

Never add compiled executables and object files to the git. You might lose points in
subsequent assignments if you add executables or object files to git. Use git add to add
only the source files (src folder), Makefile, and config.ini files.

MP0 is ungraded, but still very important to get you started. Performing this assignment
successfully will make submitting the subsequent assignments much easier.

6 How to Set Up VirtualBox VM Environment?
These instructions are here for legacy reasons. We highly recommend using Docker since
the autograder runs on Docker. To test your code, you will need a 64-bit Ubuntu 24.04
LTS VM of your own. (Even if you’re already running Ubuntu 24.04 LTS on your personal
machine, later assignments will use multiple VMs, so you might as well start using the
VM now.)

WARNING: COMPILATION CAN BE A LOT LESS PORTABLE THAN YOU
THINK, ESPECIALLY WHEN OSX/ EWS/ WSL IS INVOLVED. Please don’t assume
that it will be ok after testing it only on your personal machine or EWS. (Just don’t use
EWS at all; it is not well suited to classes that involve networked programming assign-
ments.)

A tutorial for installing Ubuntu on VirtualBox can be found at

http://www.psychocats.net/ubuntu/virtualbox.

This tutorial is for Windows, but VirtualBox works and looks the same on all OSes.

Note: If your machine is on ARM-architecture (e.g., M1 Macbook), you might want to
use other virtual machine solution like Docker, since VirtualBox does not support ARM
architecture. Please refer to Sec.4 for detail.

The Ubuntu 24.04 image: https://ubuntu.com/download

After the Ubuntu install process (within the VM), you should install the ssh server.
You can do sudo apt-get install openssh-server once the OS is installed. Use

6



apt-get (sudo apt-get install xyz) to install any programs you’ll need, like gcc,
make, gdb, valgrind. I would suggest also getting iperf and tcpdump, which will be
useful later.

Note: WSL (Windows-Subsystem for Linux) might work as one of your machine, but keep
in mind that some compiler actions might be different. If you are using WSL, please be
very careful about the undefined codeing behaviors, e.g., variable not initialized, memory
leakage, etc.

7 How to Set Up Networking Inside VMs?
VirtualBox’s default network setup is a NAT (which we’ll learn about later!) interface
to the outside world, provided by the host computer. This allows the VM to access the
Internet, but the host computer and other VMs will not be able to talk to it. We’re going
to replace the NAT interface with one that allows those communications.

However, BEFORE YOU MAKE THIS CHANGE, you should use that Internet access
to: sudo apt-get install gcc g++ make gdb iperf tcpdump wget

Now it’s time to replace the network interface. Make sure the VM is fully shut down, and
go to its Settings → Network section. Switch the Adapter Type from NAT to "host-only",
and click ok. Restart, and the VM will now be able to talk to other host-only VMs on
the same computer, as well as the host computer (for ssh). Finally, sshfs is an excellent
way to access the VM’s filesystem (or any other remote filesystem). On your host system,
sshfs 192.168.56.101: directory-to-mount-in will mount the VM’s filesystem as if
it were a USB flash drive. (Replacing the IP address with whatever it actually is, of
course). sshfs may not be available on all operating systems.

7


	Introduction
	What Is Expected in this MP?
	Git Instructions
	Course Setup (only once for the entire semester)
	Workspace Setup (necessary only once per computer/directory)
	Assignment Setup (necessary only once)
	Assignment Submission (do this often!)
	Verifying Submission
	How to See Your Grade?
	Final Grade for an MP

	Docker Instructions
	Docker Setup
	First steps
	Networking across containers

	What Tips and Tricks Will be Useful?
	How to Set Up VirtualBox VM Environment?
	How to Set Up Networking Inside VMs?

