WiFi based Indoor Localization

GPS signals do not penetrate into buildings.

- How about bringing GPS like trilateration to WiFi?
- Any challenges / problems?

GPS vs. WiFi

- Mostly line of sight (LOS) with few echoes or multipath.
- Heavy echo or multipath in indoor env.
- WiFi access points / BS / routers are not CLK sync. across diff owners.
- WiFi AP locations are unknown.
- GPS satellites are CLK syn.
- GPS satellite locations are known.
Key idea: 1999 WiFi standard → IEEE 802.11

WiFi RADAR → Localize laptops or PDA in indoor environments.

→ RSSI Fingerprinting.

Received Signal Strength Index

\[
\text{Power} = \frac{1}{K} \sum_{i=1}^{K} |S_i|^2
\]

\[
\text{Energy} = \sum_{i=1}^{K} |S_i|^2
\]

Calibration Fingerprinting

War driving Training

\[
P_1, P_2, P_3 \rightarrow L, \Theta ?
\]

<table>
<thead>
<tr>
<th>Loc</th>
<th>Ori.</th>
<th>(\text{RSSI}(W_1))</th>
<th>(\text{RSSI}(W_2))</th>
<th>(\text{RSSI}(W_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>N</td>
<td>(R_{1,(1,N)})</td>
<td>(R_{1,(2,N)})</td>
<td>(R_{1,(3,N)})</td>
</tr>
<tr>
<td>L1</td>
<td>E</td>
<td>(R_{1,(1,E)})</td>
<td>(R_{1,(2,E)})</td>
<td>(R_{1,(3,E)})</td>
</tr>
<tr>
<td>L1</td>
<td>W</td>
<td>(R_{1,(1,W)})</td>
<td>(R_{1,(2,W)})</td>
<td>(R_{1,(3,W)})</td>
</tr>
<tr>
<td>L2</td>
<td>N</td>
<td>(R_{2,(1,N)})</td>
<td>(R_{2,(2,N)})</td>
<td>(R_{2,(3,N)})</td>
</tr>
<tr>
<td>L2</td>
<td>E</td>
<td>(R_{2,(1,E)})</td>
<td>(R_{2,(2,E)})</td>
<td>(R_{2,(3,E)})</td>
</tr>
<tr>
<td>L2</td>
<td>W</td>
<td>(R_{2,(1,W)})</td>
<td>(R_{2,(2,W)})</td>
<td>(R_{2,(3,W)})</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>L500</td>
<td>N</td>
<td>(R_{500,(1,N)})</td>
<td>(R_{500,(2,N)})</td>
<td>(R_{500,(3,N)})</td>
</tr>
</tbody>
</table>
1) Nearest neighbor: Pick nearest labeled point and declare the label as the blue user's location.

2) K-Nearest neighbors and compute avg.

Can you find a scenario in which K-NN performs worse than NN?
Avg. location error over all test cases

100 red test cases out of 500 red measurements

Use k^* for new blue test case

WiFi localization \rightarrow 2m - 10m

avg 5m