Oct 1: TCP

Selective ACK = Selective Repeat

Window size \(W \) = 4

Available Bandwidth

Your window size

\[W = f(\text{available bandwidth}) \]

\[= \text{fraction of bottleneck b/w} \]
The TCP Intuition
TCP protocol → Rx has buffer (Sel. Repeat)

Cumulative ACK (GBN)

① Cumulative ACK (GBN)

\[\perp_{\text{Aj}} \text{ implies that all packets until } j \text{ has been received by Rx} \]

Data Transport

Connection Setup

Called Exponential increase of \(CW \)

\(CW = 1 \)

\(CW = 2 \)

\(CW = 3 \)

\(CW = 4 \)

\(CW = 8 \)

RTT

SLOW START

Connection is doubling every RTT.
TCP says: After a while, reduce the rate at which CW increases.

\[\text{Threshold} = 8 \]

Upon every new ACK, \(\text{CW} = \text{CW} + \frac{1}{|\text{CW}|} \)

Congestion Avoidance \(\Rightarrow \text{increase CW by 1 per RTT} \)
The TCP Protocol (in a nutshell)

- T transmits few packets, waits for ACK
 - Called slow start

- R acknowledges all packet till seq #i by ACK i (optimizations possible)
 - ACK sent out only on receiving a packet
 - Can be Duplicate ACK if expected packet not received

- ACK reaches T → indicator of more capacity
 - T transmits larger burst of packets (self clocking) … so on
 - Burst size increased until packet drops (i.e., DupACK or timeout)

- When T gets DupACK or waits for longer than RTO
 - Assumes congestion → reduces burst size (congestion window)