Oct 15: TCP Complete

- TCP over wireless
- TCP RED
- End to end bottleneck bandwidth estimation (pkt pair)

\[I = v \]

Network Layer
TCP over wireless

BER (Bit error rate)

= prob. of bit error much higher in wireless than wired.

Wireless \sim 1 \text{ bit in error every } 10^{4-6} \text{ bits}

\quad 10^{-5}

Wired \sim 10^{-12}

Packet Drop

- Congestion (Router buffer filled up)
- Wireless Link failure

Cut back CW

Just retransmit.
Problem is → TCP doesn’t know the reason for packet drop.

Cross layer approaches → TCP asking Link layer for hints.

all N retransmission failing is very low prob.
Split TCP. Link layer is "SNOOPING" into TCP ACKs flowing through it.

TCP RED (Random Early Drop).

Random Drop packet when \(Q \) is beginning to fill up, say > 60%.

\(Q \) → increasing.

RED is a nice way for the network layer in the router to tell TCP Transmitter.
that Q is filling up, so cut back on CW (via Fast Recovery).

Note: Does not violate layering.

Packet Pair

TCP

\[\text{Bottleneck bandwidth} \]

\[100 \text{ Mbps} \]

\[20 \text{ Mbps} \]

\[30 \text{ Mbps} \]

\[40 \text{ Mbps} \]

\[\text{TCP Rx} \]
\[T = \frac{\text{Packet Size}}{\text{Bottleneck B/W}} \]

Transport layer done.