How to measure range, \(r \)?

1. **Time**
 - Hard w/o time sync.
 - and WiFi AP location

2. **From power of**

3. **Power of transmitted and received signal**

 Received power at any distance \(r \) decays as

 \[P \propto r^{-n} \]

 Why?

 Because around the antenna is ...

 and every on the sphere should have equal received power (since).

 Thus, \(P_r = \)

4. **But with multipath/echo, \(P_r \) becomes more complicated**

 Delayed copies adding up.

 \[P_r = \]
\(\alpha = 2 \) in deep space
\(\alpha \approx 2.75 \) in soccer stadium
\(\alpha \approx 3.1 \) in apartment room
\(\alpha \) will vary

Also, LOS path not easy to pull out since it's a continuous mixture

\[\Downarrow \]
This motivates WiFi RADAR

But received signal can be modeled as
\[y = \alpha \text{los} + \]
\[y = \]

often called channel often called impulse response (RIR)

CIR is a \(h \) of
This opens 2 opportunities

1. Estimate CIR \('h' \) and use it as a
2. Estimate the of CIR and that should be the
Note in reality: \(y = \)...

Freq. domain: \(Y = H X + N \)

\[\hat{H} = \]

\[\hat{h} = \]

\(\hat{h} \) fingerprinting still needs

Also, environment changes modify \(h \).

But WiFi system use wide bandwidth (20MHz)

using methods

This means \((\hat{h}_{\text{sub}},) \) and fingerprint =

With 3 WiFi APs,

more dimensional space

or

Los power technique needs to know

and ... and also erroneous,

However, not needed