
Chapter 3 – Instruction-Level Parallelism and
its Exploitation (Part 4)

ILP vs. Parallel Computers
Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)
Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)
Limits and Benefits of ILP (Older editions and Section 3.12)

Multithreading (Section 3.11)

Putting it Together (Mini-projects)

Limits of ILP

How much can ILP buy us?
Limits studies make optimistic assumptions to find the limit for ILP

But may miss impact of compiler, future advances
A highly optimistic study [Wall’93]

Infinite number of physical registers (no register WAW, WAR)
Infinite number of in-flight instructions
Perfect branch prediction
Perfect memory address alias analysis
Single cycle FU
Single cycle memory (perfect caches)

Limits of ILP (contd.)

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

(This and next four figures are from an old edition of the book)

Figure 3.35 ILP available in a perfect
processor for six of the SPEC92 benchmarks.
The first three programs are integer programs,
and the last three are floating-point programs.
The floating-point programs are loop-intensive
and have large amounts of loop-level parallelism.

Limits of ILP – Impact of Optimistic Assumptions

Limiting Instruction window size
Finding dependences among n instr requires n^2 comparisons
2000 instructions implies 4 million comparisons!
Following use 2K window and 64 issue limit

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.36 The effects of
reducing the size of the
window. The window is the
group of instructions from which
an instruction an execute. The
start of the window is the
earliest uncompleted instruction
(remember that instructions
complete in one cycle), and the
last instruction in the window is
determined by the window size.
The instructions in the window
are obtained by perfectly
predicting branches and
selecting instructions until the
window is full.

Limits of ILP – Impact of Optimistic Assumptions

Realistic branch prediction
No charge for mispredictions
Following use tournament predictor

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.38 The effect of
branch-prediction schemes.
This graph shows the impact
of going from a perfect model
of branch prediction (all
branches predicted correctly
arbitrarily far ahead), to
various dynamic predictors
(selective and 2-bit), to
compile time, profile-based
prediction, and finally to using
no predictor. The predictors
are described precisely in the
text.

Limits of ILP – Impact of Optimistic Assumptions

Finite registers
Following uses 256 int and 256 fp for renaming

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.41 The effect of
finite numbers of registers
available for renaming.
Both the number of FP
registers and the number of
GP registers are increased
by the number shown on the
x-axis. The effect is most
dramatic on the FP
programs, although having
only 32 extra GP and 32
extra FP registers has
significant impact on all the
programs. As stated earlier,
we assume a window size of
2K entries and a maximum
issue width of 64
instructions. “None” implies
no extra registers available.

Limits of ILP – Impact of Optimistic Assumptions

Imperfect memory alias analysis

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.43 The effect of various alias
analysis techniques on the amount of
ILP. Anything less than perfect analysis has
a dramatic impact on the amount of
parallelism found in the integer programs,
and global/stack analysis is perfect (and
unrealizable) for the FORTRAN programs.
As we said earlier, we assume a maximum
issue width of 64 instructions and a window
of 2K instructions.

But Limits Studies may be Pessimistic!

For most optimistic study
WAR and WAW hazards through memory
Unnecessary dependences (e.g., loop iteration count)
Overcoming data flow limit – value prediction

For more realistic studies
Address value prediction and speculation
Speculating on multiple paths

© 2019 Elsevier Inc. All rights reserved. 9

Figure 3.39 The buffers and queues in the first generation i7 and the latest generation i7. Nehalem used a reservation station
plus reorder buffer organization. In later microarchitectures, the reservation stations serve as scheduling resources, and register
renaming is used rather than the reorder buffer; the reorder buffer in the Skylake microarchitecture serves only to buffer control
information. The choices of the size of various buffers and renaming registers, while appearing sometimes arbitrary, are likely based on
extensive simulation.

Real Systems: Two Out-of-order i7 Processors

© 2019 Elsevier Inc. All rights reserved. 10

Figure 3.40 The CPI for the SPECCPUint2006 benchmarks on the i7 6700 and the i7 920. The data in this section were collected
by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University.

Two Out-of-order i7 Processors

© 2019 Elsevier Inc. All rights reserved. 11

Figure 3.43 The relative performance and energy efficiency for a set of single-threaded benchmarks shows the i7 920 is 4 to
over 10 times faster than the Atom 230 but that it is about 2 times less power-efficient on average! Performance is shown in
the columns as i7 relative to Atom, which is execution time (i7)/execution time (Atom). Energy is shown with the line as Energy
(Atom)/Energy (i7). The i7 never beats the Atom in energy efficiency, although it is essentially as good on four benchmarks, three of
which are floating point. The data shown here were collected by Esmaeilzadeh et al. (2011). The SPEC benchmarks were compiled
with optimization using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core
is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7, which increases its performance
advantage but slightly decreases its relative energy efficiency.

Out-of-order i7 vs. In-order Atom

Multithreading: Instruction + Thread Level Parallelism

Often superscalar instruction slots are wasted
Why not use them for other threads?

Multithreading
Coarse-grained
Fine-grained
Simultaneous multithreading (SMT) or hyperthreading

(Vs. multiprocessing)

© 2019 Elsevier Inc. All rights reserved. 13

Figure 3.31 How four different approaches use the functional unit execution slots of a superscalar processor. The horizontal
dimension represents the instruction execution capability in each clock cycle. The vertical dimension represents a sequence of clock
cycles. An empty (white) box indicates that the corresponding execution slot is unused in that clock cycle. The shades of gray and
black correspond to four different threads in the multithreading processors. Black is also used to indicate the occupied issue slots in
the case of the superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-grained,
multithreaded processors, while the Intel Core i7 and IBM Power7 processors use SMT. The T2 has 8 threads, the Power7 has 4, and
the Intel i7 has 2. In all existing SMTs, instructions issue from only one thread at a time. The difference in SMT is that the subsequent
decision to execute an instruction is decoupled and could execute the operations coming from several different instructions in the
same clock cycle.

Multithreading: Instruction + Thread Level Parallelism

Vs. Multiprocessing?

© 2019 Elsevier Inc. All rights reserved. 14

Figure 3.33 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java benchmarks
and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which implies a workload where the total time
spent executing each benchmark in the single-threaded base set was the same). The energy efficiency averages 0.99 and 1.07,
respectively (using the harmonic mean). Recall that anything above 1.0 for energy efficiency indicates that the feature reduces
execution time by more than it increases average power. Two of the Java benchmarks experience little speedup and have significant
negative energy efficiency because of this issue. Turbo Boost is off in all cases. These data were collected and analyzed by
Esmaeilzadeh et al. (2011) using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native
compiler.

SMT Speedup & Energy Efficiency: 1 vs. 4 threads

