
CS433: Computer Architecture – Fall 2022
Homework 4

Total Points: Undergraduates (32 points), Graduates (50 points)
Undergraduate students: only Problem 1. Graduate students: all problems.

This homework is only for practice. Please do not submit
solutions. They will not be graded.

Problem 1 [32 points]:

Consider the following architecture.

Functional Unit
Type

Cycles in EX Number of
Functional Units

Pipelined

Integer 1 1 No

FP Add/Subtract 3 1 Yes

FP/Integer
Multiplier

6 1 Yes

FP/Integer Divider 24 1 No

● In this problem we will use the 5-stage MIPS pipeline.
● The integer functional unit performs integer addition (including effective address

calculation for loads/stores), subtraction, and logic operations.
● There is full forwarding and bypassing, including forwarding from the end of an FU to the

MEM stage for stores.
● Loads and stores complete in one cycle. That is, they spend one cycle in the MEM stage

after the effective address calculation.
● There are as many registers, both FP and integer, as you need.
● There is one branch delay slot.
● While the hardware has full forwarding and bypassing, it is the responsibility of the

compiler to schedule such that the operands of each instruction are available when
needed by each instruction.

● If multiple instructions finish their EX stages in the same cycle, then we will assume they
can all proceed to the MEM stage together. Similarly, if multiple instructions finish their
MEM stages in the same cycle, then we will assume they can all proceed to the WB



stage together. In other words, for the purpose of this problem, you are to ignore
structural hazards in the MEM and WB stages.

The following code implements the DAXPY operation, for a vector length 100. Initially, R1 is
set to the base address of array X and R2 is set to the base address of Y. Assume initial value of
R3 = 0. The DADDUI instruction before the loop is initialization code and should not be included in the
answer to any of the questions.

DADDIU R4, R1, #800
FOO:   L.D F2, 0(R1)

MUL.D F4, F2, F0
L.D F6, 0(R2)
ADD.D F6, F4, F6
S.D F6, 0(R2)
DADDIU R1, R1, #8
DADDIU R2, R2, #8
DSLTU R3, R1, R4 // set R3 to 1 if R1 < R4
BNEZ R3, FOO

Part A [6 points]

Consider the role of the compiler in scheduling the code. Rewrite this loop, but let every row
take a cycle (each row can be an instruction or a stall). If an instruction can’t be issued in a given
cycle (because the current instruction has a dependency that will not be resolved in time), write
STALL instead, and move on to the next cycle to see if it can be issued then. Assume that a NOP
is scheduled in the branch delay slot (effectively stalling 1 cycle after the branch). Explain all
stalls, but don’t reorder instructions. How many cycles elapse before the second iteration begins?
Show your work.

Solution:

FOO: L.D F2, 0(R1)
(1) STALL RAW F2
MUL.D F4, F2, F0
L.D F6, 0(R2)



(2) STALL RAW F4, F6
(3) STALL RAW F4
(4) STALL RAW F4
(5) STALL RAW F4
ADD F6, F4, F6
(6) STALL RAW F6
S.D. F6, 0(R2)
DADDUI R1,R1, #8
DADDUI R2, R2, #8
DSLTU R3, R1, R4
(7) STALL RAW R3
BENZ R3, FOO
NOP

17 cycles.

Grading: 1 point for each of stalls (1), (6), and (7). No credit without any explanation for the
stall. Partial credit of ½ point if more than one stall cycle is indicated for the corresponding
instruction.

2 points total for stalls (2) to (5). Partial credit is awarded as follows, assuming there is at least
one correct explanation for the stall (e.g., at least one of the F4 or F6 dependence is listed for
stall 2): 1 point if a stall is listed between these instructions, but the number of stalls is incorrect;
½ point if at least some of the reasons for the stalls are correct.

1 point for NOP (branch delay slot).

Negative ½ point for each unnecessary sequence of stalls.

Part B [6 points]

Now reschedule the loop. You can change immediate values and memory offsets. You can
reorder instructions, but don’t change anything else. Show any stalls that remain. How many
cycles elapse before the second iteration begins? Show your work.

Solution:

FOO: L.D F2, 0(R1)
L.D F6, 0(R2)
MUL.D F4, F2, F0
DADDUI R1, R1, #8
DADDUI R2, R2, #8
DSLTU R3, R1, R4
STALL
STALL



ADD F6, F4, F6
BNEZ R3, FOO
S.D F6, -8(R2)

11 cycles

Grading: Full points for any correct sequence with minimum number of stalls.Partial credit only
if the sequence does the same computation and reduces some stalls. Deduct ½ point for each
error (e.g., incorrect index), and deduct ½ point for each stall in excess of 2.

Part C [6 points]

Now unroll and reschedule the loop the minimum number of times needed to eliminate all stalls.
You can remove redundant instructions. How many times did you unroll the loop? How many
cycles elapse before the next iteration of the loop begins? Don’t worry about clean-up code.
Show your work.

Solution:

FOO: L.D F2, 0(R1)
L.D F6, 0(R2)
MUL.D F4, F2, F0
L.D F14, 8(R1)
L.D F16, 8(R2)
MUL.D F18, F14, F0
DADDUI R1, R1, #16



DADDUI R2, R2, #16
ADD F6, F4, F6
DSLTU R3, R1, R4
S.D F6, -16(R2)
ADD F16, F18, F16
BNEZ R3, FOO
S.D F16, -8(R2)

There are two original iterations in an iteration of the new loop. 14 cycles elapse before the next
iteration.

Grading: 1 point for the correct iteration count. Deduct ½ point for every error or stall cycle.
Give partial credit (2 points) if using three iterations instead of two and the solution is correct
with three iterations.

Part D [8 points]

Consider a VLIW processor in which one instruction can support two memory operations (load
or store), one integer operation (addition, subtraction, comparison, or branch), one floating point
add or subtract, and one floating point multiply or divide. There is no branch delay slot. Now
unroll the loop four times, and schedule it for this VLIW to take as few stall cycles as possible.
How many cycles do the four iterations take to complete? Use the following table template to
show your work.

Solution:

MEM1 MEM2 INTEGER FP ADD FP MUL

L.D F2, 0(R1) L.D F6, 0(R2)

L.D F14, 8(R1) L.D F16, 8(R2)

L.D F24, 16(R1) L.D F26, 16(R2) MUL.D F4, F2, F0

L.D F34, 24(R1) L.D F36, 24(R2) MUL.D F18, F14, F0

MUL.D F28, F24, F0

MUL.D F38, F34, F0



DADDUI R1, R1, #32

DADDUI R2, R2, #32

DSLTU R3, R1, R4 ADD F6, F4, F6

ADD F16, F18, F16

S.D F6, -32(R2) ADD F26, F28, F26

S.D F16, -24(R2) ADD F36, F38, F36

S.D. F26, -16(R2)

S.D F36, -8(R2) BENZ R3, FOO

14 cycles with unrolling 4 times.

Grading scheme: 0.5 point for each correct row in the above table.1 point if the scheduled code is
correct and takes14 cycles.

Part E: Software Pipelining (6 points)

Provide the steady-state code for a software pipelined version of the loop given in this question.
Your code should give the minimum number of stalls using the minimum number of static
instructions. Assume the loop will have at least four iterations. You do not have to show the
start-up or finish-up code (i.e., prolog or epilog).

Solution:



(1) S.D F6, -24(R2) // x-3 instruction
(2) ADD.D F6, F4, F7 // x-2 instruction
(3a) L.D F7, -8(R2) // x-1 instruction
(3b) MUL.D F4, F2, F0 // x-1 instruction
(4) DADDIU R1, R1, #8
(5) DSLTU R3, R1, R4 // set R3 to 1 if R1 < R4
(6) L.D F2, -8(R1) // x instruction
(7) BNEZ R3, FOO
(8) DADDIU R2, R2, #8

Grading scheme:

3 points for correct offsets of instruction (1), (3a) and (6).

0.5 point for (1), 0.5 for (2), 0.25 for (3a), 0.25 for (3b), 0.5 for (6).

1 point if instructions at number (4), (5), (6), (7) and (8) are given in an order with no stall.

Alternate solution 1:
(1) ADD.D F6, F4, F6 // x-1 instruction
(2) L.D F2, 0(R2) // x instruction
(3) S.D F6, -8(R2) // x-1 instruction
(4) MUL.D F4, F2, F0 // x instruction
(5) DADDIU R1, R1, #8
(6) DSLTU R3, R1, R4 // set R3 to 1 if R1 < R4
(7) L.D F6, -8(R1) // x instruction
(8) BNEZ R3, FOO
(9) DADDIU R2, R2, #8

Grading scheme:
3 points for correct offsets of instruction (2), (3) and (7).
1.5 for x instructions, 0,5 for x-1 instructions.
1 point if instructions at number (5), (6), (7), (8) and (9) are given in an order with no stall.

Alternate solution 2:
(1) S.D F6, 0(R2) // x instruction
(2) ADD.D F6, F4, F7 // x+1 instruction
(3) MUL.D F4, F2, F0 // x+2 instruction
(4) L.D F2, 24(R1) // x+3 instruction
(5) DADDIU R1, R1, #8
(6) DSLTU R3, R1, R4 // set R3 to 1 if R1 < R4 – see note below for loop bound
(7) L.D F7, 16(R2) // x+2 instruction
(8) BNEZ R3, FOO
(9) DADDIU R2, R2, #8



Note: Since this solution performs loads for future iterations, the loop bound (R4) needs to be
reduced by 3 to avoid erroneous and out-of-bounds accesses.

Grading scheme:
3 points for correct offsets of instruction (1), (4) and (7).
1.5 for x+2 instructions, 0.5 for x+1 and x+3 instructions.
1 point if instructions at number (5), (6), (7), (8) and (9) are given in an order with no stall.

NOTE: ONLY GRADUATE STUDENTS SHOULD SOLVE THE NEXT TWO
PROBLEMS.

Problem 2 [10 points]

Consider the following C code fragment:

for (i = 0; i < 100; i++) {

if (c == 0) {

…

c = …;

… // code I

}

else {

…

c = …;

… // code II

}

… // code III



}

The above translates to the MIPS fragment below. R5 and R6 store variables i and c,
respectively.

Init: MOV.D  R5, R0 // i = 0

If: BNEZ     R6, Else // Branch1 (c == 0?)

... // Code I = 10 instructions; contains a write to R6

J Join

Else:

... // Code II = 100 instructions; contains a write to R6

Join: ... // Code III = 10 instructions

Loop:   DADDI  R5, R5, #1 // i++

DSUBI   R7, R5, #100

BNEZ    R7, If // Branch2 (i == 100?)

J Done

Suppose the segments “Code I” (if part), “Code II” (else part), and Code III (common part)
contain 10, 100, and 10 assembly instructions respectively. You did a profile run of this program
and found that on average, Branch1 is taken once in 100 iterations of the “for loop”.

Your boss suggests that you perform one of the following two transformations to speed up the
above code: (1) Loop unrolling with an unrolling factor of 2. (2) Trace scheduling.

Which one of these would be more effective and why? Show the code with the more effective
transformation applied. If you use trace scheduling, then include any repair code and branches



into and out of it. Assume that only the values of c and i may need repair. Assume that registers
R10 and higher are free for your use.

Solution:

You should perform trace scheduling. Loop unrolling would increase the code size significantly
because of the huge else statement. Further, because of the if-else statement, loop unrolling will
not provide any additional longer straight-line code snippet for the compiler to schedule. On the
other hand, trace scheduling will be able to combine the “if” and “join” parts of the code together
to provide a longer fragment of straight-line code. The large else part is moved out in repair
code.

Init: MOV.D R5, R0 // i = 0

Trace: MOV.D R10, R6 // Save the old value of c

.... // Code I

.... // Code III

BNEZ R10, Repair

Loop: DADDI R5, R5, #1 // i++

DSUBI R7, R5, #100

BNEZ R7, Trace // i==100?

J Done

Repair: MOV.D R6, R10

.... // Code II

.... // Code III

J Loop

The above trace can be further increased by duplicating the loop index manipulation in the trace
and repair parts.

Grading:



2 points for choosing/rejecting each option.

3 points for the trace (1 point for saving the old value of c, 1 point for combining code I and code
III in the trace, 1 point for the correct branch to repair code).

3 points for the repair code (1 point for restoring c, 1 point for combining code II and III, 1 point
for the jump back to the trace).

2 points for a fully correct answer.

If you answered Loop Unrolling, then you will be graded out of 4 for the unrolled code. 1 point
for the unrolled loop body, 1 point for correct register usage, 1 point for correct branch index
manipulation, and 1 point for a fully correct unrolled loop.

Problem 3 [8 points]

The example on page H-30 of the textbook uses a speculative load instruction to move a load
above its guarding branch instruction. Read appendix H in the text for this problem and apply the
concepts to the following code:

instr.1 ; arbitrary instruction

instr.2 ; next instruction in block

. . . ; intervening instructions

BEQZ R1, null ; check for null pointer

L.D F2, 0(R1) ; load using pointer

ADD.D F4, F0, F2 ; dependent ADD.D

. . .

. . .

null: . . . ; handle null pointer



Part A [4 points]

Write the above code using a speculative load (sL.D) and a speculation check instruction
(SPECCK) to preserve exception behavior. Where should the load instruction move to best hide
its potentially long latency?

Solution:

The speculative load instruction defers the hardware response to a memory access fault if one
occurs. In combination with the speculation check instruction this allows the load to be moved
above the branch. Because the load may have long latency, it should be moved as early in the
program as possible, in this case to the position of first instruction in the basic block. If the
speculation check finds no deferred exceptions, computation can proceed.

sL.D F2, 0(R1)

instr. 1

instr. 2

…

BEQZ R1, null

SPECCK 0(R1) ; check for exception deferred by sL.D on 0(R1)

ADD.D F4, F0, F2

…

null: ...

Grading:

3 points for explanation.

1 point for correct code.

Part B [4 points]

Assume a speculation check instruction that branches to the recovery code. Assume that the
speculative load instruction defers both terminating and non-terminating exceptions. Write the
above code speculating on both the load and the dependent add. Use a speculative load, a



non-speculative add, a check instruction, and the block of recovery code. How should the
speculated load and the add be scheduled with respect to each other?

Solution:

Potentially, this problem will have several different solutions. Only one is provided here.

With a speculation check instruction that can branch to the recovery code, instructions
dependent on the load can also be speculated. Now, if the load fails because of an exception for
high latency (e.g., page fault), rather than one that is a fatal error (e.g., a memory protection
access violation), the speculated use instruction can take as an operand an incorrect value from
the register that is the target of the delayed load. The speculation check instruction can
distinguish these types of exceptions, terminating the program in the event of a protection
violation and branching to recovery code for the case of a page fault, which will yield correct
load behavior given sufficient time.

sL.D F2, 0(R1)
instr. 1
instr. 2
...
ADD.D F4, F0, F2 ; ADD.D speculated far from load for latency
BEQZ R1, null
SPECCK 0(R1), recover ; check for exception deferred by sL.D on 0(R1) and branch to
“recover” on exception

back: …
... ; etc.

recover: L.D F2, 0(R1)
ADD.D F4, F0, F2
JUMP back ; return to original path

...
null: …

Note: Although repair code would be needed in the “null” section of the code for correct
behavior (the values of F2 and F4 need to be restored), the question explicitly does not ask for
it.
Grading:
3 points for explanation.
1 point for correct code that follows from explanation.


