OCT 6, 2020 : TCP continued

Cong. Avoidance.
- CW = 10, SSThreshold = 8
- TCP is now in Cong. Avoid (CA) phase.
- Now, say A13 comes to Tx.
- Tx removes CW to: [14, ... , 23]
- CW = 10/8.
- Tx sends P23.

Packet Drop
- Tx
- Rx
- T10

ACKs dropped.
- Rx can optimize ACKs by sending ACKs for every K packets.
 - K often = 2.

Packet Drop

ACKs dropped

Cong. Avoidance

- CW
- SSThreshold
- Slow start
- Exp. increase
- Linear increase

Time (in RTT)

Packet Drop

ACKs dropped

Cong. Avoidance

- CW
- SSThreshold
- Slow start
- Exp. increase
- Linear increase

Time (in RTT)

Packet Drop

ACKs dropped

Cong. Avoidance

- CW
- SSThreshold
- Slow start
- Exp. increase
- Linear increase

Time (in RTT)

Packet Drop

ACKs dropped

Cong. Avoidance

- CW
- SSThreshold
- Slow start
- Exp. increase
- Linear increase

Time (in RTT)
DupACK \rightarrow \text{Out of order (000) pkt received by Rx}

Rx says let's wait 2 watch \rightarrow \text{no need to panic yet.}

\text{Triggers "fast recovery phase"}

\text{SSThreshold} = CW/2
\text{CW} = CW + 3
\text{CW} = 4 + 3 = 7
\left[5, 6, 7, 8, 9, 10, 11\right]

new pkts transmitted.
Fast Recovery (3 dupACK)

- Set \(\text{SST} = \text{CW}/2 \)
- Reward \(\text{CW} = \text{CW} + 3 \)
- Keep inc\(\uparrow \) \(\text{CW} \) for every new dupACK
- Once new ACK, treat as normal and inc\(\uparrow \) \(\text{CW} \) depending on slow start or CA.
$C_L = 8$

$[9, 16]$