
ECE/CS 438: Communication Networks Fall 2021

Machine Problem 4

Handed Out: Nov 20th, 2021 Due: Dec 6th, 23:59, 2021

TA: Yu-Lin Wei

This machine problem tests your understanding of the random backoff and medium access
in a wired network.

1 The Scenario

In this assignment, you will develop a toy simulator that evaluates the performance of sim-
plified CSMA protocols in a wired network. In this toy simulator, start with two nodes only
– nodes A and B – and assume each node always has packets to transmit to its counter-
part (later you will increase the number of nodes). To transmit a packet, a node picks an
integer random number from the range [0, R) and counts down as long as the channel is
idle. If the channel gets busy (because say node B has already started transmitting, or due
to a collision with another transmission), node A freezes its countdown and waits till the
channel is idle again. Once B finishes and the channel is idle, node A resumes countdown;
node B picks a new random number and also starts counting down at the same time. In
the actual assignment we will have more than 2 nodes and all nodes will perform the same
operation.

Now let’s see what happens when a collision occurs. Only nodes that were transmitting
at the time of the collision doubles the value of R (unless specified otherwise) and also
increments their collision count. When a node’s collision count reaches a maximum value
of M, the node gives up and drops this packet. It then resets R to its minimum specified
value, resets the collision count to zero again, and attempts a fresh new transmission.

An input file will provide you the following configuration parameters: number of nodes
N (not just 2), the packet length L, the minimum value of R (and how it increments), the
value of M, and the total simulation time T. Your goal is to evaluate the network utilization,
as described later.

2 Simplifying Assumptions

To keep the code simple, here is a list of assumptions you can make:

1. This simulation entirely takes place within one program, just like mp3.

2. Assume that clocks at all nodes are perfectly synchronized, which means all the nodes
have access to a global clock.

1



3. Assume that the transmission time of data packets are in multiples of clock ticks (e.g.,
a packet might last for say 10 clock ticks); also assume that the propagation delays
between all nodes are zero.

4. Assume that collisions are the only reason for packet corruption – if there is no
collision, the packet is always received correctly; also assume no ACKs are sent by
the receiver.

5. Assume that any processing (such as picking random numbers) takes zero time.

6. To fix the output and allow autograding, please use a pseudo number generator to
set the backoff time.

backoff = mod(nodeID + ticks,R) (1)

where nodeID and ticks both start from 0, and R is the backoff window.

7. At the start of each tick, please check if there are packets being transmitted or if
multiple packets are colliding at that tick. If there is no transmission or collision
(i.e., channel is idle), then all the nodes that have packets to transmit count down by
one tick.

3 Hints on How to Simulate

Now, here are hints on how you can develop such a toy simulator. Imagine that the clock
is a global integer variable which increments perhaps in a for loop. This simulates the
passage of time. Now for every increment of the clock, all events that happen at that time can be
inside the for loop. Now say two nodes are two structures that have their own backoff values,
e.g., nodeA.backoff and nodeB.backoff. The operation of counting down can be simulated by
decrementing the nodeA.backoff and nodeB.backoff variable in each iteration of the loop. Of
course, before counting down the channel needs to be sensed, which can be simulated by a global
flag, say channelOccupied. Once a node reaches zero, say A, it can begin transmission essentially
by setting the channelOccupied flag. Node B does not decrement its counter in this iteration since
the channelOccupied flag is already set.

If the packet lasts for say 10 clock ticks, then 10 iterations of the for loop occur without any
significant activity. After that, node A pretends that the packet has been transmitted, and hence,
resets the channelOccupied flag, and assigns a new random number to nodeA.backoff. In the
next iteration, both nodes can decrement their backoff values, simulating the notion of a resumed
count-down. Note that no real transmission of the packet is necessary.

Of course, the above is a sketch and some details are missing. For instance, you need to determine
how collisions can be simulated and accordingly count how many packets are getting transmitted
correctly. You also need to carefully design the order of events—in a given iteration of the for loop,
node A should not decrement its backoff value if node B is going to set the channelOccupied flag
later. Put differently, you need to check if there is any node who might set the channelOccupied
flag—if no node does so, only then can all nodes decrement their backoff.

2



4 Input Formats
Your program will be run using the following command: ./csma inputfilename
The input file will contain five items delimited by newlines. Each line starts with a character
denoting the parameter, followed by the value(s) of the parameter.
Note that we have swapped the M and R rows compared to the sample input in the released
code, so that you can know the length of R after reading M.

Sample Input:
N 4
L 2
M 6
R 4 8 16 32 64 128
T 10

This means that the number of nodes N is 4, the packet size L is 2 clock ticks, the initial random
number range is [0,R = 4) and R is increased to 8, 16, 32 and so on for each consecutive collision.
The maximum retransmission attempt M is 6, implying that after the 6th collision the node should
drop the packet and reset R to the minimum value 4. Finally, T denotes the total time of simulation
in terms of clock ticks.

Figure 1 shows the back-off values of each node at the start of each tick. Green slot denotes
a successful transmission, and orange slot indicates there is a collision. In both of these cases,
other nodes will pause the count down (marked as dark grey slots). Note that a node will set its
countdown using the pseudo number generator Eq. 1.

Node/T init 0 1 2 3 4 5 6 7 8 9

N0 0 0 0 2 1 1 1 0 7 6 6

N1 1 1 1 1 0 0 2 1 1 0 2

N2 2 2 2 2 1 1 1 0 1 0 11

N3 3 3 3 3 2 2 2 1 1 0 4

Figure 1: Back-off values at the start of each tick for every node.

For example, at the start of tick 5, node 1 will set its backoff to mod(1 + 5, 4) = 2. At the start of
tick 7, node 0 will set its backoff to mod(0 + 7, 8) = 7

5 Output Formats
Write the link utilization rate (round to 2 decimal place) to a file called "output.txt"

Sample Output:
0.40

Note that the link utilization rate is (the number of slots where a packet is transmitted without
collision) divided by T .

3



6 Notes
All the notes for the previous MPs still apply. We are not repeating those here for brevity.

New information:

1. Your project must include a Makefile whose default target makes executables called csma

2. Command line format: "./csma inputfile"

3. Please submit C/C++ code.

4. Please strictly follow the input/ output format.

Submission instructions are same as for mp3. Tests generally take 10-15 minutes, and there may
be a queue of students. You can see where you are in the queue at
http://fa21-cs438-01.cs.illinois.edu:8080/queue/queue_mp4.html.
Do refer to previous MP instructions for other notes.

4


	The Scenario
	Simplifying Assumptions
	Hints on How to Simulate 
	Input Formats
	Output Formats
	Notes

