
Chapter 3 – Instruction-Level Parallelism and 
its Exploitation (Part 4)

ILP vs. Parallel Computers
Dynamic Scheduling (Section 3.4, 3.5)

Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)
Multiple Issue (Section 3.7)

Static Techniques (Section 3.2, Appendix H)
Limits and Benefits of ILP (Older editions and Section 3.12)  

Multithreading (Section 3.11)

Putting it Together (Mini-projects)



Limits of ILP

How much can ILP buy us?
Limits studies make optimistic assumptions to find the limit for ILP

But may miss impact of compiler, future advances
A highly optimistic study [Wall’93]

Infinite number of physical registers (no register WAW, WAR)
Infinite number of in-flight instructions
Perfect branch prediction
Perfect memory address alias analysis
Single cycle FU
Single cycle memory (perfect caches)



Limits of ILP (contd.)

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

(This and next four figures are from an old edition of the book)

Figure 3.35 ILP available in a perfect 
processor for six of the SPEC92 benchmarks.
The first three programs are integer programs, 
and the last three are floating-point programs.  
The floating-point programs are loop-intensive 
and have large amounts of loop-level parallelism.



Limits of ILP – Impact of Optimistic Assumptions

Limiting Instruction window size
Finding dependences among n instr requires n^2 comparisons
2000 instructions implies 4 million comparisons!
Following use 2K window and 64 issue limit

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.36 The effects of 
reducing the size of the 
window. The window is the 
group of instructions from which 
an instruction an execute.  The 
start of the window is the 
earliest uncompleted instruction 
(remember that instructions 
complete in one cycle), and the 
last instruction in the window is 
determined by the window size.  
The instructions in the window 
are obtained by perfectly 
predicting branches and 
selecting instructions until the 
window is full.



Limits of ILP – Impact of Optimistic Assumptions

Realistic branch prediction
No charge for mispredictions
Following use tournament predictor

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.38 The effect of 
branch-prediction schemes.
This graph shows the impact 
of going from a perfect model 
of branch prediction (all 
branches predicted correctly 
arbitrarily far ahead), to 
various dynamic predictors 
(selective and 2-bit), to 
compile time, profile-based 
prediction, and finally to using 
no predictor.  The predictors 
are described precisely in the 
text.



Limits of ILP – Impact of Optimistic Assumptions

Finite registers
Following uses 256 int and 256 fp for renaming

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.41 The effect of 
finite numbers of registers 
available for renaming.
Both the number of FP 
registers and the number of 
GP registers are increased 
by the number shown on the 
x-axis.  The effect is most 
dramatic on the FP 
programs, although having 
only 32 extra GP and 32 
extra FP registers has 
significant impact on all the 
programs.  As stated earlier, 
we assume a window size of 
2K entries and a maximum 
issue width of 64 
instructions.  “None” implies 
no extra registers available.   



Limits of ILP – Impact of Optimistic Assumptions

Imperfect memory alias analysis

* This figure has been taken from Computer Architecture, A Quantitative Approach, 3rd Edition Copyright 2003 by Elsevier Inc. All rights reserved. It has been used with permission by Elsevier Inc.

Figure 3.43 The effect of various alias 
analysis techniques on the amount of 
ILP. Anything less than perfect analysis has 
a dramatic impact on the amount of 
parallelism found in the integer programs, 
and global/stack analysis is perfect (and 
unrealizable) for the FORTRAN programs.  
As we said earlier, we assume a maximum 
issue width of 64 instructions and a window 
of 2K instructions.



But Limits Studies may be Pessimistic!

For most optimistic study
WAR and WAW hazards through memory
Unnecessary dependences (e.g., loop iteration count)
Overcoming data flow limit – value prediction

For more realistic studies
Address value prediction and speculation
Speculating on multiple paths
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Figure 3.39 The buffers and queues in the first generation i7 and the latest generation i7. Nehalem used a reservation station 
plus reorder buffer organization. In later microarchitectures, the reservation stations serve as scheduling resources, and register 
renaming is used rather than the reorder buffer; the reorder buffer in the Skylake microarchitecture serves only to buffer control 
information. The choices of the size of various buffers and renaming registers, while appearing sometimes arbitrary, are likely based on 
extensive simulation.

Real Systems: Two Out-of-order i7 Processors
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Figure 3.40 The CPI for the SPECCPUint2006 benchmarks on the i7 6700 and the i7 920. The data in this section were collected 
by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University.

Two Out-of-order i7 Processors
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Figure 3.43 The relative performance and energy efficiency for a set of single-threaded benchmarks shows the i7 920 is 4 to 
over 10 times faster than the Atom 230 but that it is about 2 times less power-efficient on average! Performance is shown in 
the columns as i7 relative to Atom, which is execution time (i7)/execution time (Atom). Energy is shown with the line as Energy 
(Atom)/Energy (i7). The i7 never beats the Atom in energy efficiency, although it is essentially as good on four benchmarks, three of 
which are floating point. The data shown here were collected by Esmaeilzadeh et al. (2011). The SPEC benchmarks were compiled
with optimization using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core 
is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7, which increases its performance 
advantage but slightly decreases its relative energy efficiency.

Out-of-order i7 vs. In-order Atom



Multithreading: Instruction + Thread Level Parallelism

Often superscalar instruction slots are wasted
Why not use them for other threads?

Multithreading
Coarse-grained
Fine-grained
Simultaneous multithreading (SMT) or hyperthreading

(Vs. multiprocessing)
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Figure 3.31 How four different approaches use the functional unit execution slots of a superscalar processor. The horizontal 
dimension represents the instruction execution capability in each clock cycle. The vertical dimension represents a sequence of clock 
cycles. An empty (white) box indicates that the corresponding execution slot is unused in that clock cycle. The shades of gray and 
black correspond to four different threads in the multithreading processors. Black is also used to indicate the occupied issue slots in 
the case of the superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-grained, 
multithreaded processors, while the Intel Core i7 and IBM Power7 processors use SMT. The T2 has 8 threads, the Power7 has 4, and
the Intel i7 has 2. In all existing SMTs, instructions issue from only one thread at a time. The difference in SMT is that the subsequent 
decision to execute an instruction is decoupled and could execute the operations coming from several different instructions in the 
same clock cycle.

Multithreading: Instruction + Thread Level Parallelism

Vs. Multiprocessing?
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Figure 3.33 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java benchmarks 
and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which implies a workload where the total time 
spent executing each benchmark in the single-threaded base set was the same). The energy efficiency averages 0.99 and 1.07, 
respectively (using the harmonic mean). Recall that anything above 1.0 for energy efficiency indicates that the feature reduces 
execution time by more than it increases average power. Two of the Java benchmarks experience little speedup and have significant 
negative energy efficiency because of this issue. Turbo Boost is off in all cases. These data were collected and analyzed by 
Esmaeilzadeh et al. (2011) using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native 
compiler.

SMT Speedup & Energy Efficiency: 1 vs. 4 threads


