
ECE/CS 438: Communication Networks Fall 2024

Machine Problem 1

Handed Out: Sep. 4th, 2024 Due: Sep. 18th 23:59, 2024

Student Name:

Abstract

This machine problem introduces you to a bare-bones HTTP client that
can get data from any web server. This is the kind of code that is running
in your browser. You will also create a HTTP server that can serve data to
other clients much like how a real server would function.

1 Introduction
In this assignment, you will implement a simple HTTP client and server. The client
will be able to GET correctly from standard web servers, and browsers will be able
to GET correctly from your server. The test setup will be two VMs, one server and
one client. Each test will use your client or wget, and your server or thttpd. Your
client doesn’t have to support caching or recursively retrieving embedded objects.
HTTP uses TCP – you can use Beej’s client.c and server.c as a base. Your server
must support concurrent connections: if one client is downloading a 10MB object,
another client that comes looking for a 10KB object shouldn’t have to wait for the
first to finish.

2 What is expected in this MP?

2.1 HTTP Client
Your client should run as
./http_client http://hostname[:port]/path/to/file
e.g.
./http_client http://127.0.0.1/index.html
./http_client http://illinois.edu/index.html
./http_client http://12.34.56.78:8888/somefile.txt
./http_client http://localhost:5678/somedir/anotherfile.html

If there is no :port, assume port 80 – the standard HTTP port. You should
write the file that you receive to a file called “output” (no file extension, like
txt or html). Here’s the very simple HTTP GET that wget uses:
GET /test.txt HTTP/1.1
User-Agent: Wget/1.12 (linux-gnu)
Host: localhost:3490
Connection: Keep-Alive

The GET /test.txt instructs the server to return the file called test.txt in the server’s
top-level web directory. User-Agent identifies the type of client. Host is the URL that the
client was originally told to get from – exactly what the user typed. This is useful in case
a single server has multiple domain names resolving to it (maybe www.cs.illinois.edu and
www.math.illinois.edu), and each domain name actually refers to different content. This
could be a bare IP address, if that’s what the user had typed. The 3490 is the port – this

1



server was listening on 3490, so I called “wget localhost:3490/test.txt”. Finally, Connection:
Keep-Alive refers to TCP connection reuse, which will be discussed in class.

Note that the newlines are technically supposed to be CRLF – so, “\r\n” on
a Unix machine.

Only the first line is essential for a server to know what file to give back, so your HTTP
GETs can be just that first line. HTTP specifies that the end of a request should
be marked by a blank line — so be sure to have two newlines at the end. (This
demarcation is necessary because TCP presents you with a stream of bytes, rather than
packets.)

2.2 HTTP Server
Now for the HTTP response. Here’s what Google returns for a simple GET of /in-
dex.html:

Your server’s headers will be much simpler (but still correct and complete): only include
the response code. When correctly returning the requested document, use HTTP/1.1 200
OK, like this example. When the client requests a non-existent file, return HTTP/1.1 404
Not Found. Note that you can still have document text on a 404 – allowing for nicely
formatted / more informative “whoops, file not found!” messages. For any other errors,
you may simply return 400 Bad Request. An important note: see how there’s a blank
line between the header and document text in the Google response? That’s a well de-
fined part of the protocol, marking the end of the header. Your server must include this
blank line. Again, HTTP newlines are CRLF. Your server should take the port to run on
as a command line argument, and should treat all filepaths it’s asked for as being rela-
tive to its current working directory. (Meaning just pass the client’s request directly to
fopen: if the client asks for GET /somedir/somefile.txt, the correct argument to fopen
is somedir/somefile.txt). Your server executable should be called http_server, e.g.:
sudo ./http_server 80
./http_server 8888
(The sudo is there because using any port <1024 requires root access.)

3 VM Setup
You’ll need 2 VMs to test your client and server together. Unfortunately, VirtualBox’s
default setup does not allow its VMs to talk to the host or each other. There is a simple
fix, but then that prevents them from talking to the internet. So, be sure you have done all
of your apt-get installs before doing the following! (To be sure, just run: sudo apt-get
install gcc make gdb valgrind iperf tcpdump ) Make sure the VMs are fully shut

2



down. Go to each of their Settings menus, and go to the Network section. Switch the
Adapter Type from NAT to “host-only”, and click ok (or you can add another host-only
network adapter also). When you start them, you should be able to ssh to them from the
host, and it should be able to ping the other VM. You can use ifconfig to find out the
VMs’ IP addresses. If they both get the same address, sudo ifconfig eth0 newipaddr
will change it. (If you make the 2nd VM by cloning the first + choosing reinitialize MAC
address, that should give different addresses.)

4 Docker
Similar instructions apply for this MP as MP0. You will need two containers connected
to the same network.

5 Autograder and Submission
Similar to the MP0, checkout your mp1 directory from the class repository if not done
previously:

git pull

git fetch release

git merge release/main -m “Merging release repository”

The contents of the checked out mp1 folder will be very similar like mp0 when you first
checked it out . Use those programs as a starting point and make the modifications
required for this assignment.

Modify the Makefile such that a simple make command in your mp1 folder creates the
required executables. The autograder does just that. Be careful about the executable
filenames and output filenames.

5.1 config.ini
You have also received the config file, config.ini, which is
unique for every MP. It should have the following format:
[MP]
version = <version number>
partner = NULL
teamname = Placeholder
final_grade_version = NULL

the version number applies as in MP0. Increment it to a value greater than 0 so the
autograder can grade your code. The partner field should contain your partner’s netid.
This can be changed per MP. The teamname field will allow you to view your submission
on the grading queue. Finally, the final_grade_version will allow you to choose which
version we should use to assign your final grade.

You can update your <partner> and <final_grade_version> up till the last
day of submission.

5.2 logs.txt and score_history.txt
These two files are in the _grades branch and can be used to check your previously
submitted versions, scores, and the number of extra days used.

3



5.3 Code submission
Follow the git instructions from MP0 to submit your code. Once the autograder is enabled,
you will be able to run the ./see_results.sh script to get the results.

Tests generally take 1-4 minutes, and there may be a queue of students. You can see where
you are in the queue at

http://cs438fa22.csl.illinois.edu:8080/queue/queue_mp1.html. This is a UIUC-
private IP. If your device is not accessing it through campus network, please use Illinois
VPN to get a private IP.

Caution: During the hours leading up to the submission deadline the queues could be
multiple hours long. So it is advisable to get your work done early.

PLEASE do not fall into the trap of “debugging on the autograder”. If you submit a new
version every time you make some change that might help pass an extra test, you are
going to waste a lot of time waiting for results. Rather, only submit when you have made
major progress or have definitively figured out what you were previously doing wrong.
If you aren’t genuinely surprised that your most recent submission didn’t increase your
score, you are submitting too often.

Your grade is the highest score that the auto-grader ever gives you.

6 Team Policy
This time, we will be using the github repo for logistics. For this reason, everyone part
of the course must have a github repo and must have merged and pushed the .release
files.

Both team members should update their partner’s name on the repo so that we can
pair up the team easily. If either one of you haven’t updated your partner’s netid, we will
have issues during grading.

If both of you have received scores, the group’s final grade will be the maximum of the
two scores.

6.1 quota.ini
Both team members can independently choose the number of extra days for any MP. So
you can choose to use 1 extra day if you submitted a day late, but your partner can
use none if they want to save them for later. You can update the quota.ini to assign
your extra days. There are 5 extra days, and this file can be updated till the end of the
semester.

7 Grade Breakdown
25%: you submitted your assignment correctly, and it compiles correctly on the autograder
(You must have at least successfully committed your files into git to benefit from this.)
25%: wget can retrieve files from your HTTP server
25%: your client can retrieve files from your HTTP server
25%: your server does concurrency correctly: 1 very long download does not block many
smaller downloads from starting immediately.
(We will use diff to compare the server’s copy with the downloaded copy, and you should
do the same. If diff produces any output, you aren’t transferring the file correctly.)

4



8 Notes
• You must use C or C++.

common mistake: libraries must go at the end of the compile command.

• Your program must have a Makefile; running "make" should build all executables.

• Do not put compiled binary files (*.o, the final executable) into git: 5% penalty.

• Do not use a public github repo. You will be held partially responsible for any
resultant plagiarism.

• Your code must be your own. You can discuss very general concepts with others,
but if you find yourself looking at a screenful/whiteboard of pseudocode (let alone
real code), you’re going too far.

• Refer to the class slides and official student handbook for academic integrity policy.
In summary, the standard for guilt is "more probable than not probable", and penal-
ties range from warnings to recommending suspension/expulsion, based entirely on
the instructor’s impression of the situation.

• The College of Engineering has some guidelines for penalties that we think are
reasonable, but we reserve the right to ignore them when appropriate.

• You can use libraries from wherever for data structures. You MUST acknowledge
the source in a README. Algorithms (e.g. Dijkstra’s) should be your own.

• Your code must run on the test setup, which is just some Ubuntu 16.04 LTS Server
VMs, running on VirtualBox.

• We will not look at your program on your laptop or EWS.

• Input files on the grader are READ-ONLY. Do not use the “rb+” mode to read
them; the “+” asks for write permission. (In general, you shouldn’t use “rb+” unless
you need it, which should be rare.)

• Input files on the grader are general binary data, NOT text.

• If you run the see_results.sh file on mp1 before the autograder has been activated,
your directory will move to the _grades branch. You will have to manually execute
git checkout main to get back to your working branch. DO NOT work on the
_grades branch!

• All of your source files will be checked for plagiarism. So do not use piece of code
outside of what has been provided in _release.

5


	Introduction
	What is expected in this MP?
	HTTP Client
	HTTP Server

	VM Setup
	Docker
	Autograder and Submission
	config.ini
	logs.txt and score_history.txt
	Code submission

	Team Policy
	quota.ini

	Grade Breakdown
	Notes

