
Chapter 3 – Instruction-Level Parallelism and

its Exploitation (Part 2)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)

Limitations of ILP

Multithreading (Section 3.11)

Putting it Together (Mini-projects)

Reducing penalties from control dependences

Basic idea

Hardware guesses

* Whether branch will be taken/not taken

* Where the branch will go

Especially important for multiple issue processors

Desirable properties

Good prediction rate

Make correct prediction fast

Don't slow too much on misprediction

Dynamic Branch Prediction

Maintain a buffer with prediction bits

Index buffer with LSBs of branch instruction PC

Predict based on indexed bit, change bit on misprediction

Accessed in ID stage (not useful for simple 5-stage pipeline)

Limitation of 1-bit predictor?

Branch Prediction Buffer (Appendix C)

Prediction bit

LSBs of PC

1

1

0

1

0

1

Variations on Branch Prediction Buffer

Variations

n-bit predictor

Correlating predictors

Tournament predictors

N-bit Predictor

Contains n-bit saturating counter

Count up if taken, down if not taken

Predict taken if  2**(n-1); predict not taken if < 2**(n-1)

2-bit good for loops

Correlating Predictors: (m,n) Predictor

Use outcome of previous m branches and n-bit predictors

For each branch, the prediction buffer contains

An entry for each possible history of previous m branches

Each entry is an n-bit predictor

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Correlating Predictors (Cont.)

(1,1) predictor

Prediction based on 1 previous branch,

1 bit predictor

Number of prediction entries per branch = ??

Number of bits per prediction entry = ??

Correlating Predictors Example

Loop:

If a == 1 /* b1 */

a = 0

If a == 0 /* b2 */

…

Let a = 1, 3, 1, 3, 1, 3, …

Notation: N=not taken; T=taken

Initialize (1,1) prediction buffer entries of b2 to NT

(1st entry for previous branch taken, 2nd for not taken)

Direction of b1:

Direction of b2:

History at b2:

Prediction entries of b2:

Prediction for b2:

Tournament Predictor

Combine multiple predictors with a selector

Often combine a global predictor and a local predictor

Selector typically two bit saturating counter

Increment when predicted predictor correct, other incorrect

© 2019 Elsevier Inc. All rights reserved.

Tournament Predictor Example - Alpha 21264

Uses 4K 2-bit counters to choose from global and local predictor

Global predictor

4K entries of 2-bit predictors

Indexed by history of last 12 branches

Local predictor is a two-level predictor

History table with 1K 10-bit entries (for that branch)

Each entry gives 10 most recent branch outcomes

Indexes table of 1K entries with 3-bit counters

Total of 29K bits

Misprediction rate

SPECfp95 – 1 per 1000

SPECint95 – 11.5 per 1000

More Predictors

Lots of work on branch prediction

International Branch Prediction Competition!

Branch Prediction Buffer Strategies: Limitations

Limitations

May use bit from wrong PC

Target must be known when branch resolved

Branch Target Buffer or Cache (Section 3.9)

Store target PC along with prediction

Accessed in IF stage

Next IF stage uses target PC

No bubbles on correctly predicted taken branch

Must store tag

More state

Can remove not-taken branches?

Branch Target Cache With Target Instruction

Store target instruction along with prediction

Send target instruction instead of branch into ID

Zero cycle branch - branch folding

Used for unconditional jumps

E.g., ARM Cortex A-53

Return Address Stack (Section 3.9)

Hardware stack for addresses for returns

Call pushes return address in stack

Return pops the address

Perfect prediction if stack length  call depth

Speculative Execution

How far can we go with branch prediction?

Speculative fetch?

Speculative issue?

Speculative execution?

Speculative write?

Speculative Execution

Allows instructions after branch to execute before knowing if branch

will be taken

Must be able to undo if branch is not taken

Often try to combine with dynamic scheduling

Key insight: Split Write stage into Complete and Commit

Complete out of order

No state update

Commit in order

State updated (instruction no longer speculative)

Use reorder buffer

Overview

Instructions complete out-of-order

Reorder buffer reorganizes instructions

Modify state in-order

Instruction tag now is reorder buffer entry

Reorder Buffer

Entry Busy Type Dest Result State Excep

1 0

2 1 LD 4 Exec 0

3 1 BR Exec 0

4 1 ADD 6 75 Compl 0

5 0

 0

N 0

tail

head

Re-order Buffer Pipeline

Issue:

Execute:

Complete:

Commit:

Precise Interrupts Again

Precise interrupts hard with dynamic scheduling

Consider our canonical code fragment:

LF F6,34(R2)

LF F2,45(R3)

MULTF F0,F2,F4

SUBF F8,F6,F2

DIVF F10,F0,F6

ADDF F6,F8,F2

What happens if DIVF causes an interrupt?

ADDF has already completed

Out-of-order completion makes interrupts hard

But reorder buffer can help!

Reorder Buffer for Precise Interrupts

Re-order Buffer Drawback

Operands need to be read from reorder buffer or registers

Alternative: Rename registers

Rename Registers + Reorder Buffer

Many current machines

More physical registers than logical registers

Reorder buffer does not have values

Read all values from registers

Rename mechanism

Rename map stores mapping from logical to physical registers

(Logical register Rl mapped to physical register Rp)

On issue, Rl mapped to Rp-new

On completion, write to Rp-new

On commit, old mapping of Rl discarded (free Rp-old)

On misprediction, new mapping of Rl discarded (free Rp-new)

