Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Authentication
- 8.4 Integrity
- 8.5 Key distribution and certification

8: Network Security 8-42

Trusted Intermediaries

Symmetric key problem:

How do two entities establish shared secret key over network?

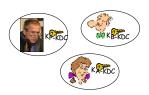
Solution:

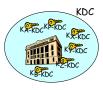
 trusted key distribution center (KDC) acting as intermediary between entities

Public key problem:

□ When Alice obtains
Bob's public key (from
web site, e-mail,
diskette), how does she
know it is Bob's public
key, not Trudy's?

Solution:

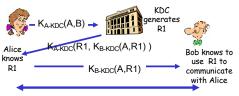

trusted certification authority (CA)


8: Network Security 8-43

42 43

Key Distribution Center (KDC)

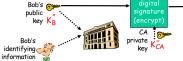
- □ Alice, Bob need shared symmetric key.
- KDC: server shares different secret key with each registered user (many users)
- □ Alice, Bob know own symmetric keys, K_{A-KDC} K_{B-KDC}, for communicating with KDC.



8: Network Security 8-44

Key Distribution Center (KDC)

Whow does KDC allow Bob, Alice to determine shared symmetric secret key to communicate with each other?

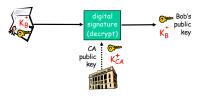

Alice and Bob communicate: using R1 as session key for shared symmetric encryption

8: Network Security 8-45

44 45

Certification Authorities

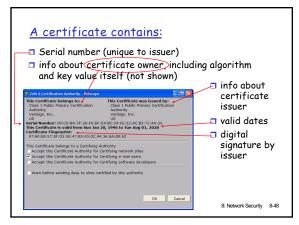
- Certification authority (CA): binds public key to particular entity, E.
- □ E (person, router) registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - o certificate containing E's public key digitally signed by CA
 - CA says "this is E's public key"

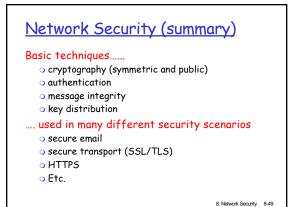

certificate for

Bob's public key, signed by CA

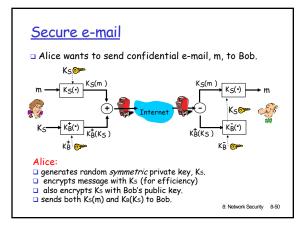
8: Network Security 8-46

Certification Authorities

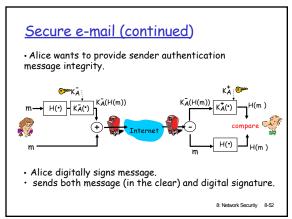

- □ When Alice wants Bob's public key:
 - o gets Bob's certificate (Bob or elsewhere).
 - o apply CA's public key to Bob's certificate, get Bob's public key



8: Network Security 8


46 47

1


48 49

Secure e-mail

Alice wants to send confidential e-mail, m, to Bob. $K_{S} \longrightarrow K_{S}(m) \longrightarrow$

50 51

Secure e-mail (continued)

• Alice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, sender authentication, message integrity.

**Notice wants to provide secrecy, wants to

52 53

2

Secure sockets layer (SSL)

- □ transport layer security to any TCPbased app using SSL services.
- used between Web browsers, servers for e-commerce (shttp).
- security services:
 - o server authentication
 - data encryptionclient authentication

- server authentication:
 - SSL-enabled browser includes public keys for trusted CAs.
 - Browser requests server certificate, issued by trusted CA.
 - Browser uses CA's
 public key to extract
 server's public key from
 certificate.
- check your browser's security menu to see its trusted CAs.

8: Network Security 8-54

SSL (continued)

Encrypted SSL session:

- □ Browser generates symmetric session key, encrypts it with server's public key, sends encrypted key to server.
- □ Using private key, server decrypts session key.
- ☐ Browser, server know session key

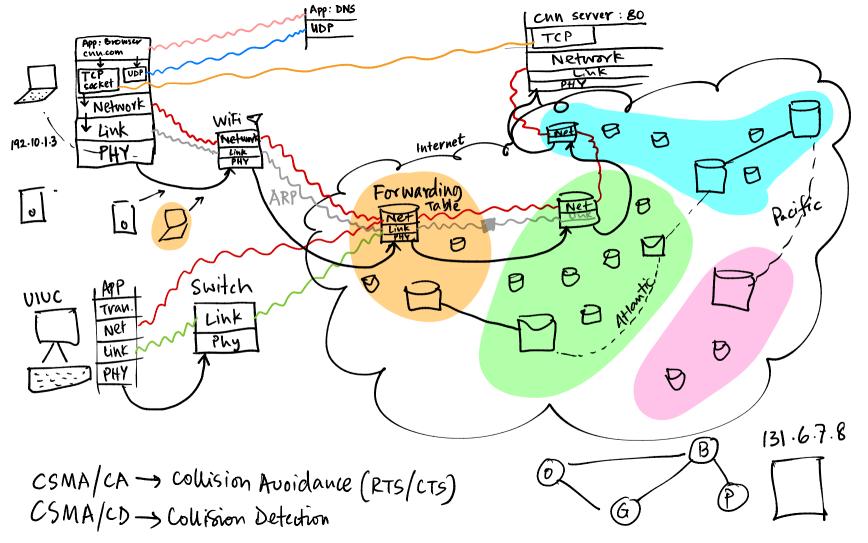
55

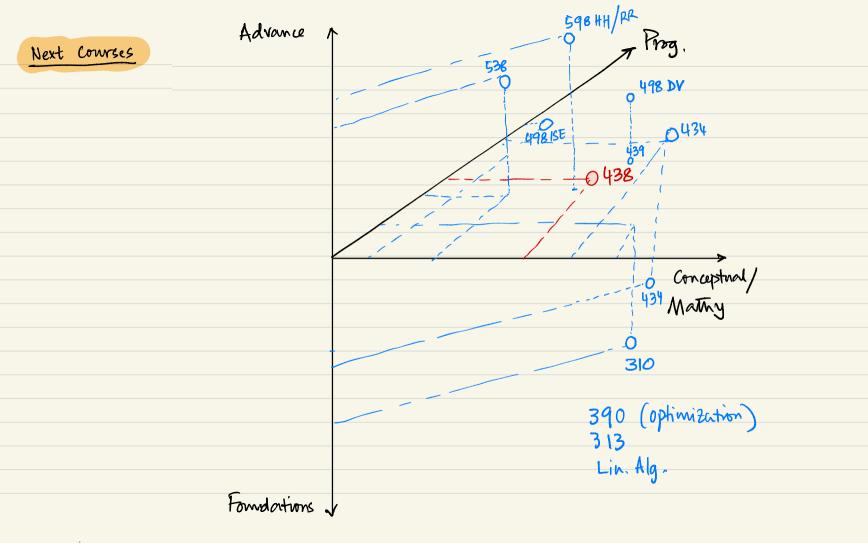
- o All data sent into TCP socket (by client or server) encrypted with session key.
- □ SSL: basis of IETF Transport Layer Security (TLS).
- □ SSL can be used for non-Web applications, e.g., IMAP.
- □ Client authentication can be done with client certificates.

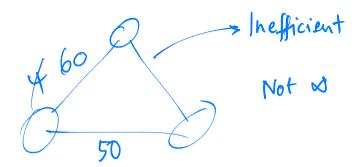
8: Network Security 8-55

54

End of Security!!! Questions


8: Network Security 8-56


56


1/	Cival Evan info	
1/	final Exam info	1/ Dec 17, 1:30 pm, In-person for
2/	course recap	on-campus students
3/ 4/	Follow-on courses Broad questions from students	Location: 141, 151 Loomis Lab UG -> Go to 141
51	Feedback forms.	Grad -> Go to 151
		2/ Dec 17, 8pm, Remote students
		-> Zoom link TBA on website
		→ Conflict also in this slot
		3/ Syllabus
		-> Comprehensive
		- More emphasis post midtern
		but TCP still important.
		4/ 1 page cheat sheet → 2 sides
		5/ Format -> similar to HW #4, midter
		61 Exam v 2hr long but you have 3hm
		7/ Another email will go out with
		comprehensive information.
		8/ No cellular network in syllabus.

Final Exam Info

Kast Class

