Problem 1: State True/False with a 1 line justification [5x4=20 points]

(a) A is a \(m \times n \) matrix with \(m < n \). The null space \(N(A) \) is always 0.

(b) The matrix \(A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \), when left multiplied with a second matrix \(B \) (i.e. \(B \ast A \)), subtracts twice of the first column of \(B \) from the second column of \(B \).

(c) For an orthonormal matrix \(Q \) (i.e., columns of \(Q \) are orthogonal to each other and the length of each column is 1), \(Q^{-1} = Q^T \).

(d) If \(b_1, b_2, b_3 \) form the basis of a space, then \(c_1b_1 + c_2b_2 + c_3b_3 = 0 \) implies that all \(c_1 = c_2 = c_3 = 0 \).

(e) Matrix \(A \) has 6 columns, each column being a 10 dimensional vector. You are told that \(N(A^T) \) is 5. Then, \(N(A) \) must be 1 and Rank(A) must be 5.

Problem 2: Symmetric Matrices [10+10=20 points]

(a) Prove that \(A^T A \) is a symmetric matrix.

Hint: use the basic properties of transpose, as discussed in class.

(b) Prove that \(\text{Rank}(AB) \leq \min\{ \text{Rank}(A), \text{Rank}(B) \} \)

Problem 3: Column Spaces [10+10=20 points]

(a) Choose \(b \) which gives no solution and another \(b \) which gives infinitely many solutions. Your answer should show two values of \(b \).

\[
3x + 2y = 10 \\
6x + 4y = b
\]

(b) Consider matrix \(A_{m \times n} \). You are told \(r = \text{Rank}(A) \) and \(r < m \) and \(r < n \). How many solutions are possible for the equation \(Ax = b \)? What is the dimensions of \(N(A) \)?
Problem 4 : Least Squares

Consider the following system of equations (called an over-determined system since there are more equations than unknowns):

\[x - y = 2 \] \hspace{1cm} (3)
\[x + y = 4 \] \hspace{1cm} (4)
\[2x + y = 8 \] \hspace{1cm} (5)

How many solutions exist for the above system of equations? If a solution exists find one, if not, determine the least squares solution for \(x \) and \(y \).

Problem 5 : Eigen values and Eigen vectors \hspace{1cm} \[10+10=20\text{ points}\]

(a) Prove that, for symmetric matrix \(A \), eigenvalues of matrix \(A^2 \) = (Eigenvalue of matrix \(A \))^2

(b) Prove that \[\lambda \left(A - \sigma I \right) = \left(\lambda(A) - \sigma \right) \]