

IBM POWER9

Talal Touseef, Talha Waheed, Muhammad Taimoor Tariq

{touseef2, twaheed2, mttariq2}@illinois.edu

Introduction

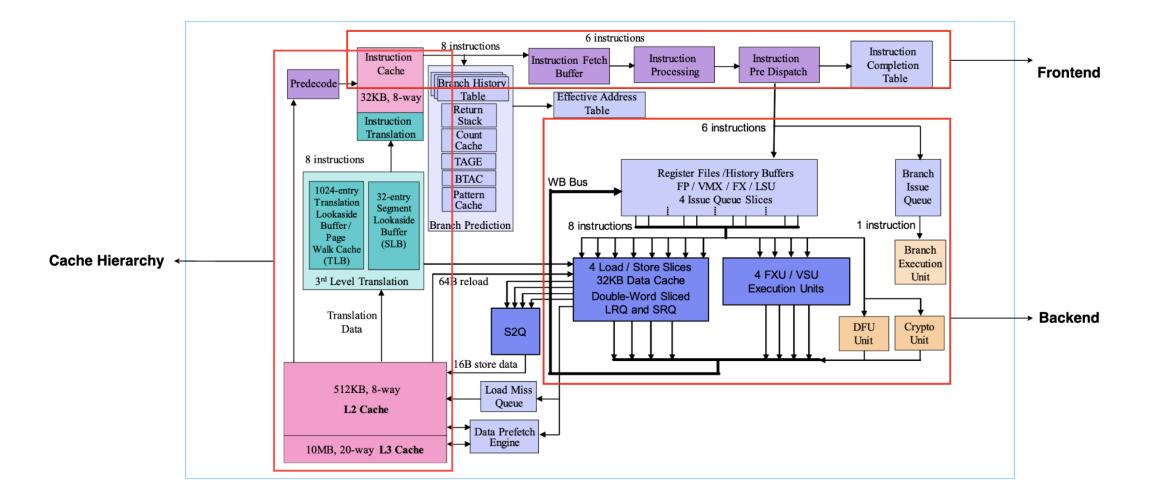
- Superscalar
- Symmetric (shared memory architecture) multiprocessor
- Designed for servers and large-cluster systems

Different target implementations

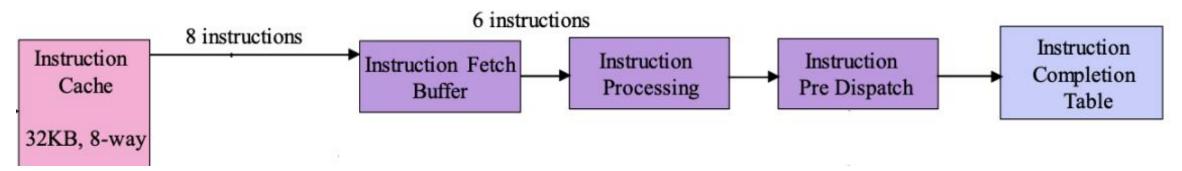
Four targeted implementations	Core count/size	
	<u>SMT4 core</u> 24 SMT4 cores/chip	<u>SMT8 core</u> 12 SMT8 cores/chip
SMP scalability/memory subsystem	Linux ecosystem optimized	PowerVM ecosystem continuity
Scale-out-2 socket optimized Robust two-socket SMP system Direct memory attach • Up to eight DDR4 ports • Commodity packaging form factor	CCCCCCCCCCC CCCCCCCCCC Cache and interconnect Cidevous do UDB PCle 4.0 25G link 16G	CCCCCCCCCC Cache and interconnect CCCCCCCCCC Cache and interconnect U U U U D D R PCle 4.0 25G link 16G
Scale-up-2 multisocket optimized Scalable system topology/capacity • Large multisocket • Additional lanes of 25G link (96 total) Buffered memory attach • 8 buffered chappels	Memory I/O NVLink Accel Accel Accel	Memory I/O BoenCAPI SMP Accel Accel

Centaur PCIe 4.0 25G link

16G

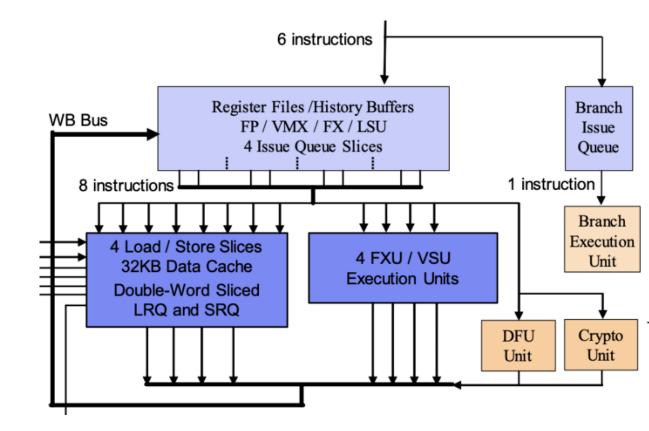

Centaur PCIe 4.0

25G link


16G

8 buffered channels

Core Microarchitecture


Core Frontend

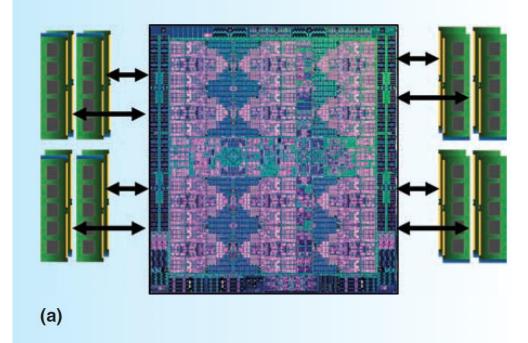
- 8 instructions placed into IFB every cycle
 - IFB capacity: 96 instructions
- 6 instructions decoded concurrently every cycle
 - Some instructions cracked into 2 or 3 instructions
 - Costs 2 cycles in the pipeline
- Instructions speculatively dispatched in-order

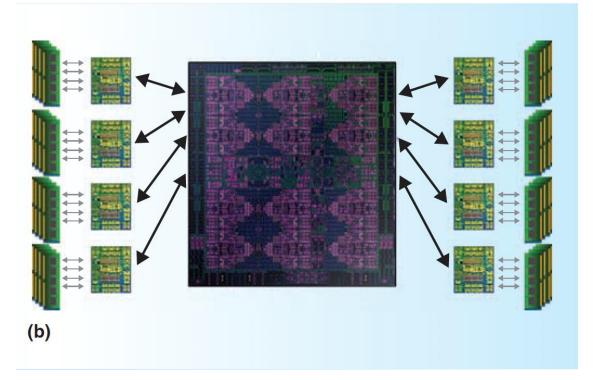
Core Backend

- History buffer & Register Renaming used for O-o-O execution
- 11 pipelined FU:
 - 4 LSU
 - 4 FXU/VSU
 - 1 Branch Execution Unit
 - 1 DFU
 - 1 Crypto Unit

Branch Prediction

- 4 branch history/prediction tables (8K entries with 2-bits)
 - 1 supplementary TAGE predictor
- Selector decides to either use local or global predictor
- Latencies:
 - 3 cycles for regular predictors
 - 5 cycles for TAGE predictor


Load/Stores


- 4 reads, one write per cycle
 - If no conflict between the write and a read
- On an L1 D-cache hit, 4 cycle load-use penalty
 - 3 cycle penalty between load and a dependent op
- Out of order loads:
 - Total of 76 outstanding loads
 - Done through load reorder queues
 - Keeps track of out of order loads and watches for hazards
- Load-miss queue
 - Keeps track of loads that have missed the L1 D-cache
 - Merges multiple loads of the same cache line into one entry

Data prefetch

- Adaptive prefetch mechanism
 - Adapt prefetch aggressiveness to increase performance based on prefetch consumption and memory bandwidth
- Prefetches and allocates ahead of demand into
 - L1 D-cache from the L3 cache.
 - L3 cache from memory.

Memory Hierarchy Overview

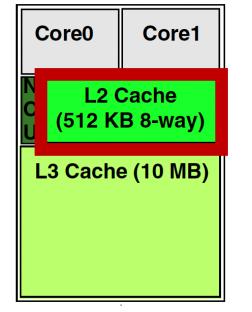
- Scale-out:
 - Direct attach
 - 8 DDR4 ports

- Scale-up:
 - Buffered memory attach
 - 8 buffered channels


Cache Overview

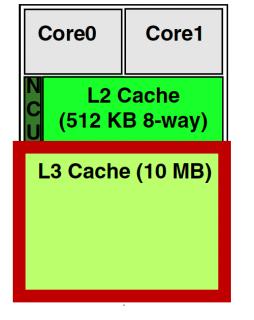
- Three levels of cache hierarchy:
 - L1 (I-cache, D-cache),
 - L2,
 - L3
- Dynamically shared between different threads
- Cache line:
 - 128-bytes

L1 Cache


- Dedicated L1 cache for each core
- Separate I-cache and D-cache (each 32 KB)
- All cache lines in L1 are also present in L2
- 8-way set associative
 - Indexed with virtual address, but...
 - tag comparison on physical address -> no synonym hazard
- Dual banked
- Writethrough, no-allocate
- Pseudo-LRU replacement policy

L2 and L3 Caches (in SMT4 version)

L2 Cache


Processor Pair Cache Slice

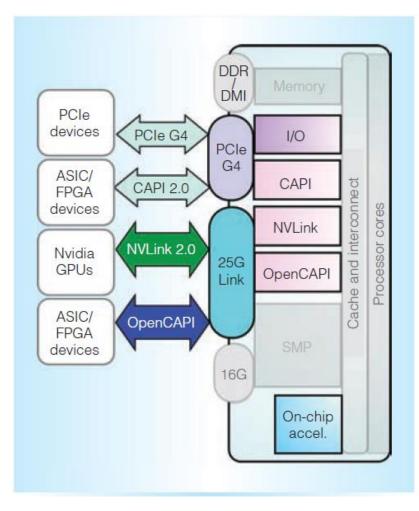
- 512 KB
- 128-byte line
- 8-way associative
- Write-back, write-allocate
- Maintains full-hardware coherence within the system

L3 Cache

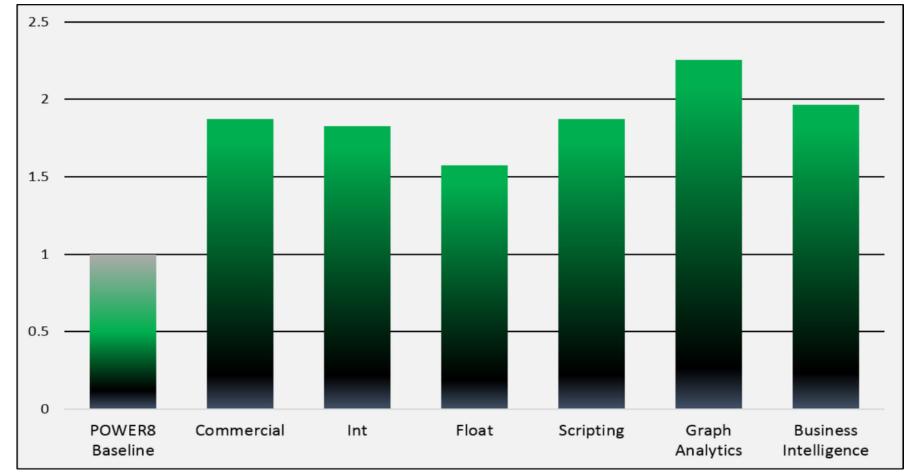
Processor Pair Cache Slice

- 10 MB
- 20-way associative
- 10 banks
- Victim cache
 - for L2 and L1 caches
- Maintains full-hardware coherence within the system

Multicore & Multithreading


- Supports Simultaneous Multithreading
 - Up to 4 threads per core for SMT4 version
 - Shares core execution resource
- HW support for:
 - Thread prioritization
 - Balance work between threads
 - Forward progress

SMP Interconnect


- Underlying hardware for cache-coherent multiprocessing
- Provides coherent and non-coherent memory access, I/O operations, interrupt communication, and system controller communication
- Integrated on the POWER9 chip (with 24 cores & on-chip memory system)
- Cache coherence is maintained by using a snooping protocol

Accelerators

- On chip accelerators:
 - GZIP & 842 compression/decompression engines
 - AES & SHA cryptographic hash engines
- Off chip accelerators:
 - CAPI & OpenCAPI interfaces:
 - Connect ASIC and field-programmable gate array (FPGA) devices
 - Nvidia NVLink 2.0 interface:
 - Connect Nvidia GPUs
 - Coherent memory sharing
 - Reduces overhead due to data interactions between CPU & accelerators

Performance

The graph represents a scale-out model of similar specs at a constant frequency.

References

- IBM Power 9 Processor User's Manual
- IBM Power 9 SMT Deep Dive Summit Training Workshop Brian Thompto
- IBM Power 9 Introduction Summit Training Workshop Brian Thompto
- <u>S.K. Sadasivam, B. W. Thompto, R. Kalla and W. J. Starke, "IBM Power 9</u> Processor Architecture" in IEEE Micro
- Power 9 Microarchitectures IBM WikiChip

Thank you!

Happy to take your questions

Backup slides

Address translation

• TLB:

- 1024-entry, 4-way set-associative
- Shared by the four threads
- 4 KB, 64 KB, 2 MB, 16 MB, 1 GB, and 16 GB pages are supported in the TLB
- Hardware-based reload (from the L2 cache interface; no L1 D-cache corruption)
- Support for four concurrent table walks
- Hit-under-miss is allowed
- Binary LRU replacement policy