Multiple Access Links and Protocols

Two types of “links”:

- **point-to-point**
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host

- **broadcast** (shared wire or medium)
 - traditional Ethernet
 - Bluetooth
 - 802.11 wireless LAN
Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

Multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination
Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. When one node wants to transmit, it can send at rate R.

2. When M nodes want to transmit, each can send at average rate R/M.

3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots

4. Simple
MAC Protocols: a taxonomy

Three broad classes:

- **Channel Partitioning**
 - divide channel into smaller “pieces” (time slots, frequency, code)
 - allocate piece to node for exclusive use

- **Random Access**
 - channel not divided, allow collisions
 - “recover” from collisions

- **“Taking turns”**
 - Nodes take turns, but nodes with more to send can take longer turns
Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle
Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1, 3, 4 have pkt, frequency bands 2, 5, 6 idle
Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes

- two or more transmitting nodes \rightarrow “collision”,

- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)

- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA
Slotted ALOHA

Assumptions
- all frames same size
- time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation
- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with prob. \(p \) until success
Slotted ALOHA

Pros
- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Cons
- Collisions, wasting slots
- Idle slots
- Nodes must be able to detect collision in less than time to transmit packet
- Clock synchronization

Utilization = \#S
Efficiency = \#S + \#C + \#E
Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send.

- Suppose N nodes with many frames to send, each transmits in slot with probability p.
- prob that node 1 has success in a slot = p(1-p)^{N-1}
- prob that any node has a success = Np(1-p)^{N-1}

For max efficiency with N nodes, find p* that maximizes

\[Np(1-p)^{N-1} = f(p) \]

For many nodes, take limit of Np*(1-p*)^N as N goes to infinity, gives 1/e = .37

At best: channel used for useful transmissions 37% of time!
Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1, t_0+1]$
Pure Aloha efficiency

\[P(\text{success by given node}) = P(\text{node transmits}) \times \]

\[P(\text{no other node transmits in } [t_0-1,t_0]) \times \]
\[P(\text{no other node transmits in } [t_0,t_0+1]) \]
\[= p \times (1-p)^{N-1} \times (1-p)^{N-1} \]
\[= p \times (1-p)^{2(N-1)} \]

... choosing optimum \(p \) and then letting \(n \rightarrow \infty \) ...

Even worse!

\[= \frac{1}{2e} = .18 \]

18%
Carrier Sense Multiple Access (CSMA)

Listen before you talk.

is what I hear > usual noise in my hardware.

Both A and C need to run the following check constantly during pkt transmission:

is my transmitted signal = = my carrier sensed signal?

Condition to detect collision:

\[\text{Transmit time} > 2 \times \text{Prop. Delay} \]
Backoff is chosen from a range $[0, \text{cw}]$.

- Random
- Contention window ≈ 15
- $r_A = 10$
- $r_0 = 5$
- $r_D = 8$
- Backoff is busy, freeze backoff countdown.
- Once channel idle again, resume countdown from the frozen value.
- if collision \Rightarrow New CW = 2x old CW.
- if successful \Rightarrow new CW = 15 again.
Ethernet IEEE 802.3

Starting $CW = CW_{\text{min}} = 15 \Rightarrow \text{Pick } B/0 \sim [0, CW_{\text{min}}]$

K^{th} Collision $\Rightarrow 2^k CW \Rightarrow$ 1st collision $\sim [0, 31]$
2^{nd} collision $\sim [0, 63]$
\Rightarrow Exponential Backoff.

Upon success $\Rightarrow CW = CW_{\text{min}} = 15$

If failure after $K=3$ retransmit \Rightarrow Drop packet.

CSMA/CD \Rightarrow Collision Detection.
\Rightarrow The Tx detects the collision.
After class

A: Collision detection
B: SNR is inadequate, hence collision detection
C: Collision detection
D: Does not know that collision happened.

If E wants, E can sample the signal, get bits, & then check error detection code.
CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:
- If channel sensed idle: transmit entire frame
- If channel sensed busy, defer transmission
- Human analogy: don’t interrupt others!
CSMA collisions

Collisions can still occur:
Propagation delay means two nodes may not hear each other's transmission.

Collision:
Entire packet transmission time wasted.

Note:
Role of distance & propagation delay in determining collision probability.
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage

- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting

- human analogy: the polite conversationalist
CSMA/CD collision detection
“Taking Turns” MAC protocols

channel partitioning MAC protocols:
- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols
- efficient at low load: single node can fully utilize channel
- high load: collision overhead

“taking turns” protocols
look for best of both worlds!
“Taking Turns” MAC protocols

Polling:
- master node “invites” slave nodes to transmit in turn
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Token passing:
- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)
Summary of MAC protocols

- What do you do with a shared media?
 - Channel Partitioning, by time, frequency or code
 - Time Division, Frequency Division
 - Random partitioning (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11

- Taking Turns
 - polling from a central site, token passing
Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet
- 5.6 Hubs and switches
- 5.7 PPP
- 5.8 Link Virtualization: ATM