AMD Zen Architecture

Boru Chen (boruc2) Runyao Fan (runyaof2) Matt Hokinson (mkh7) Jadon Timothy Schuler (jadonts2)

Overview

- Zen microarchitecture
- Memory Hierarchy
- Multicore
- Security

Zen Microarchitecture

Zen Microarchitecture

- AMD64 ISA
- First came out in 2017
- Zen 4: 2022
- Details of Zen 3 readily available

Core Microarchitecture

- Zen 3 reports 19% increase in IPC compared to Zen 2, and Zen 4 reports 13% increase in IPC compared to Zen 3
- Better Branch Prediction
- Greater Parallelism in Integer Execution
- Greater Parallelism in Floating-point Execution

Core Microarchitecture - Branch Prediction

Figure 3.7 A five-component tagged hybrid predictor has five separate prediction tables, indexed by a hash of the branch address and a segment of recent branch history of length 0-4 labeled "h" in this figure. The hash can be as simple as an exclusive-OR, as in gshare. Each predictor is a 2-bit (or possibly 3-bit) predictor. The tags are typically 4-8 bits. The chosen prediction is the one with the longest history where the tags also match.

TAGE (TAgged GEometric predictors):

N predictors are used, where each predictor is indexed using a hash of PC and global branch history of varying length following a geometric series (eg: 0, 2, 4, 8, 16 when N = 5, P(0) does not consider any branch history).

Part of a predictor entry is used for tag match, where a tag is compared with a hashed value of PC and global branch history

Prediction made based on predictor with longest history and tag match.

John L. Hennessy and David Patterson, "Computer Architecture: A Quantitative Approach", Elsevier, sixth edition <u>https://hal.inria.fr/hal-03408381/</u>

Core Microarchitecture - Branch Prediction

Some improvements of Zen 3 architecture (compared to Zen 2):

L1 branch target buffer: 512 -> 1024 entries

L2 branch target buffer: 6656 entries

Indirect target array for indirect branches: 768 -> 1536 entries

https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9718180 https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9567108 https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9473057

Core Microarchitecture - Integer Execution

Improvements of Zen 3 architecture (compared to Zen 2):

Reorder buffer: 224 -> 256 entries

Overall integer execution unit issue width: 7 -> 10

Instead of adding more ALUs which is costly, added new branch and store data capabilities at a lower cost, without extra write port overhead

> https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9718180 https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9567108 https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9473057

Core Microarchitecture - Floating-point Execution

Some improvements of Zen 3 architecture (compared to Zen 2):

Scheduler: 36 -> 64 entries

Dedicated Float-to-int and store units

Greater utilization of main functional units (2 add units and 2 mult units) on actual compute instructions

AVX-512

- New instruction set for 512-bit vector instructions, implemented with multiple 256-bit SIMD execution units
- Able to store only a single ROB entry for each instruction
- However, Zen has a small store queue, and can therefore only handle a single 265-bit store per cycle

https://www.techpowerup.com/300936/amd-launches-4th-gen-epyc-genoa-zen-4-se rver-processors-100-performance-uplift-for-50-more-cores#g300936-32 https://www.amd.com/en/campaigns/epyc-9004-architecture

Memory Hierarchy

Load/Store Unit

- 3 memory operation per cycle
- 72 out-of-order loads
- 24 outstanding missing with Miss Address Buffer
- Store to load forwarding (when older store contains load's bytes)
- Write combining operations
- Prefetcher
 - L1 stream/L1 stride/L1 region/L2 stream/L2 Up(down)

(PUB)

• MSR disable prefetcher

Cache

- L1 cache
 - 32KB 8-way L1 D Cache
 - Write back
 - ECC
 - 32KB 8-way L1 I Cache
 - Prefetch with branch predictor
 - Parity
 - Linear address utag/way-predictor
- 512KB 8-way L2 Cache (1MB for Zen
 - **4**)
 - Write back
 - Inclusive
- 32MB L3 Cache
 - Write back
 - Mostly exclusive (read code, shared by multiple cores)
 - Shadow L2 tag

56665, Software Optimization Guide for AMD Family 19h Processors (PUB) https://www.amd.com/en/technologies/zen-core-3

Linear address utag/way-predictor

- How work?
- Strength:
 - Speculative load data (bypass address translation)
 - Reduce bank conflicts
 - Less power consumption (large physical tag, small utag)
- Weakness:
 - Address alias
 - Continuous missing
 - Security issue
 - Timing side-channel

56665, Software Optimization Guide for AMD Family 19h Processors (PUB)

https://mlq.me/download/takeaway. pdf

TLB

• L1 ITLB / L1 DTLB

- Fully-associative
- 64 entries
- 4Kbyte/2Mbyte/1Gbyte page entries
- L2 ITLB
 - 8-way set associative
 - 512 entries
 - 4Kbyte/2Mbyte page entries

• L2 DTLB

- 16-way set associative
- o 2048 entries
- 4Kbyte/2Mbyte page entries
- 6 Page Table Walkers

56665, Software Optimization Guide for AMD Family 19h Processors (PUB)

Multicore

Multicore - Overview (EPYC 9004)

Every core supports Simultaneous Multithreading (SMT)

- Each core supports **2 hardware threads**
- Hardware threads share a core's L2 cache

Cores are further divided into Core Complexes (CCX)

- 8 cores per CCX
- 16 total concurrent hardware threads
- Shared L3 cache

Placed on a Core Complex Die (CCD)

Multicore - Core Complexes

Figure 1-2: Eight Compute Cores sharing an L3 cache within a single Core Complex Die (CCD)

Figure 1-3: AMD EPYC 9004 Series Processor internals interconnect via AMD Infinity Fabric (12 CCD processor shown)

Multicore - Infinity Fabric: The Interconnect

- This is where the magic happens!
- Used between cores, memory, CPUs, and more
- 36 Gb/s between CCX and I/O die
- I/O die offers 12 Infinity Fabric interfaces for CCXs
 - Each CCX supports up to 2 interfaces (72 Gb/s max bandwidth)
- Some **PCIe** lanes are shared with **Infinity Fabric**, so tradeoff between interprocessor communication and I/O lanes

Multicore - Infinity Fabric Continued

- Not much up-to-date info, unfortunately
- SDF (Scalable Data Fabric)
 - Data communication plane
- Cache Coherent Master (CCM)
 - Handles coherency
- Coherent AMD Socket Extender
 - CAKE links dies/chips together
- Key Takeaway:
 - Topology is configurable!

Multicore - Network Topology

• NUMA (Non-Uniform Memory Access), 4 NPS (Nodes Per Socket) shown

Figure 1-4: The AMD EPYC 9004 System on Chip (SoC) consists of up to 12 CCDs and a central IOD

Multicore - Network Topology Continued

- NUMA is configurable in BIOS!
 - **NPS=2:** Affinity is based on halves rather than quadrants
 - **NPS=1:** The entire processor is a single NUMA node
 - LLC as NUMA: Each CCD is treated as a NUMA node by its L3 cache
- Dual Socket Configuration
 - 2 identical processors connected via **xGMI (external GMI)**
- Up to 64 lanes of **CXL 1.1+** (Compute Express Link) for memory expansion
- Cache coherence
 - MOESI (Modified, Owned, Exclusive, Shared, Invalid) protocol used (from AMD64)

https://www.amd.com/system/files/documents/58015-epyc-9004-tg-architecture-overview.pdf

https://www.amd.com/system/files/TechDocs/24592.pdf

Security

- AMD Infinity Guard
- AMD Memory Guard
- AMD Shadow Stack
- Side Channel Defenses

AMD Infinity Guard

- Part of the AMD Secure Processor build in to AMD Zen Chips
 - Runs on 32-bit microcontroller with it's own secure OS
- Supports an array of features
 - HW Validated Boot
 - AMD Secure Memory Encryption (SME)
 - AMD Secure Encrypted Virtualization (SEV) and Secure Nested Paging (SNP)

SEV-SNP

- Idea: Want strict isolation between different virtualized guests
- Gives each VM their own encryption key
- Isolation Focus: Use RMP (Reverse Map table) to ensure integrity/access permissions
- RMP also enforces that there can be no aliasing of physical pages and memory remapping can only be done by trusted entities

		AMD EPYC 7002 Series	AMD EPYC 7003 Series	AMD EPYC 9004 Series
Increasing VM Isolation	Multi-key memory encryption for SCMMemory Protection (SMP)Register Encryption (SEV-ES)Memory Encryption (SEV)	Protect virtual machine memory (SEV) and registers (SEV-ES) Scalability: • 256 threads • Up to 509 keys	Help protect against malicous hypervisor with secure nested paging (SEV-SNP) Support for unmodified guest operating systems Scalability: • 256 threads • Up to 509 keys	Strengthen security with 256-bit AES-XTS Support for persistent memory encryption FIPS certification Scalability: • Up to 1006 keys for SEV • Up to 64 keys for SME-MK

Virtualization Defenses

https://www.amd.com/en/campaigns/epyc-9004-architecture

AMD Memory Guard

- Built into the AMD Secure Processor (ASP)
- Threat: Some encryption metadata (AES Keys) stored in the DRAM can be read in cold boot attacks or DRAM snooping
- Memory guard provides fast (HW supported) AES encryption with random keys, stored within the processor itself

Shadow Stack and Side Channels

- Control Flow Hijacking (ROP)
- Uses a shadow stack to ensure integrity of return addresses

- Spectre
- Optional protection to track source of BTB entries
 - Guest/Thread/Process tagged in the buffer, goal is to avoid malicious/benign interference
 - Can flush BTB so that we don't use speculative entries installed by others

https://www.amd.com/en/processors/amd-secure-encrypted-virtualization https://www.amd.com/en/technologies/infinity-guard