
Appendix C: Pipelining: Basic and Intermediate Concepts

Key ideas and simple pipeline (Section C.1)

Hazards (Sections C.2 and C.3)

Structural hazards

Data hazards

Control hazards

Exceptions (Section C.4)

Multicycle operations (Section C.5)

Pipelining - Key Idea

Ideally,
Timesequential

Pipeline DepthTimepipeline =

Timesequential

Timepipeline

Speedup = = Pipeline Depth

time time

instrnsinstrns

Latency Latency

1/Throughput

1/Throughput

Practical Limit 1 – Unbalanced Stages

Consider an instruction that requires n stages

s1, s2, . . ., sn, taking time t1, t2 , . . ., tn.

Let T = ti

Without pipelining With an n-stage pipeline

Throughput =

Latency =

Throughput =

Latency =

Speedup

Practical Limit 2 - Overheads

Let 0 be extra delay per stage

e.g., latches

 limits the useful depth of a pipeline.

With an n stage pipeline

1

+ max ti
Throughput =

n

T

Latency = n (+ max ti) n + T

ti

+ max ti

Speedup = n

Practical Limit 3 - Hazards

If we ignore cycle time differences:

Timesequential

Timepipeline
Pipeline Speedup = =

CPIsequential

CPIpipeline

Cycle Timesequential

Cycle Timepipeline

Pipeline Speedup =
CPIideal-pipeline Pipeline Depth

CPIideal-pipeline + Pipeline stall cycles

CPIideal-pipeline =
CPIsequential

Pipeline Depth

Pipelining a Basic RISC ISA

Assumptions:

Only loads and stores affect memory

Base register + immediate offset = effective address

ALU operations

Only access registers

Two sources – two registers, or register and immediate

Branches and jumps

Address = PC + offset

Comparison between a register and zero

The last assumption is different from the 6th edition of the text and

results in a slightly different pipeline. We will discuss in class.

A Simple Five Stage RISC Pipeline

Pipeline Stages

IF – Instruction Fetch

ID – Instruction decode, register read, branch computation

EX – Execution and Effective Address

MEM – Memory Access

WB – Writeback

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

i+4 IF ID EX MEM WB

Pipelining really isn't this simple

A Naive Pipeline Implementation

Figure C.28

of 5th edition

Pipelining really isn't this simple

Copyright © 2011, Elsevier Inc. All rights Reserved.

Hazards

Hazards

Structural Hazards

Data Hazards

Control Hazards

Handling Hazards

Pipeline interlock logic

Detects hazard and takes appropriate action

Simplest solution: stall

Increases CPI

Decreases performance

Other solutions are harder, but have better performance

Structural Hazards

When two different instructions want to use the same hardware

resource in the same cycle

Stall (cause bubble)

+ Low cost, simple

Increases CPI

Use for rare events

E.g., ??

Duplicate Resource

+ Good performance

Increases cost (and maybe cycle time for interconnect)

Use for cheap resources

E.g., ALU and PC adder

Structural Hazards, cont.

Pipeline Resource

+ Good performance

Often complex to do

Use when simple to do

E.g., write & read registers every cycle

Structural hazards are avoided if each instruction uses a resource

At most once

Always in the same pipeline stage

For one cycle

(no cycle where two instructions use the same resource)

Structural Hazard Example

Loads/stores (MEM) use same memory port as instrn fetches (IF)

30% of all instructions are loads and stores

Assume CPIold is 1.5

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB <— a load

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 ** IF ID EX MEM WB

i+4 IF ID EX MEM WB

How much faster could a new machine with two memory ports be?

Data Hazards

When two different instructions use the same location, it must

appear as if instructions execute one at a time and in the

specified order

i ADD r1,r2,

i+1 SUB r2,,r1

i+2 OR r1,--,

Read-After-Write (RAW, data-dependence)

A true dependence

MOST IMPORTANT

Write-After-Read (WAR, anti-dependence)

Write-After-Write (WAW, output-dependence)

NOT: Read-After-Read (RAR)

ADD r1,_,_ IF ID EX MEM WB

SW r1,100(r0) IF ID EX MEM WB

NOT OK!

CORRECT!

LW r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID EX MEM WB

LW r2,100(r0) IF ID EX MEM WB

r1 written

r1 read r1 written

r1 read

memory read

NOT OK!

memory written

Example Read-After-Write Hazards

(Unless LW instrn is at address 100(r0))

SUB _, r1,_ IF ID EX MEM WB

RAW Solutions

Solutions must first detect RAW, and then ...

Stall

(Assumes registers written then read each cycle)

+ Low cost, simple

Increases CPI (plus 2 per stall in 5 stage pipeline)

Use for rare events

ADD r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID stall stall EX MEM WB

r1 written

r1 read

RAW Solutions

Bypass/Forward/ShortCircuit

Use data before it is in register

+ Reduces (avoids) stalls

More complex

Critical for common RAW hazards

ADD r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID EX MEM WB

r1 written

r1 read

data available

data used

Additional hardware

Muxes supply correct result to ALU

Additional control

Interlock logic must control muxes

Bypass, cont.

Figure C.27

5th edition

Copyright © 2011, Elsevier Inc. All rights Reserved.

RAW Solutions, cont.

Hybrid solution sometimes required:

One cycle bubble if result of load used by next instruction

Pipeline scheduling at compile time

Moves instructions to eliminate stalls

LW r1,_,_ IF ID EX MEM WB

SUB _, r1,_ IF ID stall EX MEM WB

r1 written

r1 read

data available

data used

Before: After:

a = b + c; LW Rb,b a = b + c; LW Rb,b

LW Rc,c LW Rc,c

<— stall LW Re,e

ADD Ra,Rb,Rc ADD Ra,Rb,Rc

SW a, Ra

d = e - f; LW Re,e d = e - f; LW Rf,f

LW Rf,f SW a, Ra

<— stall SUB Rd,Re,Rf

SUB Rd,Re, Rf SW d, Rd

SW d, Rd

Pipeline Scheduling Example

Other Data Hazards

i ADD r1,r2,

i+1 SUB r2,,r1

i+2 OR r1,,

Write-After-Read (WAR, anti-dependence)

i MULT , (r2), r1 /* RX mult */

i+1 LW , (r1)+ /* autoincrement */

Write-After-Write (WAW, output-dependence)

i DIVF fr1, , /* slow */

i+1

i+2 ADDF fr1, , /* fast */

Control Hazards

When an instruction affects which instructions are executed next --

branches, jumps, calls

i BEQZ r1,#8

i+1 SUB ,,
. . .

i+8 OR ,,

i+9 ADD ,,

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i+1 IF (aborted)

i+8 IF ID EX MEM WB

i+9 IF ID EX MEM

Handling control hazards is very important

Handling Control Hazards

Branch Prediction

Guess the direction of the branch

Minimize penalty when right

May increase penalty when wrong

Techniques

Static – At compile time

Dynamic – At run time

Static Techniques

Predict NotTaken

Predict Taken

Delayed Branches

Dynamic techniques and more powerful static techniques later…

Handling Control Hazards, cont.

Predict NOT-TAKEN Always

NotTaken:

1 2 3 4 5 6 7 8

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

Taken:

1 2 3 4 5 6 7 8

i IF ID EX MEM WB

i+1 IF (aborted)

i+8 IF ID EX MEM WB

i+9 IF ID EX MEM WB

Don't change machine state until branch outcome is known

Basic pipeline: State always changes late (WB)

Handling Control Hazards, cont.

Predict TAKEN Always

1 2 3 4 5 6 7 8

i IF ID EX MEM WB

i+8 ‘IF’ ID EX MEM WB

i+9 IF ID EX MEM WB

i+10 IF ID EX MEM WB

Must know what address to fetch at BEFORE branch is decoded

Not practical for our basic pipeline

Handling Control Hazards, cont.

Delayed branch

Execute next instruction regardless (of whether branch is taken)

What do we execute in the DELAY SLOT?

Delay Slots

Fill from before branch

When:

Helps:

Fill from target

When:

Helps:

Fill from fall through

When:

Helps:

Delay Slots (Cont.)

Cancelling or nullifying branch

Instruction includes direction of prediction

Delay instruction squashed if wrong prediction

Allows second and third case of previous slide to be more

aggressive

Comparison of Branch Schemes

Suppose 14% of all instructions are branches

Suppose 65% of all branches are taken

Suppose 50% of delay slots usefully filled

CPIpenalty = % branches

(% Taken Taken-Penalty + % Not-Taken Not-Taken penalty)

Branch
Scheme

Taken
Penalty

Not-Taken
Penalty

CPI
Penalty

Basic Branch 1 1 .14

Not-Taken 1 0 .09

Taken0 0 1 .05

Taken1 1 1 .14

Delayed Branch .5 .5 .07

Real Processors

MIPS R4000: 3 cycle branch penalty

First cycle: cancelling delayed branch (cancel if not taken)

Next two cycles: Predict not taken

Recent architectures:

With deeper pipelines, delayed branches not very useful

Processors rely more on hardware prediction (will see later) or

may include both delayed and nondelayed branches

Interrupts

Interrupts (a.k.a. faults, exceptions, traps) often require

Surprise jump

Linking of return address

Saving of PSW (including CCs)

State change (e.g., to kernel mode)

Some examples

Arithmetic overflow

I/O device request

O.S. call

Page fault

Make pipelining hard

One Classification of Interrupts

1a. Synchronous

function of program and memory state

(e.g., arithmetic overflow, page fault)

1b. Asynchronous

external device or hardware malfunction

(printer ready, bus error)

Handling Interrupts

Precise Interrupts (Sequential Semantics)

Complete instrns before offending one

Squash (effects of) instrns after

Save PC

Force trap instrn into IF

Must handle simultaneous interrupts

IF –

ID –

EX –

MEM –

WB –

Which interrupt should be handled first?

Interrupts, cont.

Example: Data Page Fault

1 2 3 4 5 6 7 8

i IF ID EX MEM WB

i+1 IF ID EX MEM WB <— page fault (MEM)

i+2 IF ID EX MEM WB <— squash

i+3 IF ID EX MEM WB <— squash

i+4 IF ID EX MEM WB <— squash

i+5 trap —> IF ID EX MEM WB

i+6 trap handler —> IF ID EX MEM WB

Preceding instruction already complete

Squash succeeding instructions

Prevent from modifying state

‘Trap’ instruction jumps to trap handler

Hardware saves PC in IAR

Trap handler must save IAR

Interrupts, cont.

Example: Arithmetic Exception

1 2 3 4 5 6 7 8

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB <— Exception (EX)

i+3 IF ID EX MEM WB <— squash

i+4 IF ID EX MEM WB <— squash

i+5 trap —> IF ID EX MEM WB

i+6 trap handler —> IF ID EX MEM WB

Let preceding instructions complete

Squash succeeding instruction

Interrupts, cont.

Example: Illegal Opcode

1 2 3 4 5 6 7 8

i IF ID EX MEM WB

i+1 IF ID EX MEM WB

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB <— ill. op (ID)

i+4 IF ID EX MEM WB <— squash

i+5 trap —> IF ID EX MEM WB

i+6 trap handler —> IF ID EX MEM WB

Let preceding instructions complete

Squash succeeding instruction

Interrupts, cont.

Example: Out-of-order Interrupts

1 2 3 4 5 6 7 8

i IF ID EX MEM WB <— page fault (MEM)

i+1 IF ID EX MEM WB <— page fault (IF)

i+2 IF ID EX MEM WB

i+3 IF ID EX MEM WB

Which page fault should we take?

For precise interrupts – Post interrupts on a status vector associated with

instruction, disable later writes in pipeline

Check interrupt bit on entering WB

Longer latency

For imprecise interrupts – Handle immediately

Interrupts may occur in different order than on a sequential machine

May cause implementation headaches

Interrupts, cont.

Other complications

Odd bits of state (e.g., CCs)

Early writes (e.g., auto-increment)

Out-of-order execution

Interrupts come at random times

The frequent case isn't everything

The rare case MUST work correctly

Multicycle Operations

Not all operations complete in one cycle

Floating point arithmetic is inherently slower than integer

arithmetic

2 to 4 cycles for multiply or add

20 to 50 cycles for divide

Extend basic 5-stage pipeline

EX stage may repeat multiple times

Multiple function units

Not pipelined for now

Handling Multicycle Operations

Four Functional Units

EX: Integer unit

E*: FP/integer multiplier

E+: FP adder

E/: FP/integer divider

Assume

EX takes one cycle & all FP units take 4

Separate integer and FP registers

All FP arithmetic from FP registers

Worry about

Structural hazards

RAW hazards & forwarding

WAR & WAW between integer & FP ops

Simple Multicycle Example

1 2 3 4 5 6 7 8 9 10 11

int IF ID EX MEM WB

fp* IF ID E* E* E* E* MEM WB

int IF ID EX MEM WB? (1)

fp/ IF ID E/ E/ E/ E/ MEM WB

int IF ID EX ** MEM WB (2)

fp/ (3) IF ID ** ** E/ E/

int (4) IF ** ** ID EX

Notes

(1) WAW possible only if?

(2) Stall forced by?

(3) Stall forced by?

(4) Stall forced by?

FP Instruction Issue

Check for RAW data hazard (in ID)

Wait until source registers are not used as destinations by

instructions in EX that will not be available when needed

Check for forwarding

Bypass data from other stages, if necessary

Check for structural hazard in function unit

Wait until function unit is free (in ID)

Check for structural hazard in MEM / WB

Instructions stall in ID

Instructions stall before MEM

Static priority (e.g., FU with longest latency)

FP Instruction Issue (Cont.)

Check for WAW hazards

DIVF F0, F2, F4

SUBF F0, F8, F10

SUBF completes first

(1) Stall SUBF

(2) Abort DIVF's WB

WAR hazards?

More Multicycle Operations

Problems with Interrupts

DIVF F0, F2, F4

ADDF F2, F8, F10

SUBF F6, F4, F12

ADDF and SUBF complete before DIVF

Out-of-order completion

Possible imprecise interrupt

What happens if DIVF generates an exception after ADDF and

SUBF complete??

We'll discuss solutions later

