GNU Make

GNU Make

A Program for Directing Recompilation
GNU make Version 3.80
July 2002

Richard M. Stallman, Roland McGrath, Paul Smith

Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2002 Free Software Foundation, Inc.

Published by the Free Software Foundation
59 Temple Place — Suite 330,

Boston, MA 02111-1307 USA

ISBN 1-882114-81-7

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License”, the
Front-Cover Texts being “A GNU Manual”, and with the Back-Cover Texts being as in (a)
below. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software.
Copies published by the Free Software Foundation raise funds for GNU devel-
opment.

Cover art by Etienne Suvasa.

Chapter 1: Overview of make 1

1 Overview of make

The make utility automatically determines which pieces of a large program need to be
recompiled, and issues commands to recompile them. This manual describes GNU make,
which was implemented by Richard Stallman and Roland McGrath. Development since
Version 3.76 has been handled by Paul Smith.

GNU make conforms to section 6.2 of IEEE Standard 1003.2-1992 (POSIX.2).

Our examples show C programs, since they are most common, but you can use make
with any programming language whose compiler can be run with a shell command. Indeed,
make is not limited to programs. You can use it to describe any task where some files must
be updated automatically from others whenever the others change.

To prepare to use make, you must write a file called the makefile that describes the
relationships among files in your program and provides commands for updating each file.
In a program, typically, the executable file is updated from object files, which are in turn
made by compiling source files.

Once a suitable makefile exists, each time you change some source files, this simple shell
command:

make

suffices to perform all necessary recompilations. The make program uses the makefile data
base and the last-modification times of the files to decide which of the files need to be
updated. For each of those files, it issues the commands recorded in the data base.

You can provide command line arguments to make to control which files should be
recompiled, or how. See Chapter 9 [How to Run make], page 79.

1.1 How to Read This Manual

If you are new to make, or are looking for a general introduction, read the first few
sections of each chapter, skipping the later sections. In each chapter, the first few sections
contain introductory or general information and the later sections contain specialized or
technical information. The exception is Chapter 2 [An Introduction to Makefiles|, page 3,
all of which is introductory.

If you are familiar with other make programs, see Chapter 12 [Features of GNU make],
page 111, which lists the enhancements GNU make has, and Chapter 13 [Incompatibilities
and Missing Features], page 115, which explains the few things GNU make lacks that others
have.

For a quick summary, see Section 9.7 [Options Summary]|, page 84, Appendix A [Quick
Reference], page 131, and Section 4.8 [Special Targets], page 27.

1.2 Problems and Bugs

If you have problems with GNU make or think you’ve found a bug, please report it to
the developers; we cannot promise to do anything but we might well want to fix it.

Before reporting a bug, make sure you’ve actually found a real bug. Carefully reread
the documentation and see if it really says you can do what you’re trying to do. If it’s not

2 GNU make

clear whether you should be able to do something or not, report that too; it’s a bug in the
documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
makefile that reproduces the problem. Then send us the makefile and the exact results make
gave you, including any error or warning messages. Please don’t paraphrase these messages:
it’s best to cut and paste them into your report. When generating this small makefile, be
sure to not use any non-free or unusual tools in your commands: you can almost always
emulate what such a tool would do with simple shell commands. Finally, be sure to explain
what you expected to occur; this will help us decide whether the problem was really in the
documentation.

Once you have a precise problem you can report it in one of two ways. Either send
electronic mail to:
bug-make@gnu.org
or use our Web-based project management tool, at:
http://savannah.gnu.org/projects/make/
In addition to the information above, please be careful to include the version number of
make you are using. You can get this information with the command ‘make --version’. Be
sure also to include the type of machine and operating system you are using. One way to
obtain this information is by looking at the final lines of output from the command ‘make
--help’.

Chapter 2: An Introduction to Makefiles 3

2 An Introduction to Makefiles

You need a file called a makefile to tell make what to do. Most often, the makefile tells
make how to compile and link a program.

In this chapter, we will discuss a simple makefile that describes how to compile and link
a text editor which consists of eight C source files and three header files. The makefile can
also tell make how to run miscellaneous commands when explicitly asked (for example, to
remove certain files as a clean-up operation). To see a more complex example of a makefile,
see Appendix C [Complex Makefile], page 141.

When make recompiles the editor, each changed C source file must be recompiled. If a
header file has changed, each C source file that includes the header file must be recompiled to
be safe. Each compilation produces an object file corresponding to the source file. Finally,
if any source file has been recompiled, all the object files, whether newly made or saved
from previous compilations, must be linked together to produce the new executable editor.

2.1 What a Rule Looks Like

A simple makefile consists of “rules” with the following shape:

target ... : prerequisites ...
command

A target is usually the name of a file that is generated by a program; examples of targets
are executable or object files. A target can also be the name of an action to carry out, such
as ‘clean’ (see Section 4.5 [Phony Targets|, page 24).

A prerequisite is a file that is used as input to create the target. A target often depends
on several files.

A command is an action that make carries out. A rule may have more than one command,
each on its own line. Please note: you need to put a tab character at the beginning of every
command line! This is an obscurity that catches the unwary.

Usually a command is in a rule with prerequisites and serves to create a target file if any
of the prerequisites change. However, the rule that specifies commands for the target need
not have prerequisites. For example, the rule containing the delete command associated
with the target ‘clean’ does not have prerequisites.

A rule, then, explains how and when to remake certain files which are the targets of the
particular rule. make carries out the commands on the prerequisites to create or update
the target. A rule can also explain how and when to carry out an action. See Chapter 4
[Writing Rules], page 17.

A makefile may contain other text besides rules, but a simple makefile need only contain
rules. Rules may look somewhat more complicated than shown in this template, but all fit
the pattern more or less.

4 GNU make

2.2 A Simple Makefile

Here is a straightforward makefile that describes the way an executable file called edit

depends on eight object files which, in turn, depend on eight C source and three header
files.

In this example, all the C files include ‘defs.h’, but only those defining editing commands
include ‘command .h’, and only low level files that change the editor buffer include ‘buffer.h’.

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

main.o : main.c defs.h
cc —-c main.c
kbd.o : kbd.c defs.h command.h
cc -c kbd.c
command.o : command.c defs.h command.h
cc —c¢ command.c
display.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc —-c insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command.h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
clean :
rm edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

We split each long line into two lines using backslash-newline; this is like using one long
line, but is easier to read.

To use this makefile to create the executable file called ‘edit’, type:
make

To use this makefile to delete the executable file and all the object files from the directory,
type:
make clean

In the example makefile, the targets include the executable file ‘edit’, and the object
files ‘main.o’ and ‘kbd.o’. The prerequisites are files such as ‘main.c’ and ‘defs.h’. In
fact, each ‘.o’ file is both a target and a prerequisite. Commands include ‘cc -¢ main.c’
and ‘cc -c kbd.c’.

When a target is a file, it needs to be recompiled or relinked if any of its prerequisites
change. In addition, any prerequisites that are themselves automatically generated should
be updated first. In this example, ‘edit’ depends on each of the eight object files; the object
file ‘main.o’ depends on the source file ‘main.c’ and on the header file ‘defs.h’.

Chapter 2: An Introduction to Makefiles 5

A shell command follows each line that contains a target and prerequisites. These shell
commands say how to update the target file. A tab character must come at the beginning of
every command line to distinguish commands lines from other lines in the makefile. (Bear
in mind that make does not know anything about how the commands work. It is up to you
to supply commands that will update the target file properly. All make does is execute the
commands in the rule you have specified when the target file needs to be updated.)

The target ‘clean’ is not a file, but merely the name of an action. Since you normally
do not want to carry out the actions in this rule, ‘clean’ is not a prerequisite of any other
rule. Consequently, make never does anything with it unless you tell it specifically. Note
that this rule not only is not a prerequisite, it also does not have any prerequisites, so the
only purpose of the rule is to run the specified commands. Targets that do not refer to files
but are just actions are called phony targets. See Section 4.5 [Phony Targets|, page 24, for
information about this kind of target. See Section 5.4 [Errors in Commands], page 40, to
see how to cause make to ignore errors from rm or any other command.

2.3 How make Processes a Makefile

By default, make starts with the first target (not targets whose names start with ¢.’).
This is called the default goal. (Goals are the targets that make strives ultimately to update.
See Section 9.2 [Arguments to Specify the Goals], page 79.)

In the simple example of the previous section, the default goal is to update the executable
program ‘edit’; therefore, we put that rule first.

Thus, when you give the command:
make

make reads the makefile in the current directory and begins by processing the first rule. In
the example, this rule is for relinking ‘edit’; but before make can fully process this rule, it
must process the rules for the files that ‘edit’ depends on, which in this case are the object
files. Each of these files is processed according to its own rule. These rules say to update
each ‘.0’ file by compiling its source file. The recompilation must be done if the source file,
or any of the header files named as prerequisites, is more recent than the object file, or if
the object file does not exist.

The other rules are processed because their targets appear as prerequisites of the goal.
If some other rule is not depended on by the goal (or anything it depends on, etc.), that
rule is not processed, unless you tell make to do so (with a command such as make clean).

Before recompiling an object file, make considers updating its prerequisites, the source
file and header files. This makefile does not specify anything to be done for them—the ‘.c’
and ‘.h’ files are not the targets of any rules—so make does nothing for these files. But
make would update automatically generated C programs, such as those made by Bison or
Yacc, by their own rules at this time.

After recompiling whichever object files need it, make decides whether to relink ‘edit’.
This must be done if the file ‘edit’ does not exist, or if any of the object files are newer than
it. If an object file was just recompiled, it is now newer than ‘edit’, so ‘edit’ is relinked.

Thus, if we change the file ‘insert.c’ and run make, make will compile that file to update
‘insert.o’, and then link ‘edit’. If we change the file ‘command.h’ and run make, make will
recompile the object files ‘kbd.o’, ‘command.o’ and ‘files.o’ and then link the file ‘edit’.

6 GNU make

2.4 Variables Make Makefiles Simpler

In our example, we had to list all the object files twice in the rule for ‘edit’ (repeated
here):

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object file is added to the system, we might
add it to one list and forget the other. We can eliminate the risk and simplify the makefile
by using a variable. Variables allow a text string to be defined once and substituted in
multiple places later (see Chapter 6 [How to Use Variables|, page 49).

It is standard practice for every makefile to have a variable named objects, 0BJECTS,
objs, OBJS, obj, or 0BJ which is a list of all object file names. We would define such a
variable objects with a line like this in the makefile:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Then, each place we want to put a list of the object file names, we can substitute the
variable’s value by writing ‘$ (objects)’ (see Chapter 6 [How to Use Variables], page 49).

Here is how the complete simple makefile looks when you use a variable for the object
files:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)
main.o : main.c defs.h
CC -C main.c
kbd.o : kbd.c defs.h command.h
cc —c kbd.c
command.o : command.c defs.h command.h
cc —c command.c
display.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc -c insert.c
search.o : search.c defs.h buffer.h
cc —c search.c
files.o : files.c defs.h buffer.h command.h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
clean :
rm edit $(objects)

Chapter 2: An Introduction to Makefiles 7

2.5 Letting make Deduce the Commands

It is not necessary to spell out the commands for compiling the individual C source
files, because make can figure them out: it has an implicit rule for updating a ‘.o’ file from
a correspondingly named ‘.c’ file using a ‘cc -¢’ command. For example, it will use the
command ‘cc -¢c main.c -o main.o’ to compile ‘main.c’ into ‘main.o’. We can therefore
omit the commands from the rules for the object files. See Chapter 10 [Using Implicit
Rules], page 89.

When a ‘.c’ file is used automatically in this way, it is also automatically added to the
list of prerequisites. We can therefore omit the ‘.c’ files from the prerequisites, provided
we omit the commands.

Here is the entire example, with both of these changes, and a variable objects as
suggested above:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc —o edit $(objects)

main.o : defs.h

kbd.o : defs.h command.h

command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h command.h
utils.o : defs.h

.PHONY : clean
clean :
rm edit $(objects)

This is how we would write the makefile in actual practice. (The complications associ-
ated with ‘clean’ are described elsewhere. See Section 4.5 [Phony Targets|, page 24, and
Section 5.4 [Errors in Commands], page 40.)

Because implicit rules are so convenient, they are important. You will see them used
frequently.

2.6 Another Style of Makefile

When the objects of a makefile are created only by implicit rules, an alternative style
of makefile is possible. In this style of makefile, you group entries by their prerequisites
instead of by their targets. Here is what one looks like:

8 GNU make

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

$(objects) : defs.h

kbd.o command.o files.o : command.h

display.o insert.o search.o files.o : buffer.h
Here ‘defs.h’ is given as a prerequisite of all the object files; ‘command.h’ and ‘buffer.h’
are prerequisites of the specific object files listed for them.

Whether this is better is a matter of taste: it is more compact, but some people dislike
it because they find it clearer to put all the information about each target in one place.

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write rules for. Makefiles
commonly tell how to do a few other things besides compiling a program: for example, how
to delete all the object files and executables so that the directory is ‘clean’.

Here is how we could write a make rule for cleaning our example editor:

clean:
rm edit $(objects)
In practice, we might want to write the rule in a somewhat more complicated manner
to handle unanticipated situations. We would do this:
.PHONY : clean
clean :
-rm edit $(objects)
This prevents make from getting confused by an actual file called ‘clean’ and causes it
to continue in spite of errors from rm. (See Section 4.5 [Phony Targets|, page 24, and
Section 5.4 [Errors in Commands], page 40.)

A rule such as this should not be placed at the beginning of the makefile, because we do
not want it to run by default! Thus, in the example makefile, we want the rule for edit,
which recompiles the editor, to remain the default goal.

Since clean is not a prerequisite of edit, this rule will not run at all if we give the
command ‘make’ with no arguments. In order to make the rule run, we have to type ‘make
clean’. See Chapter 9 [How to Run make], page 79.

Chapter 3: Writing Makefiles 9

3 Writing Makefiles

The information that tells make how to recompile a system comes from reading a data
base called the makefile.

3.1 What Makefiles Contain

Makefiles contain five kinds of things: explicit rules, implicit rules, variable definitions,
directives, and comments. Rules, variables, and directives are described at length in later
chapters.

e An explicit rule says when and how to remake one or more files, called the rule’s targets.
It lists the other files that the targets depend on, call the prerequisites of the target,
and may also give commands to use to create or update the targets. See Chapter 4
[Writing Rules], page 17.

e An implicit rule says when and how to remake a class of files based on their names. It
describes how a target may depend on a file with a name similar to the target and gives
commands to create or update such a target. See Chapter 10 [Using Implicit Rules],
page 89.

e A variable definition is a line that specifies a text string value for a variable that
can be substituted into the text later. The simple makefile example shows a variable
definition for objects as a list of all object files (see Section 2.4 [Variables Make
Makefiles Simpler], page 6).

e A directive is a command for make to do something special while reading the makefile.
These include:

e Reading another makefile (see Section 3.3 [Including Other Makefiles], page 10).

e Deciding (based on the values of variables) whether to use or ignore a part of the
makefile (see Chapter 7 [Conditional Parts of Makefiles|, page 61).

e Defining a variable from a verbatim string containing multiple lines (see Section 6.8
[Defining Variables Verbatim|, page 58).

e ‘#’ in a line of a makefile starts a comment. It and the rest of the line are ignored,
except that a trailing backslash not escaped by another backslash will continue the
comment across multiple lines. A line containing just a comment (with perhaps spaces
before it) is effectively blank, and is ignored. If you want a literal #, escape it with a
backslash (e.g., \#). Comments may appear on any line in the makefile, although they
are treated specially in certain situations.

Within a command script (if the line begins with a TAB character) the entire line
is passed to the shell, just as with any other line that begins with a TAB. The shell
decides how to interpret the text: whether or not this is a comment is up to the shell.

Within a define directive, comments are not ignored during the definition of the
variable, but rather kept intact in the value of the variable. When the variable is
expanded they will either be treated as make comments or as command script text,
depending on the context in which the variable is evaluated.

GNU make

3.2 What Name to Give Your Makefile

By default, when make looks for the makefile, it tries the following names, in order:
‘GNUmakefile’, ‘makefile’ and ‘Makefile’.

Normally you should call your makefile either ‘makefile’ or ‘Makefile’. (We recommend
‘Makefile’ because it appears prominently near the beginning of a directory listing, right
near other important files such as ‘README’.) The first name checked, ‘GNUmakefile’, is not
recommended for most makefiles. You should use this name if you have a makefile that is
specific to GNU make, and will not be understood by other versions of make. Other make
programs look for ‘makefile’ and ‘Makefile’, but not ‘GNUmakefile’.

If make finds none of these names, it does not use any makefile. Then you must specify
a goal with a command argument, and make will attempt to figure out how to remake it
using only its built-in implicit rules. See Chapter 10 [Using Implicit Rules], page 89.

If you want to use a nonstandard name for your makefile, you can specify the makefile
name with the ‘-f’ or ‘~-file’ option. The arguments ‘~f name’ or ‘--file=name’ tell
make to read the file name as the makefile. If you use more than one ‘-f’ or ‘--file’ option,
you can specify several makefiles. All the makefiles are effectively concatenated in the order
specified. The default makefile names ‘GNUmakefile’, ‘makefile’ and ‘Makefile’ are not
checked automatically if you specify ‘-f’ or ‘--file’.

3.3 Including Other Makefiles

The include directive tells make to suspend reading the current makefile and read one
or more other makefiles before continuing. The directive is a line in the makefile that looks
like this:

include filenames. ..
filenames can contain shell file name patterns.

Extra spaces are allowed and ignored at the beginning of the line, but a tab is not
allowed. (If the line begins with a tab, it will be considered a command line.) Whitespace
is required between include and the file names, and between file names; extra whitespace
is ignored there and at the end of the directive. A comment starting with ‘#’ is allowed at
the end of the line. If the file names contain any variable or function references, they are
expanded. See Chapter 6 [How to Use Variables|, page 49.

For example, if you have three ‘.mk’ files, ‘a.mk’, ‘b.mk’, and ‘c.mk’, and $(bar) expands
to bish bash, then the following expression
include foo *.mk $(bar)
is equivalent to
include foo a.mk b.mk c¢.mk bish bash

When make processes an include directive, it suspends reading of the containing makefile
and reads from each listed file in turn. When that is finished, make resumes reading the
makefile in which the directive appears.

One occasion for using include directives is when several programs, handled by indi-
vidual makefiles in various directories, need to use a common set of variable definitions (see
Section 6.5 [Setting Variables|, page 55) or pattern rules (see Section 10.5 [Defining and
Redefining Pattern Rules], page 96).

Chapter 3: Writing Makefiles

Another such occasion is when you want to generate prerequisites from source files
automatically; the prerequisites can be put in a file that is included by the main makefile.
This practice is generally cleaner than that of somehow appending the prerequisites to the
end of the main makefile as has been traditionally done with other versions of make. See
Section 4.13 [Automatic Prerequisites], page 34.

If the specified name does not start with a slash, and the file is not found in the
current directory, several other directories are searched. First, any directories you have
specified with the ‘-I’ or ‘--include-dir’ option are searched (see Section 9.7 [Sum-
mary of Options|, page 84). Then the following directories (if they exist) are searched,
in this order: ‘prefix/include’ (normally ‘/usr/local/include’’) ‘/usr/gnu/include’,
‘/usr/local/include’, ‘/usr/include’.

If an included makefile cannot be found in any of these directories, a warning message
is generated, but it is not an immediately fatal error; processing of the makefile containing
the include continues. Once it has finished reading makefiles, make will try to remake any
that are out of date or don’t exist. See Section 3.7 [How Makefiles Are Remade], page 12.
Only after it has tried to find a way to remake a makefile and failed, will make diagnose the
missing makefile as a fatal error.

If you want make to simply ignore a makefile which does not exist and cannot be remade,
with no error message, use the —~include directive instead of include, like this:

-include filenames. . .

This acts like include in every way except that there is no error (not even a warning) if
any of the filenames do not exist. For compatibility with some other make implementations,
sinclude is another name for -include.

3.4 The Variable MAKEFILES

If the environment variable MAKEFILES is defined, make considers its value as a list of
names (separated by whitespace) of additional makefiles to be read before the others. This
works much like the include directive: various directories are searched for those files (see
Section 3.3 [Including Other Makefiles|, page 10). In addition, the default goal is never
taken from one of these makefiles and it is not an error if the files listed in MAKEFILES are
not found.

The main use of MAKEFILES is in communication between recursive invocations of make
(see Section 5.6 [Recursive Use of make|, page 41). It usually is not desirable to set the
environment variable before a top-level invocation of make, because it is usually better not
to mess with a makefile from outside. However, if you are running make without a specific
makefile, a makefile in MAKEFILES can do useful things to help the built-in implicit rules
work better, such as defining search paths (see Section 4.4 [Directory Search], page 20).

Some users are tempted to set MAKEFILES in the environment automatically on login,
and program makefiles to expect this to be done. This is a very bad idea, because such
makefiles will fail to work if run by anyone else. It is much better to write explicit include
directives in the makefiles. See Section 3.3 [Including Other Makefiles|, page 10.

1 GNU Make compiled for MS-DOS and MS-Windows behaves as if prefix has been defined to be the root
of the DJGPP tree hierarchy.

GNU make

3.5 The Variable MAKEFILE_LIST

As make reads various makefiles, including any obtained from the MAKEFILES variable,
the command line, the default files, or from include directives, their names will be au-
tomatically appended to the MAKEFILE_LIST variable. They are added right before make
begins to parse them.

This means that if the first thing a makefile does is examine the last word in this variable,
it will be the name of the current makefile. Once the current makefile has used include,
however, the last word will be the just-included makefile.

If a makefile named Makefile has this content:
namel := $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))

include inc.mk
name?2 := $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))

all:

$(namel)
$ (name?2)

then you would expect to see this output:

Q@echo namel
Qecho name?2

namel = Makefile
name?2 inc.mk
See Section 8.2 [Text Functions], page 66, for more information on the word and words
functions used above. See Section 6.2 [Flavors], page 50, for more information on simply-
expanded (:=) variable definitions.

3.6 Other Special Variables

GNU make also supports a special variable. Note that any value you assign to this
variable will be ignored; it will always return its special value.

The first special variable is .VARIABLES. When expanded, the value consists of a list
of the names of all global variables defined in all makefiles read up until that point. This
includes variables which have empty values, as well as built-in variables (see Section 10.3
[Variables Used by Implicit Rules], page 93), but does not include any variables which are
only defined in a target-specific context.

3.7 How Makefiles Are Remade

Sometimes makefiles can be remade from other files, such as RCS or SCCS files. If
a makefile can be remade from other files, you probably want make to get an up-to-date
version of the makefile to read in.

To this end, after reading in all makefiles, make will consider each as a goal target and
attempt to update it. If a makefile has a rule which says how to update it (found either
in that very makefile or in another one) or if an implicit rule applies to it (see Chapter 10
[Using Implicit Rules], page 89), it will be updated if necessary. After all makefiles have
been checked, if any have actually been changed, make starts with a clean slate and reads

Chapter 3: Writing Makefiles

all the makefiles over again. (It will also attempt to update each of them over again, but
normally this will not change them again, since they are already up to date.)

If you know that one or more of your makefiles cannot be remade and you want to keep
make from performing an implicit rule search on them, perhaps for efficiency reasons, you
can use any normal method of preventing implicit rule lookup to do so. For example, you
can write an explicit rule with the makefile as the target, and an empty command string
(see Section 5.8 [Using Empty Commands]|, page 47).

If the makefiles specify a double-colon rule to remake a file with commands but no
prerequisites, that file will always be remade (see Section 4.12 [Double-Colon], page 33).
In the case of makefiles, a makefile that has a double-colon rule with commands but no
prerequisites will be remade every time make is run, and then again after make starts over
and reads the makefiles in again. This would cause an infinite loop: make would constantly
remake the makefile, and never do anything else. So, to avoid this, make will not attempt
to remake makefiles which are specified as targets of a double-colon rule with commands
but no prerequisites.

If you do not specify any makefiles to be read with ‘-f’ or ‘--file’ options, make will try
the default makefile names; see Section 3.2 [What Name to Give Your Makefile], page 10.
Unlike makefiles explicitly requested with ‘-f’ or ‘--file’ options, make is not certain that
these makefiles should exist. However, if a default makefile does not exist but can be created
by running make rules, you probably want the rules to be run so that the makefile can be
used.

Therefore, if none of the default makefiles exists, make will try to make each of them in
the same order in which they are searched for (see Section 3.2 [What Name to Give Your
Makefile], page 10) until it succeeds in making one, or it runs out of names to try. Note
that it is not an error if make cannot find or make any makefile; a makefile is not always
necessary.

3 ¢

When you use the ‘-t’ or ‘--touch’ option (see Section 9.3 [Instead of Executing the
Commands|, page 81), you would not want to use an out-of-date makefile to decide which
targets to touch. So the ‘-t’ option has no effect on updating makefiles; they are really up-
dated even if ‘~t’ is specified. Likewise, ‘-q’ (or ‘-—question’) and ‘-n’ (or ‘--just-print’)
do not prevent updating of makefiles, because an out-of-date makefile would result in the
wrong output for other targets. Thus, ‘make -f mfile -n foo’ will update ‘mfile’, read
it in, and then print the commands to update ‘foo’ and its prerequisites without running
them. The commands printed for ‘foo’ will be those specified in the updated contents of
‘mfile’.

However, on occasion you might actually wish to prevent updating of even the makefiles.
You can do this by specifying the makefiles as goals in the command line as well as specifying
them as makefiles. When the makefile name is specified explicitly as a goal, the options ‘-t’
and so on do apply to them.

Thus, ‘make -f mfile -n mfile foo’ would read the makefile ‘mfile’, print the com-
mands needed to update it without actually running them, and then print the commands
needed to update ‘foo’ without running them. The commands for ‘foo’ will be those
specified by the existing contents of ‘mfile’.

GNU make

3.8 Overriding Part of Another Makefile

Sometimes it is useful to have a makefile that is mostly just like another makefile. You
can often use the ‘include’ directive to include one in the other, and add more targets or
variable definitions. However, if the two makefiles give different commands for the same
target, make will not let you just do this. But there is another way.

In the containing makefile (the one that wants to include the other), you can use a
match-anything pattern rule to say that to remake any target that cannot be made from
the information in the containing makefile, make should look in another makefile. See
Section 10.5 [Pattern Rules], page 96, for more information on pattern rules.

For example, if you have a makefile called ‘Makefile’ that says how to make the target
‘foo’ (and other targets), you can write a makefile called ‘GNUmakefile’ that contains:

foo:

frobnicate > foo
%: force

Q$ (MAKE) -f Makefile $0@
force: ;

If you say ‘make foo’, make will find ‘GNUmakefile’, read it, and see that to make ‘foo’,
it needs to run the command ‘frobnicate > foo’. If you say ‘make bar’, make will find no
way to make ‘bar’ in ‘GNUmakefile’, so it will use the commands from the pattern rule:
‘make -f Makefile bar’. If ‘Makefile’ provides a rule for updating ‘bar’, make will apply
the rule. And likewise for any other target that ‘GNUmakefile’ does not say how to make.

The way this works is that the pattern rule has a pattern of just ‘4’, so it matches any
target whatever. The rule specifies a prerequisite ‘force’, to guarantee that the commands
will be run even if the target file already exists. We give ‘force’ target empty commands
to prevent make from searching for an implicit rule to build it—otherwise it would apply
the same match-anything rule to ‘force’ itself and create a prerequisite loop!

3.9 How make Reads a Makefile

GNU make does its work in two distinct phases. During the first phase it reads all
the makefiles, included makefiles, etc. and internalizes all the variables and their values,
implicit and explicit rules, and constructs a dependency graph of all the targets and their
prerequisites. During the second phase, make uses these internal structures to determine
what targets will need to be rebuilt and to invoke the rules necessary to do so.

It’s important to understand this two-phase approach because it has a direct impact
on how variable and function expansion happens; this is often a source of some confusion
when writing makefiles. Here we will present a summary of the phases in which expansion
happens for different constructs within the makefile. We say that expansion is immediate if
it happens during the first phase: in this case make will expand any variables or functions
in that section of a construct as the makefile is parsed. We say that expansion is deferred if
expansion is not performed immediately. Expansion of deferred construct is not performed
until either the construct appears later in an immediate context, or until the second phase.

You may not be familiar with some of these constructs yet. You can reference this section
as you become familiar with them, in later chapters.

Chapter 3: Writing Makefiles

Variable Assignment

Variable definitions are parsed as follows:

immediate = deferred

immediate ?= deferred

immediate := immediate

immediate += deferred or immediate

define immediate
deferred
endef

For the append operator, ‘+=’, the right-hand side is considered immediate if the variable
was previously set as a simple variable (‘:=’), and deferred otherwise.

Conditional Statements

All instances of conditional syntax are parsed immediately, in their entirety; this includes
the ifdef, ifeq, ifndef, and ifneq forms.

Rule Definition

A rule is always expanded the same way, regardless of the form:
immediate : immediate ; deferred
deferred
That is, the target and prerequisite sections are expanded immediately, and the com-
mands used to construct the target are always deferred. This general rule is true for explicit
rules, pattern rules, suffix rules, static pattern rules, and simple prerequisite definitions.

GNU make

Chapter 4: Writing Rules

4 Writing Rules

A rule appears in the makefile and says when and how to remake certain files, called the
rule’s targets (most often only one per rule). It lists the other files that are the prerequisites
of the target, and commands to use to create or update the target.

The order of rules is not significant, except for determining the default goal: the target
for make to consider, if you do not otherwise specify one. The default goal is the target of
the first rule in the first makefile. If the first rule has multiple targets, only the first target
is taken as the default. There are two exceptions: a target starting with a period is not
a default unless it contains one or more slashes, ‘/’, as well; and, a target that defines a
pattern rule has no effect on the default goal. (See Section 10.5 [Defining and Redefining
Pattern Rules], page 96.)

Therefore, we usually write the makefile so that the first rule is the one for compiling
the entire program or all the programs described by the makefile (often with a target called
‘all’). See Section 9.2 [Arguments to Specify the Goals|, page 79.

4.1 Rule Syntax

In general, a rule looks like this:

targets : prerequisites
command

or like this:

targets : prerequisites ; command
command

The targets are file names, separated by spaces. Wildcard characters may be used (see
Section 4.3 [Using Wildcard Characters in File Names], page 18) and a name of the form
‘a(m)’ represents member m in archive file a (see Section 11.1 [Archive Members as Targets],
page 107). Usually there is only one target per rule, but occasionally there is a reason to
have more (see Section 4.9 [Multiple Targets in a Rule], page 30).

The command lines start with a tab character. The first command may appear on the
line after the prerequisites, with a tab character, or may appear on the same line, with a
semicolon. Either way, the effect is the same. See Chapter 5 [Writing the Commands in
Rules], page 37.

Because dollar signs are used to start variable references, if you really want a dollar sign
in a rule you must write two of them, ‘¢$’ (see Chapter 6 [How to Use Variables|, page 49).
You may split a long line by inserting a backslash followed by a newline, but this is not
required, as make places no limit on the length of a line in a makefile.

A rule tells make two things: when the targets are out of date, and how to update them
when necessary.

The criterion for being out of date is specified in terms of the prerequisites, which
consist of file names separated by spaces. (Wildcards and archive members (see Chapter 11
[Archives], page 107) are allowed here too.) A target is out of date if it does not exist or if it
is older than any of the prerequisites (by comparison of last-modification times). The idea is

GNU make

that the contents of the target file are computed based on information in the prerequisites,
so if any of the prerequisites changes, the contents of the existing target file are no longer
necessarily valid.

How to update is specified by commands. These are lines to be executed by the shell
(normally ‘sh’), but with some extra features (see Chapter 5 [Writing the Commands in
Rules], page 37).

4.2 Types of Prerequisites

There are actually two different types of prerequisites understood by GNU make: normal
prerequisites such as described in the previous section, and order-only prerequisites. A
normal prerequisite actually makes two statements: first, it imposes an order of execution
of build commands: any commands necessary to build any of a target’s prerequisites will
be fully executed before any commands necessary to build the target. Second, it imposes
a dependency relationship: if any prerequisite is newer than the target, then the target is
considered out-of-date and must be rebuilt.

Normally, this is exactly what you want: if a target’s prerequisite is updated, then the
target should also be updated.

Occasionally, however, you have a situation where you want to impose a specific ordering
on the rules to be invoked without forcing the target to be updated if one of those rules is
executed. In that case, you want to define order-only prerequisites. Order-only prerequisites
can be specified by placing a pipe symbol (|) in the prerequisites list: any prerequisites to
the left of the pipe symbol are normal; any prerequisites to the right are order-only:

targets : normal-prerequisites | order-only-prerequisites

The normal prerequisites section may of course be empty. Also, you may still declare
multiple lines of prerequisites for the same target: they are appended appropriately. Note
that if you declare the same file to be both a normal and an order-only prerequisite, the
normal prerequisite takes precedence (since they are a strict superset of the behavior of an
order-only prerequisite).

4.3 Using Wildcard Characters in File Names

A single file name can specify many files using wildcard characters. The wildcard char-
acters in make are ‘*’, ‘?” and ‘[...]’, the same as in the Bourne shell. For example, ‘*.c’
specifies a list of all the files (in the working directory) whose names end in ‘.c’.

(~

The character ‘~’ at the beginning of a file name also has special significance. If alone,
or followed by a slash, it represents your home directory. For example ‘~/bin’ expands to
‘/home/you/bin’. If the ‘~’ is followed by a word, the string represents the home directory of
the user named by that word. For example ‘~john/bin’ expands to ‘/home/john/bin’. On
systems which don’t have a home directory for each user (such as MS-DOS or MS-Windows),
this functionality can be simulated by setting the environment variable HOME.

Wildcard expansion happens automatically in targets, in prerequisites, and in commands
(where the shell does the expansion). In other contexts, wildcard expansion happens only
if you request it explicitly with the wildcard function.

Chapter 4: Writing Rules

The special significance of a wildcard character can be turned off by preceding it with a
backslash. Thus, ‘foo*bar’ would refer to a specific file whose name consists of ‘foo’, an
asterisk, and ‘bar’.

4.3.1 Wildcard Examples

Wildcards can be used in the commands of a rule, where they are expanded by the shell.
For example, here is a rule to delete all the object files:
clean:
rm -f *.0
Wildcards are also useful in the prerequisites of a rule. With the following rule in the
makefile, ‘make print’ will print all the ‘. ¢’ files that have changed since the last time you
printed them:
print: *.c
lpr -p $7
touch print
This rule uses ‘print’ as an empty target file; see Section 4.7 [Empty Target Files to Record
Events], page 27. (The automatic variable ‘4?7’ is used to print only those files that have
changed; see Section 10.5.3 [Automatic Variables|, page 98.)

Wildcard expansion does not happen when you define a variable. Thus, if you write this:
objects = *.0
then the value of the variable objects is the actual string ‘*.0’. However, if you use the
value of objects in a target, prerequisite or command, wildcard expansion will take place
at that time. To set objects to the expansion, instead use:
objects := $(wildcard *.0)
See Section 4.3.3 [Wildcard Function], page 20.

4.3.2 Pitfalls of Using Wildcards

Now here is an example of a naive way of using wildcard expansion, that does not do
what you would intend. Suppose you would like to say that the executable file ‘foo’ is made
from all the object files in the directory, and you write this:

objects = *.0

foo : $(objects)
cc -o foo $(CFLAGS) $(objects)
The value of objects is the actual string ‘*.0’. Wildcard expansion happens in the rule for
‘foo’, so that each existing ‘.o’ file becomes a prerequisite of ‘foo’ and will be recompiled
if necessary.

But what if you delete all the ‘.0’ files? When a wildcard matches no files, it is left as
it is, so then ‘foo’ will depend on the oddly-named file ‘*.0’. Since no such file is likely to
exist, make will give you an error saying it cannot figure out how to make ‘*.0’. This is not
what you want!

Actually it is possible to obtain the desired result with wildcard expansion, but you need
more sophisticated techniques, including the wildcard function and string substitution.
These are described in the following section.

GNU make

Microsoft operating systems (MS-DOS and MS-Windows) use backslashes to separate
directories in pathnames, like so:

c:\foo\bar\baz.c

This is equivalent to the Unix-style ‘c:/foo/bar/baz.c’ (the ‘c:’ part is the so-called
drive letter). When make runs on these systems, it supports backslashes as well as the Unix-
style forward slashes in pathnames. However, this support does not include the wildcard
expansion, where backslash is a quote character. Therefore, you must use Unix-style slashes
in these cases.

4.3.3 The Function wildcard

Wildcard expansion happens automatically in rules. But wildcard expansion does not
normally take place when a variable is set, or inside the arguments of a function. If you
want to do wildcard expansion in such places, you need to use the wildcard function, like
this:

$(wildcard pattern...)

This string, used anywhere in a makefile, is replaced by a space-separated list of names
of existing files that match one of the given file name patterns. If no existing file name
matches a pattern, then that pattern is omitted from the output of the wildcard function.
Note that this is different from how unmatched wildcards behave in rules, where they are
used verbatim rather than ignored (see Section 4.3.2 [Wildcard Pitfall], page 19).

One use of the wildcard function is to get a list of all the C source files in a directory,
like this:
$(wildcard *.c)
We can change the list of C source files into a list of object files by replacing the ‘.c’
suffix with ‘.0’ in the result, like this:
$(patsubst %.c,%.0,$(wildcard *.c))
(Here we have used another function, patsubst. See Section 8.2 [Functions for String
Substitution and Analysis|, page 66.)
Thus, a makefile to compile all C source files in the directory and then link them together
could be written as follows:
objects := $(patsubst %.c,%.0,$(wildcard *.c))

foo : $(objects)
cc -o foo $(objects)
(This takes advantage of the implicit rule for compiling C programs, so there is no need to
write explicit rules for compiling the files. See Section 6.2 [The Two Flavors of Variables|,
page 50, for an explanation of ‘:=’, which is a variant of ‘=.)

4.4 Searching Directories for Prerequisites

For large systems, it is often desirable to put sources in a separate directory from the
binaries. The directory search features of make facilitate this by searching several directories
automatically to find a prerequisite. When you redistribute the files among directories, you
do not need to change the individual rules, just the search paths.

Chapter 4: Writing Rules

4.4.1 VPATH: Search Path for All Prerequisites

The value of the make variable VPATH specifies a list of directories that make should
search. Most often, the directories are expected to contain prerequisite files that are not in
the current directory; however, VPATH specifies a search list that make applies for all files,
including files which are targets of rules.

Thus, if a file that is listed as a target or prerequisite does not exist in the current
directory, make searches the directories listed in VPATH for a file with that name. If a file is
found in one of them, that file may become the prerequisite (see below). Rules may then
specify the names of files in the prerequisite list as if they all existed in the current directory.
See Section 4.4.4 [Writing Shell Commands with Directory Search], page 23.

In the VPATH variable, directory names are separated by colons or blanks. The order in
which directories are listed is the order followed by make in its search. (On MS-DOS and
MS-Windows, semi-colons are used as separators of directory names in VPATH, since the
colon can be used in the pathname itself, after the drive letter.)

For example,
VPATH = src:../headers

specifies a path containing two directories, ‘src’ and ‘. . /headers’, which make searches in
that order.

With this value of VPATH, the following rule,
foo.o : foo.c
is interpreted as if it were written like this:
foo.0o : src/foo.c

assuming the file ‘foo.c’ does not exist in the current directory but is found in the directory

‘src’.

4.4.2 The vpath Directive

Similar to the VPATH variable, but more selective, is the vpath directive (note lower case),
which allows you to specify a search path for a particular class of file names: those that
match a particular pattern. Thus you can supply certain search directories for one class of
file names and other directories (or none) for other file names.

There are three forms of the vpath directive:
vpath pattern directories
Specify the search path directories for file names that match pattern.

The search path, directories, is a list of directories to be searched, separated
by colons (semi-colons on MS-DOS and MS-Windows) or blanks, just like the
search path used in the VPATH variable.

vpath pattern
Clear out the search path associated with pattern.

vpath

Clear all search paths previously specified with vpath directives.

GNU make

A vpath pattern is a string containing a ‘%’ character. The string must match the file
name of a prerequisite that is being searched for, the ‘)’ character matching any sequence
of zero or more characters (as in pattern rules; see Section 10.5 [Defining and Redefining
Pattern Rules|, page 96). For example, %.h matches files that end in .h. (If there is no ‘%,
the pattern must match the prerequisite exactly, which is not useful very often.)

‘4’ characters in a vpath directive’s pattern can be quoted with preceding backslashes
(‘\’). Backslashes that would otherwise quote ‘%’ characters can be quoted with more
backslashes. Backslashes that quote ‘%4’ characters or other backslashes are removed from
the pattern before it is compared to file names. Backslashes that are not in danger of
quoting ‘%’ characters go unmolested.

When a prerequisite fails to exist in the current directory, if the pattern in a vpath
directive matches the name of the prerequisite file, then the directories in that directive are
searched just like (and before) the directories in the VPATH variable.

For example,
vpath %.h ../headers

tells make to look for any prerequisite whose name ends in ‘.h’ in the directory ‘. . /headers’
if the file is not found in the current directory.

If several vpath patterns match the prerequisite file’s name, then make processes each
matching vpath directive one by one, searching all the directories mentioned in each di-
rective. make handles multiple vpath directives in the order in which they appear in the
makefile; multiple directives with the same pattern are independent of each other.

Thus,

vpath %.c foo
vpath % blish
vpath %.c bar

will look for a file ending in ‘.c’ in ‘foo’, then ‘blish’, then ‘bar’, while

vpath %.c foo:bar
vpath % blish

will look for a file ending in ‘.c’ in ‘foo’, then ‘bar’, then ‘blish’.

4.4.3 How Directory Searches are Performed

When a prerequisite is found through directory search, regardless of type (general or
selective), the pathname located may not be the one that make actually provides you in the
prerequisite list. Sometimes the path discovered through directory search is thrown away.

The algorithm make uses to decide whether to keep or abandon a path found via directory
search is as follows:

1. If a target file does not exist at the path specified in the makefile, directory search is
performed.

2. If the directory search is successful, that path is kept and this file is tentatively stored
as the target.

3. All prerequisites of this target are examined using this same method.

4. After processing the prerequisites, the target may or may not need to be rebuilt:

Chapter 4: Writing Rules

a. If the target does not need to be rebuilt, the path to the file found during directory
search is used for any prerequisite lists which contain this target. In short, if make
doesn’t need to rebuild the target then you use the path found via directory search.

b. If the target does need to be rebuilt (is out-of-date), the pathname found during
directory search is thrown away, and the target is rebuilt using the file name
specified in the makefile. In short, if make must rebuild, then the target is rebuilt
locally, not in the directory found via directory search.

This algorithm may seem complex, but in practice it is quite often exactly what you
want.

Other versions of make use a simpler algorithm: if the file does not exist, and it is found
via directory search, then that pathname is always used whether or not the target needs
to be built. Thus, if the target is rebuilt it is created at the pathname discovered during
directory search.

If, in fact, this is the behavior you want for some or all of your directories, you can use
the GPATH variable to indicate this to make.

GPATH has the same syntax and format as VPATH (that is, a space- or colon-delimited list
of pathnames). If an out-of-date target is found by directory search in a directory that also
appears in GPATH, then that pathname is not thrown away. The target is rebuilt using the
expanded path.

4.4.4 Writing Shell Commands with Directory Search

When a prerequisite is found in another directory through directory search, this cannot
change the commands of the rule; they will execute as written. Therefore, you must write
the commands with care so that they will look for the prerequisite in the directory where
make finds it.

This is done with the automatic variables such as ‘$~’ (see Section 10.5.3 [Automatic
Variables], page 98). For instance, the value of ‘¢~ is a list of all the prerequisites of the
rule, including the names of the directories in which they were found, and the value of ‘$@’
is the target. Thus:

foo.o : foo.c
cc -c $(CFLAGS) $~ -o $@
(The variable CFLAGS exists so you can specify flags for C compilation by implicit rules; we
use it here for consistency so it will affect all C compilations uniformly; see Section 10.3
[Variables Used by Implicit Rules], page 93.)
Often the prerequisites include header files as well, which you do not want to mention
in the commands. The automatic variable ‘$<’ is just the first prerequisite:
VPATH = src:../headers
foo.o : foo.c defs.h hack.h
cc -c $(CFLAGS) $< -o $@

4.4.5 Directory Search and Implicit Rules

The search through the directories specified in VPATH or with vpath also happens during
consideration of implicit rules (see Chapter 10 [Using Implicit Rules], page 89).

GNU make

For example, when a file ‘foo.0’ has no explicit rule, make considers implicit rules, such
as the built-in rule to compile ‘foo.c’ if that file exists. If such a file is lacking in the current
directory, the appropriate directories are searched for it. If ‘foo.c’ exists (or is mentioned
in the makefile) in any of the directories, the implicit rule for C compilation is applied.

The commands of implicit rules normally use automatic variables as a matter of necessity;
consequently they will use the file names found by directory search with no extra effort.

4.4.6 Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the linker. This special
feature comes into play when you write a prerequisite whose name is of the form ‘~1name’.
(You can tell something strange is going on here because the prerequisite is normally the
name of a file, and the file name of a library generally looks like ‘libname.a’, not like
‘~lname’.)

When a prerequisite’s name has the form ‘~1name’, make handles it specially by searching
for the file ‘libname. so’ in the current directory, in directories specified by matching vpath
search paths and the VPATH search path, and then in the directories ‘/1ib’, ‘/usr/1ib’,
and ‘prefix/1ib’ (normally ‘/usr/local/1ib’, but MS-DOS/MS-Windows versions of make
behave as if prefix is defined to be the root of the DJGPP installation tree).

If that file is not found, then the file ‘1libname.a’ is searched for, in the same directories
as above.

For example, if there is a ‘/usr/lib/libcurses.a’ library on your system (and no
‘/usr/lib/libcurses.so’ file), then

foo : foo.c -lcurses
cc $° -o $@
would cause the command ‘cc foo.c /usr/lib/libcurses.a —-o foo’ to be executed when
‘foo’ is older than ‘foo.c’ or than ‘/usr/lib/libcurses.a’.

Although the default set of files to be searched for is ‘libname.so’ and ‘libname.a’,
this is customizable via the .LIBPATTERNS variable. Each word in the value of this variable
is a pattern string. When a prerequisite like ‘~-1name’ is seen, make will replace the percent
in each pattern in the list with name and perform the above directory searches using that
library filename. If no library is found, the next word in the list will be used.

The default value for .LIBPATTERNS is “‘1ib%.so 1ib%.a’”, which provides the default
behavior described above.

You can turn off link library expansion completely by setting this variable to an empty
value.

4.5 Phony Targets

A phony target is one that is not really the name of a file. It is just a name for some
commands to be executed when you make an explicit request. There are two reasons to use
a phony target: to avoid a conflict with a file of the same name, and to improve performance.

If you write a rule whose commands will not create the target file, the commands will
be executed every time the target comes up for remaking. Here is an example:

Chapter 4: Writing Rules

clean:
rm *.0 temp

Because the rm command does not create a file named ‘clean’, probably no such file will
ever exist. Therefore, the rm command will be executed every time you say ‘make clean’.

The phony target will cease to work if anything ever does create a file named ‘clean’ in
this directory. Since it has no prerequisites, the file ‘clean’ would inevitably be considered
up to date, and its commands would not be executed. To avoid this problem, you can
explicitly declare the target to be phony, using the special target .PHONY (see Section 4.8
[Special Built-in Target Names|, page 27) as follows:

.PHONY : clean

Once this is done, ‘make clean’ will run the commands regardless of whether there is a file
named ‘clean’.

Since it knows that phony targets do not name actual files that could be remade from
other files, make skips the implicit rule search for phony targets (see Chapter 10 [Implicit
Rules], page 89). This is why declaring a target phony is good for performance, even if you
are not worried about the actual file existing.

Thus, you first write the line that states that clean is a phony target, then you write
the rule, like this:

.PHONY: clean
clean:
rm *.0 temp

Another example of the usefulness of phony targets is in conjunction with recursive
invocations of make (for more information, see Section 5.6 [Recursive Use of make], page 41).
In this case the makefile will often contain a variable which lists a number of subdirectories
to be built. One way to handle this is with one rule whose command is a shell loop over
the subdirectories, like this:

SUBDIRS = foo bar baz

subdirs:
for dir in $(SUBDIRS); do \
$(MAKE) -C $$dir; \
done

There are a few problems with this method, however. First, any error detected in a
submake is not noted by this rule, so it will continue to build the rest of the directories
even when one fails. This can be overcome by adding shell commands to note the error and
exit, but then it will do so even if make is invoked with the -k option, which is unfortunate.
Second, and perhaps more importantly, you cannot take advantage of the parallel build
capabilities of make using this method, since there is only one rule.

By declaring the subdirectories as phony targets (you must do this as the subdirectory
obviously always exists; otherwise it won’t be built) you can remove these problems:

GNU make

SUBDIRS = foo bar baz
.PHONY: subdirs $(SUBDIRS)
subdirs: $(SUBDIRS)

$ (SUBDIRS) :
$(MAKE) -C $e@

foo: baz
Here we’ve also declared that the ‘foo’ subdirectory cannot be built until after the ‘baz’
subdirectory is complete; this kind of relationship declaration is particularly important
when attempting parallel builds.

A phony target should not be a prerequisite of a real target file; if it is, its commands
are run every time make goes to update that file. As long as a phony target is never a
prerequisite of a real target, the phony target commands will be executed only when the
phony target is a specified goal (see Section 9.2 [Arguments to Specify the Goals], page 79).

Phony targets can have prerequisites. When one directory contains multiple programs,
it is most convenient to describe all of the programs in one makefile ‘. /Makefile’. Since
the target remade by default will be the first one in the makefile, it is common to make this
a phony target named ‘all’ and give it, as prerequisites, all the individual programs. For
example:

all : progl prog2 prog3
PHONY : all

progl : progl.o utils.o
cc -o progl progl.o utils.o

prog2 : prog2.o
cc -0 prog2 prog2.o0

prog3 : prog3.o sort.o utils.o
cc -o prog3 prog3.o sort.o utils.o
Now you can say just ‘make’ to remake all three programs, or specify as arguments the ones
to remake (as in ‘make progl prog3’).

When one phony target is a prerequisite of another, it serves as a subroutine of the other.
For example, here ‘make cleanall’ will delete the object files, the difference files, and the
file ‘program’:

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
rm program

cleanobj
rm *.0

cleandiff :

Chapter 4: Writing Rules

rm *.diff

4.6 Rules without Commands or Prerequisites

If a rule has no prerequisites or commands, and the target of the rule is a nonexistent
file, then make imagines this target to have been updated whenever its rule is run. This
implies that all targets depending on this one will always have their commands run.

An example will illustrate this:

clean: FORCE
rm $(objects)
FORCE:

Here the target ‘FORCE’ satisfies the special conditions, so the target ‘clean’ that depends
on it is forced to run its commands. There is nothing special about the name ‘FORCE’, but
that is one name commonly used this way.

As you can see, using ‘FORCE’ this way has the same results as using ‘.PHONY: clean’.

Using ‘.PHONY’ is more explicit and more efficient. However, other versions of make do
not support ‘.PHONY’; thus ‘FORCE’ appears in many makefiles. See Section 4.5 [Phony
Targets|, page 24.

4.7 Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold commands for an
action that you request explicitly from time to time. Unlike a phony target, this target file
can really exist; but the file’s contents do not matter, and usually are empty.

The purpose of the empty target file is to record, with its last-modification time, when
the rule’s commands were last executed. It does so because one of the commands is a touch
command to update the target file.

The empty target file should have some prerequisites (otherwise it doesn’t make sense).
When you ask to remake the empty target, the commands are executed if any prerequisite
is more recent than the target; in other words, if a prerequisite has changed since the last
time you remade the target. Here is an example:

print: foo.c bar.c
lpr -p $7
touch print
With this rule, ‘make print’ will execute the 1pr command if either source file has changed
since the last ‘make print’. The automatic variable ‘$7’ is used to print only those files
that have changed (see Section 10.5.3 [Automatic Variables], page 98).

4.8 Special Built-in Target Names
Certain names have special meanings if they appear as targets.

.PHONY

The prerequisites of the special target .PHONY are considered to be phony tar-
gets. When it is time to consider such a target, make will run its commands

.SUFFIXES

.DEFAULT

.PRECIOUS

GNU make

unconditionally, regardless of whether a file with that name exists or what its
last-modification time is. See Section 4.5 [Phony Targets|, page 24.

The prerequisites of the special target .SUFFIXES are the list of suffixes to be
used in checking for suffix rules. See Section 10.7 [Old-Fashioned Suffix Rules],
page 103.

The commands specified for .DEFAULT are used for any target for which no
rules are found (either explicit rules or implicit rules). See Section 10.6 [Last
Resort], page 102. If .DEFAULT commands are specified, every file mentioned as
a prerequisite, but not as a target in a rule, will have these commands executed
on its behalf. See Section 10.8 [Implicit Rule Search Algorithm]|, page 104.

The targets which .PRECIOUS depends on are given the following special treat-
ment: if make is killed or interrupted during the execution of their commands,
the target is not deleted. See Section 5.5 [Interrupting or Killing make], page 41.
Also, if the target is an intermediate file, it will not be deleted after it is no
longer needed, as is normally done. See Section 10.4 [Chains of Implicit Rules],
page 95. In this latter respect it overlaps with the .SECONDARY special target.

You can also list the target pattern of an implicit rule (such as ‘%.0’) as a
prerequisite file of the special target .PRECIOUS to preserve intermediate files
created by rules whose target patterns match that file’s name.

. INTERMEDIATE

The targets which . INTERMEDIATE depends on are treated as intermediate files.
See Section 10.4 [Chains of Implicit Rules], page 95. .INTERMEDIATE with no
prerequisites has no effect.

.SECONDARY

The targets which .SECONDARY depends on are treated as intermediate files,
except that they are never automatically deleted. See Section 10.4 [Chains of
Implicit Rules], page 95.

.SECONDARY with no prerequisites causes all targets to be treated as secondary
(i.e., no target is removed because it is considered intermediate).

.DELETE_ON_ERROR

. IGNORE

If .DELETE_ON_ERROR is mentioned as a target anywhere in the makefile, then
make will delete the target of a rule if it has changed and its commands exit with
a nonzero exit status, just as it does when it receives a signal. See Section 5.4
[Errors in Commands], page 40.

If you specify prerequisites for . IGNORE, then make will ignore errors in execution
of the commands run for those particular files. The commands for . IGNORE are
not meaningful.

If mentioned as a target with no prerequisites, . IGNORE says to ignore errors in
execution of commands for all files. This usage of ‘. IGNORE’ is supported only

Chapter 4: Writing Rules

for historical compatibility. Since this affects every command in the makefile,
it is not very useful; we recommend you use the more selective ways to ignore
errors in specific commands. See Section 5.4 [Errors in Commands], page 40.

.LOW_RESOLUTION_TIME

.SILENT

If you specify prerequisites for .LOW_RESOLUTION_TIME, make assumes that
these files are created by commands that generate low resolution time stamps.
The commands for .LOW_RESOLUTION_TIME are not meaningful.

The high resolution file time stamps of many modern hosts lessen the chance
of make incorrectly concluding that a file is up to date. Unfortunately, these
hosts provide no way to set a high resolution file time stamp, so commands
like ‘cp -p’ that explicitly set a file’s time stamp must discard its subsecond
part. If a file is created by such a command, you should list it as a prerequisite
of .LOW_RESOLUTION_TIME so that make does not mistakenly conclude that the
file is out of date. For example:

.LOW_RESOLUTION_TIME: dst
dst: src
Ccp -p src dst

Since ‘cp -p’ discards the subsecond part of ‘src’’s time stamp, ‘dst’ is typically
slightly older than ‘src’ even when it is up to date. The .LOW_RESOLUTION_
TIME line causes make to consider ‘dst’ to be up to date if its time stamp is at
the start of the same second that ‘src’’s time stamp is in.

Due to a limitation of the archive format, archive member time stamps are
always low resolution. You need not list archive members as prerequisites of
.LOW_RESOLUTION_TIME, as make does this automatically.

If you specify prerequisites for . SILENT, then make will not print the commands
to remake those particular files before executing them. The commands for
.SILENT are not meaningful.

If mentioned as a target with no prerequisites, .SILENT says not to print any
commands before executing them. This usage of ‘. SILENT’ is supported only
for historical compatibility. We recommend you use the more selective ways to
silence specific commands. See Section 5.1 [Command Echoing], page 37. If
you want to silence all commands for a particular run of make, use the ‘-s’ or
‘~-silent’ option (see Section 9.7 [Options Summary]|, page 84).

.EXPORT_ALL_VARIABLES

Simply by being mentioned as a target, this tells make to export all variables
to child processes by default. See Section 5.6.2 [Communicating Variables to a
Sub-make], page 42.

.NOTPARALLEL

If .NOTPARALLEL is mentioned as a target, then this invocation of make will
be run serially, even if the ‘-=j’ option is given. Any recursively invoked make
command will still be run in parallel (unless its makefile contains this target).
Any prerequisites on this target are ignored.

GNU make

Any defined implicit rule suffix also counts as a special target if it appears as a target,
and so does the concatenation of two suffixes, such as ‘.c.o’. These targets are suffix rules,
an obsolete way of defining implicit rules (but a way still widely used). In principle, any
target name could be special in this way if you break it in two and add both pieces to the
suffix list. In practice, suffixes normally begin with ‘.’, so these special target names also
begin with ‘.”. See Section 10.7 [Old-Fashioned Suffix Rules]|, page 103.

4.9 Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules, each with one target,
and all identical aside from that. The same commands apply to all the targets, but their
effects may vary because you can substitute the actual target name into the command using
‘$@’. The rule contributes the same prerequisites to all the targets also.

This is useful in two cases.
e You want just prerequisites, no commands. For example:
kbd.o command.o files.o: command.h
gives an additional prerequisite to each of the three object files mentioned.

e Similar commands work for all the targets. The commands do not need to be absolutely
identical, since the automatic variable ‘$@’ can be used to substitute the particular
target to be remade into the commands (see Section 10.5.3 [Automatic Variables|,
page 98). For example:

bigoutput littleoutput : text.g
generate text.g -$(subst output,,$0) > $Q
is equivalent to
bigoutput : text.g
generate text.g -big > bigoutput
littleoutput : text.g
generate text.g -little > littleoutput

Here we assume the hypothetical program generate makes two types of output, one if
given ‘-big’ and one if given ‘-1ittle’. See Section 8.2 [Functions for String Substi-
tution and Analysis|, page 66, for an explanation of the subst function.

Suppose you would like to vary the prerequisites according to the target, much as the
variable ‘$@’ allows you to vary the commands. You cannot do this with multiple targets
in an ordinary rule, but you can do it with a static pattern rule. See Section 4.11 [Static
Pattern Rules|, page 31.

4.10 Multiple Rules for One Target

One file can be the target of several rules. All the prerequisites mentioned in all the
rules are merged into one list of prerequisites for the target. If the target is older than any
prerequisite from any rule, the commands are executed.

There can only be one set of commands to be executed for a file. If more than one rule
gives commands for the same file, make uses the last set given and prints an error message.
(As a special case, if the file’s name begins with a dot, no error message is printed. This

Chapter 4: Writing Rules

odd behavior is only for compatibility with other implementations of make... you should
avoid using it). Occasionally it is useful to have the same target invoke multiple commands
which are defined in different parts of your makefile; you can use double-colon rules (see
Section 4.12 [Double-Colon], page 33) for this.

An extra rule with just prerequisites can be used to give a few extra prerequisites to many
files at once. For example, makefiles often have a variable, such as objects, containing a
list of all the compiler output files in the system being made. An easy way to say that all
of them must be recompiled if ‘config.h’ changes is to write the following:

objects = foo.o bar.o
foo.o : defs.h

bar.o : defs.h test.h
$(objects) : config.h

This could be inserted or taken out without changing the rules that really specify how to
make the object files, making it a convenient form to use if you wish to add the additional
prerequisite intermittently.

Another wrinkle is that the additional prerequisites could be specified with a variable
that you set with a command argument to make (see Section 9.5 [Overriding Variables],
page 83). For example,

extradeps=

$(objects) : $(extradeps)
means that the command ‘make extradeps=foo.h’ will consider ‘foo.h’ as a prerequisite
of each object file, but plain ‘make’ will not.

If none of the explicit rules for a target has commands, then make searches for an appli-
cable implicit rule to find some commands see Chapter 10 [Using Implicit Rules|, page 89).

4.11 Static Pattern Rules

Static pattern rules are rules which specify multiple targets and construct the prerequisite
names for each target based on the target name. They are more general than ordinary rules
with multiple targets because the targets do not have to have identical prerequisites. Their
prerequisites must be analogous, but not necessarily identical.

4.11.1 Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:

targets ...: target-pattern: prereq-patterns ...
commands

The targets list specifies the targets that the rule applies to. The targets can contain
wildcard characters, just like the targets of ordinary rules (see Section 4.3 [Using Wildcard
Characters in File Names|, page 18).

The target-pattern and prereq-patterns say how to compute the prerequisites of each
target. Each target is matched against the target-pattern to extract a part of the target
name, called the stem. This stem is substituted into each of the prereg-patterns to make
the prerequisite names (one from each prereqg-pattern).

GNU make

Each pattern normally contains the character ‘/’ just once. When the target-pattern
matches a target, the ‘4’ can match any part of the target name; this part is called the
stem. The rest of the pattern must match exactly. For example, the target ‘foo.o’ matches
the pattern ‘%.0o’, with ‘foo’ as the stem. The targets ‘foo.c’ and ‘foo.out’ do not match
that pattern.

The prerequisite names for each target are made by substituting the stem for the ‘%’ in
each prerequisite pattern. For example, if one prerequisite pattern is ‘%.c’, then substitution
of the stem ‘foo’ gives the prerequisite name ‘foo.c’. It is legitimate to write a prerequisite
pattern that does not contain ‘%’; then this prerequisite is the same for all targets.

‘%’ characters in pattern rules can be quoted with preceding backslashes (‘\’). Back-
slashes that would otherwise quote ‘%4’ characters can be quoted with more backslashes.
Backslashes that quote ‘4’ characters or other backslashes are removed from the pattern
before it is compared to file names or has a stem substituted into it. Backslashes that
are not in danger of quoting ‘%’ characters go unmolested. For example, the pattern
‘the\/weird\\/pattern\\’ has ‘thejweird\’ preceding the operative ‘%4’ character, and
‘pattern\\’ following it. The final two backslashes are left alone because they cannot
affect any ‘%4’ character.

Here is an example, which compiles each of ‘foo.0’ and ‘bar.o’ from the corresponding
‘.c’ file:

objects = foo.o bar.o

all: $(objects)

$(objects): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@
Here ‘$<’ is the automatic variable that holds the name of the prerequisite and ‘$@’ is
the automatic variable that holds the name of the target; see Section 10.5.3 [Automatic
Variables|, page 98.

Each target specified must match the target pattern; a warning is issued for each target
that does not. If you have a list of files, only some of which will match the pattern, you can
use the filter function to remove nonmatching file names (see Section 8.2 [Functions for
String Substitution and Analysis], page 66):

files = foo.elc bar.o lose.o

$(filter %.0,$(files)): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@
$(filter %.elc,$(files)): %.elc: %.el
emacs -f batch-byte-compile $<
In this example the result of ‘$(filter %.0,$(files))’ is ‘bar.o lose.o’, and the first
static pattern rule causes each of these object files to be updated by compiling the corre-
sponding C source file. The result of ‘$ (filter %.elc,$(files))’is ‘foo.elc’, so that file
is made from ‘foo.el’.
Another example shows how to use $* in static pattern rules:

bigoutput littleoutput : joutput : text.g
generate text.g -$* > $0

When the generate command is run, $* will expand to the stem, either ‘big’ or ‘little’.

Chapter 4: Writing Rules

4.11.2 Static Pattern Rules versus Implicit Rules

A static pattern rule has much in common with an implicit rule defined as a pattern rule
(see Section 10.5 [Defining and Redefining Pattern Rules|, page 96). Both have a pattern
for the target and patterns for constructing the names of prerequisites. The difference is in
how make decides when the rule applies.

An implicit rule can apply to any target that matches its pattern, but it does apply only
when the target has no commands otherwise specified, and only when the prerequisites can
be found. If more than one implicit rule appears applicable, only one applies; the choice
depends on the order of rules.

By contrast, a static pattern rule applies to the precise list of targets that you specify
in the rule. It cannot apply to any other target and it invariably does apply to each of the
targets specified. If two conflicting rules apply, and both have commands, that’s an error.

The static pattern rule can be better than an implicit rule for these reasons:

e You may wish to override the usual implicit rule for a few files whose names cannot be
categorized syntactically but can be given in an explicit list.

e If you cannot be sure of the precise contents of the directories you are using, you may
not be sure which other irrelevant files might lead make to use the wrong implicit rule.
The choice might depend on the order in which the implicit rule search is done. With
static pattern rules, there is no uncertainty: each rule applies to precisely the targets
specified.

4.12 Double-Colon Rules

Double-colon rules are rules written with ‘: :’ instead of :’ after the target names. They
are handled differently from ordinary rules when the same target appears in more than one
rule.

When a target appears in multiple rules, all the rules must be the same type: all ordinary,
or all double-colon. If they are double-colon, each of them is independent of the others.
Each double-colon rule’s commands are executed if the target is older than any prerequisites
of that rule. If there are no prerequisites for that rule, its commands are always executed
(even if the target already exists). This can result in executing none, any, or all of the
double-colon rules.

Double-colon rules with the same target are in fact completely separate from one another.
Each double-colon rule is processed individually, just as rules with different targets are
processed.

The double-colon rules for a target are executed in the order they appear in the makefile.
However, the cases where double-colon rules really make sense are those where the order of
executing the commands would not matter.

Double-colon rules are somewhat obscure and not often very useful; they provide a
mechanism for cases in which the method used to update a target differs depending on
which prerequisite files caused the update, and such cases are rare.

Each double-colon rule should specify commands; if it does not, an implicit rule will be
used if one applies. See Chapter 10 [Using Implicit Rules], page 89.

GNU make

4.13 Generating Prerequisites Automatically

In the makefile for a program, many of the rules you need to write often say only that
some object file depends on some header file. For example, if ‘main.c’ uses ‘defs.h’ via an
#include, you would write:

main.o: defs.h

You need this rule so that make knows that it must remake ‘main.o’ whenever ‘defs.h’
changes. You can see that for a large program you would have to write dozens of such rules
in your makefile. And, you must always be very careful to update the makefile every time
you add or remove an #include.

To avoid this hassle, most modern C compilers can write these rules for you, by looking
at the #include lines in the source files. Usually this is done with the ‘-M’ option to the
compiler. For example, the command:

cc -M main.c
generates the output:
main.o : main.c defs.h
Thus you no longer have to write all those rules yourself. The compiler will do it for you.

Note that such a prerequisite constitutes mentioning ‘main.o’ in a makefile, so it can
never be considered an intermediate file by implicit rule search. This means that make won’t
ever remove the file after using it; see Section 10.4 [Chains of Implicit Rules], page 95.

With old make programs, it was traditional practice to use this compiler feature to
generate prerequisites on demand with a command like ‘make depend’. That command
would create a file ‘depend’ containing all the automatically-generated prerequisites; then
the makefile could use include to read them in (see Section 3.3 [Include], page 10).

In GNU make, the feature of remaking makefiles makes this practice obsolete—you need
never tell make explicitly to regenerate the prerequisites, because it always regenerates any
makefile that is out of date. See Section 3.7 [Remaking Makefiles|, page 12.

The practice we recommend for automatic prerequisite generation is to have one makefile
corresponding to each source file. For each source file ‘name. ¢’ there is a makefile ‘name.d’
which lists what files the object file ‘name.o’ depends on. That way only the source files
that have changed need to be rescanned to produce the new prerequisites.

Here is the pattern rule to generate a file of prerequisites (i.e., a makefile) called ‘name.d’
from a C source file called ‘name.c’:
h.d: h.c
$(CC) -M $(CPPFLAGS) $< > $0.$$8$; \

sed ’s,\($*\)\.o[:1x,\1.0 $@ : ,g’ < $0.$3$$$ > $@; \

rm -f $0.$$$$
See Section 10.5 [Pattern Rules], page 96, for information on defining pattern rules. The
‘~e’ flag to the shell causes it to exit immediately if the $(CC) command (or any other
command) fails (exits with a nonzero status).

With the GNU C compiler, you may wish to use the ‘-MM’ flag instead of ‘-M’. This omits

prerequisites on system header files. See section “Options Controlling the Preprocessor” in
Using GNU CC, for details.

The purpose of the sed command is to translate (for example):

Chapter 4: Writing Rules

main.o : main.c defs.h
into:

main.o main.d : main.c defs.h
This makes each ‘.d’ file depend on all the source and header files that the corresponding
‘.0’ file depends on. make then knows it must regenerate the prerequisites whenever any of
the source or header files changes.

Once you’ve defined the rule to remake the ¢.d’ files, you then use the include directive

to read them all in. See Section 3.3 [Include], page 10. For example:

sources = foo.c bar.c

include $(sources:.c=.d)

(This example uses a substitution variable reference to translate the list of source files ‘foo.c
bar.c’ into a list of prerequisite makefiles, ‘foo.d bar.d’. See Section 6.3.1 [Substitution
Refs|, page 52, for full information on substitution references.) Since the ‘.d’ files are
makefiles like any others, make will remake them as necessary with no further work from
you. See Section 3.7 [Remaking Makefiles], page 12.

Note that the ‘.d’ files contain target definitions; you should be sure to place the include
directive after the first, default target in your makefiles or run the risk of having a random
object file become the default target. See Section 2.3 [How Make Works], page 5.

GNU make

Chapter 5: Writing the Commands in Rules

5 Writing the Commands in Rules

The commands of a rule consist of shell command lines to be executed one by one. Each
command line must start with a tab, except that the first command line may be attached
to the target-and-prerequisites line with a semicolon in between. Blank lines and lines of
just comments may appear among the command lines; they are ignored. (But beware, an
apparently “blank” line that begins with a tab is not blank! It is an empty command; see
Section 5.8 [Empty Commands]|, page 47.)

Users use many different shell programs, but commands in makefiles are always inter-
preted by ‘/bin/sh’ unless the makefile specifies otherwise. See Section 5.2 [Command
Execution], page 37.

The shell that is in use determines whether comments can be written on command lines,
and what syntax they use. When the shell is ‘/bin/sh’, a ‘#’ starts a comment that extends
to the end of the line. The ‘#’ does not have to be at the beginning of a line. Text on a line
before a ‘#’ is not part of the comment.

5.1 Command Echoing

Normally make prints each command line before it is executed. We call this echoing
because it gives the appearance that you are typing the commands yourself.

When a line starts with ‘@, the echoing of that line is suppressed. The ‘@’ is discarded
before the command is passed to the shell. Typically you would use this for a command
whose only effect is to print something, such as an echo command to indicate progress
through the makefile:

@echo About to make distribution files

When make is given the flag ‘-n’ or ‘--just-print’ it only echoes commands, it won’t

execute them. See Section 9.7 [Summary of Options], page 84. In this case and only this
case, even the commands starting with ‘@’ are printed. This flag is useful for finding out
which commands make thinks are necessary without actually doing them.

The ‘-8’ or ‘--silent’ flag to make prevents all echoing, as if all commands started with
‘Q@’. A rule in the makefile for the special target .SILENT without prerequisites has the same
effect (see Section 4.8 [Special Built-in Target Names|, page 27). .SILENT is essentially
obsolete since ‘@’ is more flexible.

5.2 Command Execution

When it is time to execute commands to update a target, they are executed by making
a new subshell for each line. (In practice, make may take shortcuts that do not affect the
results.)

Please note: this implies that shell commands such as cd that set variables local to each
process will not affect the following command lines.! If you want to use cd to affect the
next command, put the two on a single line with a semicolon between them. Then make

L On MS-DOS, the value of current working directory is global, so changing it will affect the following
command lines on those systems.

GNU make

will consider them a single command and pass them, together, to a shell which will execute
them in sequence. For example:
foo : bar/lose
cd bar; gobble lose > ../foo
If you would like to split a single shell command into multiple lines of text, you must
use a backslash at the end of all but the last subline. Such a sequence of lines is combined
into a single line, by deleting the backslash-newline sequences, before passing it to the shell.
Thus, the following is equivalent to the preceding example:
foo : bar/lose
cd bar; \
gobble lose > ../foo
The program used as the shell is taken from the variable SHELL. By default, the program
‘/bin/sh’ is used.
On MS-DOS, if SHELL is not set, the value of the variable COMSPEC (which is always set)
is used instead.

The processing of lines that set the variable SHELL in Makefiles is different on MS-DOS.
The stock shell, ‘command. com’, is ridiculously limited in its functionality and many users of
make tend to install a replacement shell. Therefore, on MS-DOS, make examines the value
of SHELL, and changes its behavior based on whether it points to a Unix-style or DOS-style
shell. This allows reasonable functionality even if SHELL points to ‘command.com’.

If SHELL points to a Unix-style shell, make on MS-DOS additionally checks whether that
shell can indeed be found; if not, it ignores the line that sets SHELL. In MS-DOS, GNU
make searches for the shell in the following places:

1. In the precise place pointed to by the value of SHELL. For example, if the makefile
specifies ‘SHELL = /bin/sh’, make will look in the directory ‘/bin’ on the current drive.

2. In the current directory.

3. In each of the directories in the PATH variable, in order.

In every directory it examines, make will first look for the specific file (‘sh’ in the example
above). If this is not found, it will also look in that directory for that file with one of the
7«

known extensions which identify executable files. For example ‘.exe’, ‘.com’, ‘.bat’, ‘.btm’,
‘.sh’, and some others.

If any of these attempts is successful, the value of SHELL will be set to the full pathname
of the shell as found. However, if none of these is found, the value of SHELL will not be
changed, and thus the line that sets it will be effectively ignored. This is so make will only
support features specific to a Unix-style shell if such a shell is actually installed on the
system where make runs.

Note that this extended search for the shell is limited to the cases where SHELL is set
from the Makefile; if it is set in the environment or command line, you are expected to set
it to the full pathname of the shell, exactly as things are on Unix.

The effect of the above DOS-specific processing is that a Makefile that says ‘SHELL =
/bin/sh’ (as many Unix makefiles do), will work on MS-DOS unaltered if you have e.g.
‘sh.exe’ installed in some directory along your PATH.

Unlike most variables, the variable SHELL is never set from the environment. This is
because the SHELL environment variable is used to specify your personal choice of shell

Chapter 5: Writing the Commands in Rules

program for interactive use. It would be very bad for personal choices like this to affect
the functioning of makefiles. See Section 6.9 [Variables from the Environment], page 59.
However, on MS-DOS and MS-Windows the value of SHELL in the environment is used,
since on those systems most users do not set this variable, and therefore it is most likely
set specifically to be used by make. On MS-DOS, if the setting of SHELL is not suitable
for make, you can set the variable MAKESHELL to the shell that make should use; this will
override the value of SHELL.

5.3 Parallel Execution

GNU make knows how to execute several commands at once. Normally, make will execute
only one command at a time, waiting for it to finish before executing the next. However,
the ‘~j’ or ‘~—jobs’ option tells make to execute many commands simultaneously.

On MS-DOS, the ‘-j’ option has no effect, since that system doesn’t support multi-
processing.

If the ‘~j’ option is followed by an integer, this is the number of commands to execute
at once; this is called the number of job slots. If there is nothing looking like an integer
after the ‘~j’ option, there is no limit on the number of job slots. The default number of
job slots is one, which means serial execution (one thing at a time).

One unpleasant consequence of running several commands simultaneously is that output
generated by the commands appears whenever each command sends it, so messages from
different commands may be interspersed.

Another problem is that two processes cannot both take input from the same device; so
to make sure that only one command tries to take input from the terminal at once, make
will invalidate the standard input streams of all but one running command. This means
that attempting to read from standard input will usually be a fatal error (a ‘Broken pipe’
signal) for most child processes if there are several.

It is unpredictable which command will have a valid standard input stream (which will
come from the terminal, or wherever you redirect the standard input of make). The first
command run will always get it first, and the first command started after that one finishes
will get it next, and so on.

We will change how this aspect of make works if we find a better alternative. In the mean
time, you should not rely on any command using standard input at all if you are using the
parallel execution feature; but if you are not using this feature, then standard input works
normally in all commands.

Finally, handling recursive make invocations raises issues. For more information on this,
see Section 5.6.3 [Communicating Options to a Sub-make], page 44.

If a command fails (is killed by a signal or exits with a nonzero status), and errors are not
ignored for that command (see Section 5.4 [Errors in Commands], page 40), the remaining
command lines to remake the same target will not be run. If a command fails and the ‘-k’
or ‘--keep-going’ option was not given (see Section 9.7 [Summary of Options|, page 84),
make aborts execution. If make terminates for any reason (including a signal) with child

processes running, it waits for them to finish before actually exiting.

When the system is heavily loaded, you will probably want to run fewer jobs than when
it is lightly loaded. You can use the ‘-1’ option to tell make to limit the number of jobs to

GNU make

¢

run at once, based on the load average. The ‘-1’ or
floating-point number. For example,

-1 2.5
will not let make start more than one job if the load average is above 2.5. The ‘-1’ option

with no following number removes the load limit, if one was given with a previous ‘-1’
option.

--max-load’ option is followed by a

More precisely, when make goes to start up a job, and it already has at least one job
running, it checks the current load average; if it is not lower than the limit given with ‘-1’,
make waits until the load average goes below that limit, or until all the other jobs finish.

By default, there is no load limit.

5.4 Errors in Commands

After each shell command returns, make looks at its exit status. If the command com-
pleted successfully, the next command line is executed in a new shell; after the last command
line is finished, the rule is finished.

If there is an error (the exit status is nonzero), make gives up on the current rule, and
perhaps on all rules.

Sometimes the failure of a certain command does not indicate a problem. For example,
you may use the mkdir command to ensure that a directory exists. If the directory already
exists, mkdir will report an error, but you probably want make to continue regardless.

To ignore errors in a command line, write a ‘= at the beginning of the line’s text (after
the initial tab). The ‘-’ is discarded before the command is passed to the shell for execution.

For example,
clean:
-rm -f *.0
This causes rm to continue even if it is unable to remove a file.

¢

When you run make with the ‘-i’ or ‘--ignore-errors’ flag, errors are ignored in all
commands of all rules. A rule in the makefile for the special target .IGNORE has the same
effect, if there are no prerequisites. These ways of ignoring errors are obsolete because ‘-’
is more flexible.

When errors are to be ignored, because of either a ‘-’ or the ‘-i’ flag, make treats an
error return just like success, except that it prints out a message that tells you the status
code the command exited with, and says that the error has been ignored.

When an error happens that make has not been told to ignore, it implies that the
current target cannot be correctly remade, and neither can any other that depends on it
either directly or indirectly. No further commands will be executed for these targets, since
their preconditions have not been achieved.

Normally make gives up immediately in this circumstance, returning a nonzero status.
However, if the ‘~k’ or ‘--keep-going’ flag is specified, make continues to consider the
other prerequisites of the pending targets, remaking them if necessary, before it gives up
and returns nonzero status. For example, after an error in compiling one object file, ‘make
-k’ will continue compiling other object files even though it already knows that linking them
will be impossible. See Section 9.7 [Summary of Options], page 84.

Chapter 5: Writing the Commands in Rules

The usual behavior assumes that your purpose is to get the specified targets up to date;
once make learns that this is impossible, it might as well report the failure immediately.
The ‘-k’ option says that the real purpose is to test as many of the changes made in the
program as possible, perhaps to find several independent problems so that you can correct
them all before the next attempt to compile. This is why Emacs’ compile command passes
the ‘-k’ flag by default.

Usually when a command fails, if it has changed the target file at all, the file is corrupted
and cannot be used—or at least it is not completely updated. Yet the file’s time stamp says
that it is now up to date, so the next time make runs, it will not try to update that file.
The situation is just the same as when the command is killed by a signal; see Section 5.5
[Interrupts], page 41. So generally the right thing to do is to delete the target file if the
command fails after beginning to change the file. make will do this if .DELETE_ON_ERROR
appears as a target. This is almost always what you want make to do, but it is not historical
practice; so for compatibility, you must explicitly request it.

5.5 Interrupting or Killing make

If make gets a fatal signal while a command is executing, it may delete the target file
that the command was supposed to update. This is done if the target file’s last-modification
time has changed since make first checked it.

The purpose of deleting the target is to make sure that it is remade from scratch when
make is next run. Why is this? Suppose you type Ctrl-c while a compiler is running, and
it has begun to write an object file ‘foo.0’. The Ctrl-c kills the compiler, resulting in an
incomplete file whose last-modification time is newer than the source file ‘foo.c’. But make
also receives the Ctrl-c signal and deletes this incomplete file. If make did not do this, the
next invocation of make would think that ‘foo.o’ did not require updating—resulting in a
strange error message from the linker when it tries to link an object file half of which is
missing.

You can prevent the deletion of a target file in this way by making the special target
.PRECIOUS depend on it. Before remaking a target, make checks to see whether it appears
on the prerequisites of . PRECI0OUS, and thereby decides whether the target should be deleted
if a signal happens. Some reasons why you might do this are that the target is updated
in some atomic fashion, or exists only to record a modification-time (its contents do not
matter), or must exist at all times to prevent other sorts of trouble.

5.6 Recursive Use of make

Recursive use of make means using make as a command in a makefile. This technique
is useful when you want separate makefiles for various subsystems that compose a larger
system. For example, suppose you have a subdirectory ‘subdir’ which has its own makefile,
and you would like the containing directory’s makefile to run make on the subdirectory. You
can do it by writing this:

subsystem:
cd subdir && $(MAKE)

or, equivalently, this (see Section 9.7 [Summary of Options], page 84):

GNU make

subsystem:
$(MAKE) -C subdir

You can write recursive make commands just by copying this example, but there are
many things to know about how they work and why, and about how the sub-make relates to
the top-level make. You may also find it useful to declare targets that invoke recursive make
commands as ‘.PHONY’ (for more discussion on when this is useful, see Section 4.5 [Phony
Targets], page 24).

For your convenience, GNU make sets the variable CURDIR to the pathname of the current
working directory for you. If -C is in effect, it will contain the path of the new directory, not
the original. The value has the same precedence it would have if it were set in the makefile
(by default, an environment variable CURDIR will not override this value). Note that setting
this variable has no effect on the operation of make

5.6.1 How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not the explicit command
name ‘make’, as shown here:

subsystem:
cd subdir && $(MAKE)

The value of this variable is the file name with which make was invoked. If this file
name was ‘/bin/make’, then the command executed is ‘cd subdir &% /bin/make’. If you
use a special version of make to run the top-level makefile, the same special version will be
executed for recursive invocations.

As a special feature, using the variable MAKE in the commands of a rule alters the effects
of the ‘-t’ (‘--touch’), ‘-n’ (‘--just-print’), or ‘-q’ (‘--question’) option. Using the
MAKE variable has the same effect as using a ‘+’ character at the beginning of the command
line. See Section 9.3 [Instead of Executing the Commands]|, page 81.

Consider the command ‘make -t’ in the above example. (The ‘-t’ option marks targets as
up to date without actually running any commands; see Section 9.3 [Instead of Execution],
page 81.) Following the usual definition of ‘-t’, a ‘make -t’ command in the example would
create a file named ‘subsystem’ and do nothing else. What you really want it to do is run
‘cd subdir && make —-t’; but that would require executing the command, and ‘-t’ says not
to execute commands.

The special feature makes this do what you want: whenever a command line of a rule
contains the variable MAKE, the flags ‘-t’, ‘-n’ and ‘-q’ do not apply to that line. Command
lines containing MAKE are executed normally despite the presence of a flag that causes most
commands not to be run. The usual MAKEFLAGS mechanism passes the flags to the sub-make
(see Section 5.6.3 [Communicating Options to a Sub-make], page 44), so your request to
touch the files, or print the commands, is propagated to the subsystem.

5.6.2 Communicating Variables to a Sub-make

Variable values of the top-level make can be passed to the sub-make through the envi-
ronment by explicit request. These variables are defined in the sub-make as defaults, but
do not override what is specified in the makefile used by the sub-make makefile unless you
use the ‘-e’ switch (see Section 9.7 [Summary of Options], page 84).

Chapter 5: Writing the Commands in Rules

To pass down, or export, a variable, make adds the variable and its value to the environ-
ment for running each command. The sub-make, in turn, uses the environment to initialize
its table of variable values. See Section 6.9 [Variables from the Environment], page 59.

Except by explicit request, make exports a variable only if it is either defined in the
environment initially or set on the command line, and if its name consists only of let-
ters, numbers, and underscores. Some shells cannot cope with environment variable names
consisting of characters other than letters, numbers, and underscores.

The special variables SHELL and MAKEFLAGS are always exported (unless you unexport
them). MAKEFILES is exported if you set it to anything.

make automatically passes down variable values that were defined on the command line,
by putting them in the MAKEFLAGS variable. See the next section.

Variables are not normally passed down if they were created by default by make (see
Section 10.3 [Variables Used by Implicit Rules|, page 93). The sub-make will define these
for itself.

If you want to export specific variables to a sub-make, use the export directive, like this:
export variable ...
If you want to prevent a variable from being exported, use the unexport directive, like this:
unexport variable ...

In both of these forms, the arguments to export and unexport are expanded, and so could
be variables or functions which expand to a (list of) variable names to be (un)exported.

As a convenience, you can define a variable and export it at the same time by doing:
export variable = value
has the same result as:

variable = value
export variable

and
export variable := value
has the same result as:

variable := value
export variable

Likewise,
export variable += value
is just like:
variable += value
export variable

See Section 6.6 [Appending More Text to Variables], page 56.

You may notice that the export and unexport directives work in make in the same way
they work in the shell, sh.

If you want all variables to be exported by default, you can use export by itself:
export

This tells make that variables which are not explicitly mentioned in an export or unexport
directive should be exported. Any variable given in an unexport directive will still not be

GNU make

exported. If you use export by itself to export variables by default, variables whose names
contain characters other than alphanumerics and underscores will not be exported unless
specifically mentioned in an export directive.

The behavior elicited by an export directive by itself was the default in older versions of
GNU make. If your makefiles depend on this behavior and you want to be compatible with
old versions of make, you can write a rule for the special target .EXPORT_ALL_VARIABLES
instead of using the export directive. This will be ignored by old makes, while the export
directive will cause a syntax error.

Likewise, you can use unexport by itself to tell make not to export variables by default.
Since this is the default behavior, you would only need to do this if export had been used
by itself earlier (in an included makefile, perhaps). You cannot use export and unexport
by themselves to have variables exported for some commands and not for others. The last
export or unexport directive that appears by itself determines the behavior for the entire
run of make.

As a special feature, the variable MAKELEVEL is changed when it is passed down from
level to level. This variable’s value is a string which is the depth of the level as a decimal
number. The value is ‘0’ for the top-level make; ‘1’ for a sub-make, ‘2’ for a sub-sub-make,
and so on. The incrementation happens when make sets up the environment for a command.

The main use of MAKELEVEL is to test it in a conditional directive (see Chapter 7 [Con-
ditional Parts of Makefiles|, page 61); this way you can write a makefile that behaves one
way if run recursively and another way if run directly by you.

You can use the variable MAKEFILES to cause all sub-make commands to use additional
makefiles. The value of MAKEFILES is a whitespace-separated list of file names. This variable,
if defined in the outer-level makefile, is passed down through the environment; then it serves
as a list of extra makefiles for the sub-make to read before the usual or specified ones. See
Section 3.4 [The Variable MAKEFILES], page 11.

5.6.3 Communicating Options to a Sub-make

Flags such as ‘-s’ and ‘~k’ are passed automatically to the sub-make through the variable
MAKEFLAGS. This variable is set up automatically by make to contain the flag letters that
make received. Thus, if you do ‘make -ks’ then MAKEFLAGS gets the value ‘ks’.

As a consequence, every sub-make gets a value for MAKEFLAGS in its environment. In
response, it takes the flags from that value and processes them as if they had been given as
arguments. See Section 9.7 [Summary of Options], page 84.

Likewise variables defined on the command line are passed to the sub-make through
MAKEFLAGS. Words in the value of MAKEFLAGS that contain ‘=’, make treats as variable
definitions just as if they appeared on the command line. See Section 9.5 [Overriding
Variables], page 83.

The options ‘-C’, ‘-f’, ‘-0’, and ‘-W’ are not put into MAKEFLAGS; these options are not
passed down.

The ‘-j’ option is a special case (see Section 5.3 [Parallel Execution], page 39). If you set
it to some numeric value ‘N’ and your operating system supports it (most any UNIX system
will; others typically won’t), the parent make and all the sub-makes will communicate to
ensure that there are only ‘N’ jobs running at the same time between them all. Note that

Chapter 5: Writing the Commands in Rules

any job that is marked recursive (see Section 9.3 [Instead of Executing the Commands],
page 81) doesn’t count against the total jobs (otherwise we could get ‘N’ sub-makes running
and have no slots left over for any real work!)

If your operating system doesn’t support the above communication, then ‘-j 1’ is always
put into MAKEFLAGS instead of the value you specified. This is because if the ‘~j’ option
were passed down to sub-makes, you would get many more jobs running in parallel than
you asked for. If you give ‘~j’ with no numeric argument, meaning to run as many jobs as
possible in parallel, this is passed down, since multiple infinities are no more than one.

If you do not want to pass the other flags down, you must change the value of MAKEFLAGS,
like this:

subsystem:
cd subdir && $(MAKE) MAKEFLAGS=

The command line variable definitions really appear in the variable MAKEOVERRIDES,
and MAKEFLAGS contains a reference to this variable. If you do want to pass flags down
normally, but don’t want to pass down the command line variable definitions, you can reset
MAKEOVERRIDES to empty, like this:

MAKEOVERRIDES =

This is not usually useful to do. However, some systems have a small fixed limit on the
size of the environment, and putting so much information into the value of MAKEFLAGS can
exceed it. If you see the error message ‘Arg list too long’, this may be the problem. (For
strict compliance with POSIX.2, changing MAKEOVERRIDES does not affect MAKEFLAGS if the
special target ‘.POSIX’ appears in the makefile. You probably do not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It has the same
value as MAKEFLAGS except that it does not contain the command line variable defini-
tions, and it always begins with a hyphen unless it is empty (MAKEFLAGS begins with
a hyphen only when it begins with an option that has no single-letter version, such as
‘~-warn-undefined-variables’). MFLAGS was traditionally used explicitly in the recursive
make command, like this:

subsystem:
cd subdir && $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your makefiles to be compat-
ible with old make programs, use this technique; it will work fine with more modern make
versions too.

The MAKEFLAGS variable can also be useful if you want to have certain options, such as
‘~k’ (see Section 9.7 [Summary of Options|, page 84), set each time you run make. You
simply put a value for MAKEFLAGS in your environment. You can also set MAKEFLAGS in a
makefile, to specify additional flags that should also be in effect for that makefile. (Note
that you cannot use MFLAGS this way. That variable is set only for compatibility; make does
not interpret a value you set for it in any way.)

When make interprets the value of MAKEFLAGS (either from the environment or from a
makefile), it first prepends a hyphen if the value does not already begin with one. Then
it chops the value into words separated by blanks, and parses these words as if they were
options given on the command line (except that ‘-C’, ‘~£’, ‘-h’, ‘-0’, ‘-W’, and their long-
named versions are ignored; and there is no error for an invalid option).

GNU make

If you do put MAKEFLAGS in your environment, you should be sure not to include any
options that will drastically affect the actions of make and undermine the purpose of make-
files and of make itself. For instance, the ‘-t’, ‘-n’, and ‘-q’ options, if put in one of these
variables, could have disastrous consequences and would certainly have at least surprising
and probably annoying effects.

5.6.4 The ‘--print-directory’ Option

If you use several levels of recursive make invocations, the ‘-w’ or ‘--print-directory’
option can make the output a lot easier to understand by showing each directory as make
starts processing it and as make finishes processing it. For example, if ‘make -w’ is run in
the directory ‘/u/gnu/make’, make will print a line of the form:

make: Entering directory ‘/u/gnu/make’.
before doing anything else, and a line of the form:
make: Leaving directory ‘/u/gnu/make’.

when processing is completed.

Normally, you do not need to specify this option because ‘make’ does it for you: ‘-w’

is turned on automatically when you use the ‘-C’ option, and in sub-makes. make will
not automatically turn on ‘-w’ if you also use ‘-s’, which says to be silent, or if you use
‘-—no-print-directory’ to explicitly disable it.

5.7 Defining Canned Command Sequences

When the same sequence of commands is useful in making various targets, you can define
it as a canned sequence with the define directive, and refer to the canned sequence from
the rules for those targets. The canned sequence is actually a variable, so the name must
not conflict with other variable names.

Here is an example of defining a canned sequence of commands:

define run-yacc
yacc $(firstword $°)
mv y.tab.c $@

endef

Here run-yacc is the name of the variable being defined; endef marks the end of the
definition; the lines in between are the commands. The define directive does not expand
variable references and function calls in the canned sequence; the ‘$’ characters, parentheses,
variable names, and so on, all become part of the value of the variable you are defining. See
Section 6.8 [Defining Variables Verbatim|, page 58, for a complete explanation of define.

The first command in this example runs Yacc on the first prerequisite of whichever rule
uses the canned sequence. The output file from Yacc is always named ‘y.tab.c’. The
second command moves the output to the rule’s target file name.

To use the canned sequence, substitute the variable into the commands of a rule. You
can substitute it like any other variable (see Section 6.1 [Basics of Variable References],
page 49). Because variables defined by define are recursively expanded variables, all the
variable references you wrote inside the define are expanded now. For example:

Chapter 5: Writing the Commands in Rules

foo.c : foo.y
$ (run-yacc)
‘foo.y’ will be substituted for the variable ‘$”’ when it occurs in run-yacc’s value, and
‘foo.c’ for ‘$@’.
This is a realistic example, but this particular one is not needed in practice because
make has an implicit rule to figure out these commands based on the file names involved
(see Chapter 10 [Using Implicit Rules], page 89).

In command execution, each line of a canned sequence is treated just as if the line
appeared on its own in the rule, preceded by a tab. In particular, make invokes a separate
subshell for each line. You can use the special prefix characters that affect command lines
(‘@’, ‘-, and ‘+’) on each line of a canned sequence. See Chapter 5 [Writing the Commands
in Rules], page 37. For example, using this canned sequence:

define frobnicate

Q@echo "frobnicating target $@"

frob-step-1 $< -o $@-step-1

frob-step-2 $0-step-1 -o $@

endef
make will not echo the first line, the echo command. But it will echo the following two
command lines.

On the other hand, prefix characters on the command line that refers to a canned
sequence apply to every line in the sequence. So the rule:

frob.out: frob.in
0$ (frobnicate)

does not echo any commands. (See Section 5.1 [Command Echoing], page 37, for a full
explanation of ‘@’.)

5.8 Using Empty Commands

It is sometimes useful to define commands which do nothing. This is done simply by
giving a command that consists of nothing but whitespace. For example:

target: ;
defines an empty command string for ‘target’. You could also use a line beginning with

a tab character to define an empty command string, but this would be confusing because
such a line looks empty.

You may be wondering why you would want to define a command string that does
nothing. The only reason this is useful is to prevent a target from getting implicit commands
(from implicit rules or the .DEFAULT special target; see Chapter 10 [Implicit Rules], page 89
and see Section 10.6 [Defining Last-Resort Default Rules|, page 102).

You may be inclined to define empty command strings for targets that are not actual
files, but only exist so that their prerequisites can be remade. However, this is not the
best way to do that, because the prerequisites may not be remade properly if the target file
actually does exist. See Section 4.5 [Phony Targets], page 24, for a better way to do this.

GNU make

Chapter 6: How to Use Variables

6 How to Use Variables

A variable is a name defined in a makefile to represent a string of text, called the
variable’s value. These values are substituted by explicit request into targets, prerequisites,
commands, and other parts of the makefile. (In some other versions of make, variables are
called macros.)

Variables and functions in all parts of a makefile are expanded when read, except for
the shell commands in rules, the right-hand sides of variable definitions using ‘=", and the
bodies of variable definitions using the define directive.

Variables can represent lists of file names, options to pass to compilers, programs to run,
directories to look in for source files, directories to write output in, or anything else you can
imagine.

A variable name may be any sequence of characters not containing ‘:’, ‘#’, ‘=", or leading
or trailing whitespace. However, variable names containing characters other than letters,
numbers, and underscores should be avoided, as they may be given special meanings in the
future, and with some shells they cannot be passed through the environment to a sub-make
(see Section 5.6.2 [Communicating Variables to a Sub-make], page 42).

Variable names are case-sensitive. The names ‘foo’, ‘F00’, and ‘Foo’ all refer to different
variables.

It is traditional to use upper case letters in variable names, but we recommend using lower
case letters for variable names that serve internal purposes in the makefile, and reserving
upper case for parameters that control implicit rules or for parameters that the user should
override with command options (see Section 9.5 [Overriding Variables], page 83).

A few variables have names that are a single punctuation character or just a few char-
acters. These are the automatic variables, and they have particular specialized uses. See
Section 10.5.3 [Automatic Variables|, page 98.

6.1 Basics of Variable References

To substitute a variable’s value, write a dollar sign followed by the name of the variable
in parentheses or braces: either ‘$(f00)’ or ‘${foo}’ is a valid reference to the variable foo.
This special significance of ‘$’ is why you must write ‘$$’ to have the effect of a single dollar
sign in a file name or command.

Variable references can be used in any context: targets, prerequisites, commands, most
directives, and new variable values. Here is an example of a common case, where a variable
holds the names of all the object files in a program:

objects = program.o foo.o utils.o
program : $(objects)
cc —o program $(objects)

$(objects) : defs.h
Variable references work by strict textual substitution. Thus, the rule
foo = ¢

prog.o : prog.$(foo)
(foo)(foo) -$(foo) prog.$(foo)

GNU make

could be used to compile a C program ‘prog.c’. Since spaces before the variable value are
ignored in variable assignments, the value of foo is precisely ‘c’. (Don’t actually write your
makefiles this way!)

A dollar sign followed by a character other than a dollar sign, open-parenthesis or open-
brace treats that single character as the variable name. Thus, you could reference the
variable x with ‘$x’. However, this practice is strongly discouraged, except in the case of
the automatic variables (see Section 10.5.3 [Automatic Variables|, page 98).

6.2 The Two Flavors of Variables

There are two ways that a variable in GNU make can have a value; we call them the two
flavors of variables. The two flavors are distinguished in how they are defined and in what
they do when expanded.

The first flavor of variable is a recursively expanded variable. Variables of this sort are
defined by lines using ‘=’ (see Section 6.5 [Setting Variables|, page 55) or by the define
directive (see Section 6.8 [Defining Variables Verbatim], page 58). The value you specify is
installed verbatim; if it contains references to other variables, these references are expanded
whenever this variable is substituted (in the course of expanding some other string). When
this happens, it is called recursive expansion.

For example,

foo = $(bar)
bar = $(ugh)
ugh = Huh?

all:;echo $(foo)

will echo ‘Huh?: ‘$(foo)’ expands to ‘$(bar)’ which expands to ‘$(ugh)’ which finally
expands to ‘Huh?’.

This flavor of variable is the only sort supported by other versions of make. It has its
advantages and its disadvantages. An advantage (most would say) is that:

CFLAGS = $(include_dirs) -0
include_dirs = -Ifoo -Ibar

will do what was intended: when ‘CFLAGS’ is expanded in a command, it will expand to
‘~-Ifoo -Ibar -0’. A major disadvantage is that you cannot append something on the end
of a variable, as in

CFLAGS = $(CFLAGS) -0

because it will cause an infinite loop in the variable expansion. (Actually make detects the
infinite loop and reports an error.)

Another disadvantage is that any functions (see Chapter 8 [Functions for Transforming
Text], page 65) referenced in the definition will be executed every time the variable is
expanded. This makes make run slower; worse, it causes the wildcard and shell functions
to give unpredictable results because you cannot easily control when they are called, or
even how many times.

To avoid all the problems and inconveniences of recursively expanded variables, there is
another flavor: simply expanded variables.

Chapter 6: How to Use Variables

Simply expanded variables are defined by lines using ‘:=’ (see Section 6.5 [Setting Vari-
ables|, page 55). The value of a simply expanded variable is scanned once and for all,
expanding any references to other variables and functions, when the variable is defined.
The actual value of the simply expanded variable is the result of expanding the text that
you write. It does not contain any references to other variables; it contains their values as
of the time this variable was defined. Therefore,

x := foo
y = $(x) bar
x := later

is equivalent to

y := foo bar
X := later

When a simply expanded variable is referenced, its value is substituted verbatim.

Here is a somewhat more complicated example, illustrating the use of ‘:=’ in conjunction
with the shell function. (See Section 8.10 [The shell Function], page 76.) This example
also shows use of the variable MAKELEVEL, which is changed when it is passed down from
level to level. (See Section 5.6.2 [Communicating Variables to a Sub-make|, page 42, for
information about MAKELEVEL.)

ifeq (0,${MAKELEVEL})

cur-dir := $(shell pwd)

whoami $(shell whoami)

host-type := $(shell arch)

MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}
endif

An advantage of this use of ‘:=’ is that a typical ‘descend into a directory’ command then
looks like this:
${subdirs}:
${MAKE} cur-dir=${cur-dir}/$@ -C $@ all

Simply expanded variables generally make complicated makefile programming more pre-
dictable because they work like variables in most programming languages. They allow you
to redefine a variable using its own value (or its value processed in some way by one of
the expansion functions) and to use the expansion functions much more efficiently (see
Chapter 8 [Functions for Transforming Text|, page 65).

You can also use them to introduce controlled leading whitespace into variable values.
Leading whitespace characters are discarded from your input before substitution of variable
references and function calls; this means you can include leading spaces in a variable value
by protecting them with variable references, like this:

nullstring :=
space := $(nullstring) # end of the line

Here the value of the variable space is precisely one space. The comment
‘# end of the line’ is included here just for clarity. Since trailing space characters are not
stripped from variable values, just a space at the end of the line would have the same
effect (but be rather hard to read). If you put whitespace at the end of a variable value,
it is a good idea to put a comment like that at the end of the line to make your intent
clear. Conversely, if you do not want any whitespace characters at the end of your variable

GNU make

value, you must remember not to put a random comment on the end of the line after some
whitespace, such as this:

dir := /foo/bar # directory to put the frobs in

Here the value of the variable dir is ‘/foo/bar ’ (with four trailing spaces), which was
probably not the intention. (Imagine something like ‘$(dir)/file’ with this definition!)

There is another assignment operator for variables, ‘?=’. This is called a conditional
variable assignment operator, because it only has an effect if the variable is not yet defined.
This statement:

FOO ?= bar
is exactly equivalent to this (see Section 8.9 [The origin Function], page 75):
ifeq ($(origin FO0O0), undefined)
FOO = bar
endif

Note that a variable set to an empty value is still defined, so ‘?=" will not set that

variable.

6.3 Advanced Features for Reference to Variables

This section describes some advanced features you can use to reference variables in more
flexible ways.

6.3.1 Substitution References

A substitution reference substitutes the value of a variable with alterations that you
specify. It has the form ‘$ (var:a=b)’ (or ‘${var:a=b}’) and its meaning is to take the value
of the variable var, replace every a at the end of a word with b in that value, and substitute
the resulting string.

When we say “at the end of a word”, we mean that a must appear either followed by
whitespace or at the end of the value in order to be replaced; other occurrences of a in the
value are unaltered. For example:

foo := a.o b.o c.o
bar := $(foo:.0=.c)
sets ‘bar’ to ‘a.c b.c c.c’. See Section 6.5 [Setting Variables|, page 55.

A substitution reference is actually an abbreviation for use of the patsubst expansion
function (see Section 8.2 [Functions for String Substitution and Analysis|, page 66). We
provide substitution references as well as patsubst for compatibility with other implemen-
tations of make.

Another type of substitution reference lets you use the full power of the patsubst func-
tion. It has the same form ‘$ (var:a=b)’ described above, except that now a must contain a
single ‘%’ character. This case is equivalent to ‘$ (patsubst a,b,$(var))’. See Section 8.2
[Functions for String Substitution and Analysis|, page 66, for a description of the patsubst
function.

For example:

foo := a.o b.o c.o
bar := $(foo:%.0=%.c)

Chapter 6: How to Use Variables

sets ‘bar’ to ‘a.c b.c c.c’.

6.3.2 Computed Variable Names

Computed variable names are a complicated concept needed only for sophisticated make-
file programming. For most purposes you need not consider them, except to know that
making a variable with a dollar sign in its name might have strange results. However, if you
are the type that wants to understand everything, or you are actually interested in what
they do, read on.

Variables may be referenced inside the name of a variable. This is called a computed
variable name or a nested variable reference. For example,

x =y
y =z
a := $(8(x))

defines a as ‘2’: the ‘$(x)’ inside ‘$($(x))’ expands to ‘y’, so ‘$($(x))’ expands to ‘$(y)’
which in turn expands to ‘z’. Here the name of the variable to reference is not stated
explicitly; it is computed by expansion of ‘$(x)’. The reference ‘$(x)’ here is nested within
the outer variable reference.

The previous example shows two levels of nesting, but any number of levels is possible.
For example, here are three levels:

X=73
y =2z
zZ=u

a := $(8(8(x)))

Here the innermost ‘$(x)’ expands to ‘y’, so ‘$($(x))’ expands to ‘$(y)’ which in turn
expands to ‘z’; now we have ‘$(z)’, which becomes ‘u’.

References to recursively-expanded variables within a variable name are reexpanded in
the usual fashion. For example:

x = $(y)

y =2z

z = Hello

a := $(3(x))

defines a as ‘Hello’: ‘$($(x))’ becomes ‘$($(y))’ which becomes ‘$(z)’ which becomes
‘Hello’.

Nested variable references can also contain modified references and function invocations
(see Chapter 8 [Functions for Transforming Text], page 65), just like any other reference.
For example, using the subst function (see Section 8.2 [Functions for String Substitution
and Analysis|, page 66):

X = variablel

variable2 := Hello
y = $(subst 1,2,$(x))
z =y

a = $($(8(2)))

eventually defines a as ‘Hello’. It is doubtful that anyone would ever want to write a nested
reference as convoluted as this one, but it works: ‘$($($(z)))’ expands to ‘$ ($(y))’ which

GNU make

becomes ‘$($(subst 1,2,$(x)))’. This gets the value ‘variablel’ from x and changes it
by substitution to ‘variable2’, so that the entire string becomes ‘¢ (variable2)’, a simple
variable reference whose value is ‘Hello’.
A computed variable name need not consist entirely of a single variable reference. It can
contain several variable references, as well as some invariant text. For example,
a_dirs := dira dirb
1_dirs := dirl dir2

a_files := filea fileb

1 files := filel file2
ifeq "$(use_a)" "yes"
al := a

else

al := 1

endif

ifeq "$(use_dirs)" "yes"

df := dirs
else
df := files
endif

dirs := $($(al)_$(df))

will give dirs the same value as a_dirs, 1_dirs, a_files or 1_files depending on the
settings of use_a and use_dirs.

Computed variable names can also be used in substitution references:

a_objects := a.o b.o c.o
1_objects := 1.0 2.0 3.0

sources := $($(al)_objects:.o=.c)
defines sources as either ‘a.c b.c ¢.c’ or ‘1.c 2.c 3.c¢’, depending on the value of a1l.

The only restriction on this sort of use of nested variable references is that they cannot
specify part of the name of a function to be called. This is because the test for a recognized
function name is done before the expansion of nested references. For example,

ifdef do_sort

func := sort

else

func := strip

endif

bar :(=adbgaqc

foo := $($(func) $(bar))

attempts to give ‘foo’ the value of the variable ‘sort adbgqc’ or ‘stripadbgaqc,
rather than giving ‘a d b g q ¢’ as the argument to either the sort or the strip function.
This restriction could be removed in the future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of a variable assignment,
or in a define directive, as in:

Chapter 6: How to Use Variables

dir = foo
$(dir)_sources := $(wildcard $(dir)/*.c)
define $(dir)_print
lpr $($(dir)_sources)
endef
This example defines the variables ‘dir’, ‘foo_sources’, and ‘foo_print’.

Note that nested variable references are quite different from recursively expanded vari-
ables (see Section 6.2 [The Two Flavors of Variables|, page 50), though both are used
together in complex ways when doing makefile programming.

6.4 How Variables Get Their Values

Variables can get values in several different ways:

e You can specify an overriding value when you run make. See Section 9.5 [Overriding
Variables], page 83.

e You can specify a value in the makefile, either with an assignment (see Section 6.5
[Setting Variables], page 55) or with a verbatim definition (see Section 6.8 [Defining
Variables Verbatim]|, page 58).

e Variables in the environment become make variables. See Section 6.9 [Variables from
the Environment], page 59.

e Several automatic variables are given new values for each rule. Each of these has a
single conventional use. See Section 10.5.3 [Automatic Variables], page 98.

e Several variables have constant initial values. See Section 10.3 [Variables Used by
Implicit Rules], page 93.

6.5 Setting Variables

To set a variable from the makefile, write a line starting with the variable name followed
by ‘=’ or ‘:=’. Whatever follows the ‘=’ or ‘:=’ on the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

defines a variable named objects. Whitespace around the variable name and immediately
after the ‘=’ is ignored.

Variables defined with ‘=’ are recursively expanded variables. Variables defined with ‘:=’
are simply expanded variables; these definitions can contain variable references which will
be expanded before the definition is made. See Section 6.2 [The Two Flavors of Variables],
page 50.

The variable name may contain function and variable references, which are expanded
when the line is read to find the actual variable name to use.

There is no limit on the length of the value of a variable except the amount of swapping
space on the computer. When a variable definition is long, it is a good idea to break it into
several lines by inserting backslash-newline at convenient places in the definition. This will
not affect the functioning of make, but it will make the makefile easier to read.

Most variable names are considered to have the empty string as a value if you have never
set them. Several variables have built-in initial values that are not empty, but you can set

GNU make

them in the usual ways (see Section 10.3 [Variables Used by Implicit Rules], page 93).
Several special variables are set automatically to a new value for each rule; these are called
the automatic variables (see Section 10.5.3 [Automatic Variables|, page 98).

If you’d like a variable to be set to a value only if it’s not already set, then you can

use the shorthand operator ‘7=’ instead of ‘=’. These two settings of the variable ‘FO0’ are
identical (see Section 8.9 [The origin Function|, page 75):

FOO 7= bar
and

ifeq ($(origin FO0), undefined)

FOO = bar

endif

6.6 Appending More Text to Variables

Often it is useful to add more text to the value of a variable already defined. You do
this with a line containing ‘+=’, like this:

objects += another.o

This takes the value of the variable objects, and adds the text ‘another.o’ to it (preceded
by a single space). Thus:

objects = main.o foo.o bar.o utils.o

objects += another.o

sets objects to ‘main.o foo.o0 bar.o utils.o another.o’.
Using ‘+=" is similar to:

objects = main.o foo.o0 bar.o utils.o
objects := $(objects) another.o

but differs in ways that become important when you use more complex values.

When the variable in question has not been defined before, ‘+=’ acts just like normal ‘=":
it defines a recursively-expanded variable. However, when there is a previous definition,
exactly what ‘+=" does depends on what flavor of variable you defined originally. See Sec-
tion 6.2 [The Two Flavors of Variables|, page 50, for an explanation of the two flavors of
variables.

When you add to a variable’s value with ‘+=", make acts essentially as if you had included
the extra text in the initial definition of the variable. If you defined it first with ‘:=", making
it a simply-expanded variable, ‘+=" adds to that simply-expanded definition, and expands
the new text before appending it to the old value just as ‘:=" does (see Section 6.5 [Setting
Variables], page 55, for a full explanation of ‘:="). In fact,

variable := value

variable += more
is exactly equivalent to:

variable := value

variable := $(variable) more

On the other hand, when you use ‘+=’ with a variable that you defined first to be

recursively-expanded using plain ‘=’, make does something a bit different. Recall that when
you define a recursively-expanded variable, make does not expand the value you set for

Chapter 6: How to Use Variables

variable and function references immediately. Instead it stores the text verbatim, and saves
these variable and function references to be expanded later, when you refer to the new
variable (see Section 6.2 [The Two Flavors of Variables], page 50). When you use ‘+=’ on
a recursively-expanded variable, it is this unexpanded text to which make appends the new
text you specify.

variable = value

variable += more
is roughly equivalent to:

temp = value

variable = $(temp) more
except that of course it never defines a variable called temp. The importance of this comes
when the variable’s old value contains variable references. Take this common example:

CFLAGS = $(includes) -0

CFLAGS += -pg # enable profiling
The first line defines the CFLAGS variable with a reference to another variable, includes.
(CFLAGS is used by the rules for C compilation; see Section 10.2 [Catalogue of Implicit
Rules], page 90.) Using ‘=’ for the definition makes CFLAGS a recursively-expanded variable,
meaning ‘$(includes) -0’ is not expanded when make processes the definition of CFLAGS.
Thus, includes need not be defined yet for its value to take effect. It only has to be defined
before any reference to CFLAGS. If we tried to append to the value of CFLAGS without using
‘+=’_ we might do it like this:

CFLAGS := $(CFLAGS) -pg # enable profiling

This is pretty close, but not quite what we want. Using ‘:=" redefines CFLAGS as a simply-
expanded variable; this means make expands the text ‘$ (CFLAGS) -pg’ before setting the
variable. If includes is not yet defined, we get * -0 -pg’, and a later definition of includes
will have no effect. Conversely, by using ‘+=’ we set CFLAGS to the unezpanded value
‘$(includes) -0 -pg’. Thus we preserve the reference to includes, so if that variable gets
defined at any later point, a reference like ‘$ (CFLAGS)’ still uses its value.

6.7 The override Directive

If a variable has been set with a command argument (see Section 9.5 [Overriding Vari-
ables|, page 83), then ordinary assignments in the makefile are ignored. If you want to set
the variable in the makefile even though it was set with a command argument, you can use
an override directive, which is a line that looks like this:

override variable = value
or
override variable := value
To append more text to a variable defined on the command line, use:
override variable += more text
See Section 6.6 [Appending More Text to Variables|, page 56.

The override directive was not invented for escalation in the war between makefiles
and command arguments. It was invented so you can alter and add to values that the user
specifies with command arguments.

GNU make

For example, suppose you always want the ‘-g’ switch when you run the C compiler, but
you would like to allow the user to specify the other switches with a command argument
just as usual. You could use this override directive:

override CFLAGS += -g

You can also use override directives with define directives. This is done as you might
expect:

override define foo
bar
endef

See the next section for information about define.

6.8 Defining Variables Verbatim

Another way to set the value of a variable is to use the define directive. This directive
has an unusual syntax which allows newline characters to be included in the value, which
is convenient for defining both canned sequences of commands (see Section 5.7 [Defining
Canned Command Sequences], page 46), and also sections of makefile syntax to use with
eval (see Section 8.8 [Eval Function], page 74).

The define directive is followed on the same line by the name of the variable and nothing
more. The value to give the variable appears on the following lines. The end of the value
is marked by a line containing just the word endef. Aside from this difference in syntax,
define works just like ‘=’: it creates a recursively-expanded variable (see Section 6.2 [The
Two Flavors of Variables|, page 50). The variable name may contain function and variable
references, which are expanded when the directive is read to find the actual variable name
to use.

You may nest define directives: make will keep track of nested directives and report
an error if they are not all properly closed with endef. Note that lines beginning with
tab characters are considered part of a command script, so any define or endef strings
appearing on such a line will not be considered make operators.

define two-lines
echo foo

echo $(bar)
endef

The value in an ordinary assignment cannot contain a newline; but the newlines that
separate the lines of the value in a define become part of the variable’s value (except for
the final newline which precedes the endef and is not considered part of the value).

When used in a command script, the previous example is functionally equivalent to this:
two-lines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two separate shell commands.
However, note that using two separate lines means make will invoke the shell twice, running
an independent subshell for each line. See Section 5.2 [Command Execution|, page 37.

If you want variable definitions made with define to take precedence over command-line
variable definitions, you can use the override directive together with define:

Chapter 6: How to Use Variables

override define two-lines
foo
$ (bar)

endef

See Section 6.7 [The override Directive], page 57.

6.9 Variables from the Environment

Variables in make can come from the environment in which make is run. Every environ-
ment variable that make sees when it starts up is transformed into a make variable with
the same name and value. But an explicit assignment in the makefile, or with a command
argument, overrides the environment. (If the ‘-e’ flag is specified, then values from the
environment override assignments in the makefile. See Section 9.7 [Summary of Options],
page 84. But this is not recommended practice.)

Thus, by setting the variable CFLAGS in your environment, you can cause all C compi-
lations in most makefiles to use the compiler switches you prefer. This is safe for variables
with standard or conventional meanings because you know that no makefile will use them
for other things. (But this is not totally reliable; some makefiles set CFLAGS explicitly and
therefore are not affected by the value in the environment.)

When make is invoked recursively, variables defined in the outer invocation can be passed
to inner invocations through the environment (see Section 5.6 [Recursive Use of make],
page 41). By default, only variables that came from the environment or the command
line are passed to recursive invocations. You can use the export directive to pass other
variables. See Section 5.6.2 [Communicating Variables to a Sub-make], page 42, for full
details.

Other use of variables from the environment is not recommended. It is not wise for
makefiles to depend for their functioning on environment variables set up outside their
control, since this would cause different users to get different results from the same makefile.
This is against the whole purpose of most makefiles.

Such problems would be especially likely with the variable SHELL, which is normally
present in the environment to specify the user’s choice of interactive shell. It would be very
undesirable for this choice to affect make. So make ignores the environment value of SHELL
(except on MS-DOS and MS-Windows, where SHELL is usually not set. See Section 5.2
[Special handling of SHELL on MS-DOS], page 37.)

6.10 Target-specific Variable Values

Variable values in make are usually global; that is, they are the same regardless of where
they are evaluated (unless they’re reset, of course). One exception to that is automatic
variables (see Section 10.5.3 [Automatic Variables|, page 98).

The other exception is target-specific variable values. This feature allows you to define
different values for the same variable, based on the target that make is currently building.
As with automatic variables, these values are only available within the context of a target’s
command script (and in other target-specific assignments).

Set a target-specific variable value like this:

GNU make

target ... : variable-assignment
or like this:
target ... : override variable-assignment

Multiple target values create a target-specific variable value for each member of the
target list individually.

The variable-assignment can be any valid form of assignment; recursive (‘=’), static
(‘:="), appending (‘+="), or conditional (‘?=’). All variables that appear within the variable-
assignment are evaluated within the context of the target: thus, any previously-defined
target-specific variable values will be in effect. Note that this variable is actually distinct
from any “global” value: the two variables do not have to have the same flavor (recursive
vs. static).

Target-specific variables have the same priority as any other makefile variable. Variables
provided on the command-line (and in the environment if the ‘-e’ option is in force) will
take precedence. Specifying the override directive will allow the target-specific variable
value to be preferred.

There is one more special feature of target-specific variables: when you define a target-
specific variable, that variable value is also in effect for all prerequisites of this target (unless
those prerequisites override it with their own target-specific variable value). So, for example,
a statement like this:

prog : CFLAGS = -g

prog : prog.o foo.o bar.o
will set CFLAGS to ‘-g’ in the command script for ‘prog’, but it will also set CFLAGS to ‘-g’ in
the command scripts that create ‘prog.o’, ‘foo.0’, and ‘bar.o’, and any command scripts
which create their prerequisites.

6.11 Pattern-specific Variable Values

In addition to target-specific variable values (see Section 6.10 [Target-specific Variable
Values], page 59), GNU make supports pattern-specific variable values. In this form, a
variable is defined for any target that matches the pattern specified. Variables defined in
this way are searched after any target-specific variables defined explicitly for that target,
and before target-specific variables defined for the parent target.

Set a pattern-specific variable value like this:

pattern ... : variable-assignment
or like this:
pattern ... : override variable-assignment

where pattern is a %-pattern. As with target-specific variable values, multiple pattern
values create a pattern-specific variable value for each pattern individually. The variable-
assignment can be any valid form of assignment. Any command-line variable setting will
take precedence, unless override is specified.
For example:
%.0 : CFLAGS = -0

will assign CFLAGS the value of ‘-0’ for all targets matching the pattern %.o.

Chapter 7: Conditional Parts of Makefiles

7 Conditional Parts of Makefiles

A conditional causes part of a makefile to be obeyed or ignored depending on the values
of variables. Conditionals can compare the value of one variable to another, or the value
of a variable to a constant string. Conditionals control what make actually “sees” in the
makefile, so they cannot be used to control shell commands at the time of execution.

7.1 Example of a Conditional

The following example of a conditional tells make to use one set of libraries if the CC
variable is ‘gcc’, and a different set of libraries otherwise. It works by controlling which of
two command lines will be used as the command for a rule. The result is that ‘CC=gcc’ as
an argument to make changes not only which compiler is used but also which libraries are
linked.

libs_for_gcc = -lgnu
normal_libs =

foo: $(objects)
ifeq ($(CC),gcc)
$(CC) -o foo $(objects) $(libs_for_gcc)
else
$(CC) -o foo $(objects) $(normal_libs)
endif
This conditional uses three directives: one ifeq, one else and one endif.

The ifeq directive begins the conditional, and specifies the condition. It contains two
arguments, separated by a comma and surrounded by parentheses. Variable substitution
is performed on both arguments and then they are compared. The lines of the makefile
following the ifeq are obeyed if the two arguments match; otherwise they are ignored.

The else directive causes the following lines to be obeyed if the previous conditional
failed. In the example above, this means that the second alternative linking command
is used whenever the first alternative is not used. It is optional to have an else in a
conditional.

The endif directive ends the conditional. Every conditional must end with an endif.
Unconditional makefile text follows.

As this example illustrates, conditionals work at the textual level: the lines of the con-
ditional are treated as part of the makefile, or ignored, according to the condition. This is
why the larger syntactic units of the makefile, such as rules, may cross the beginning or the
end of the conditional.

When the variable CC has the value ‘gcc’, the above example has this effect:

foo: $(objects)
$(CC) -o foo $(objects) $(libs_for_gcc)
When the variable CC has any other value, the effect is this:
foo: $(objects)
$(CC) -o foo $(objects) $(normal_libs)

Equivalent results can be obtained in another way by conditionalizing a variable assign-

ment and then using the variable unconditionally:

GNU make

libs_for_gcc = -1lgnu
normal_libs =

ifeq ($(CC),gcc)
libs=$(1libs_for_gcc)
else
libs=$(normal_libs)
endif

foo: $(objects)
$(CC) -o foo $(objects) $(libs)

7.2 Syntax of Conditionals

The syntax of a simple conditional with no else is as follows:

conditional-directive
text-if-true
endif

The text-if-true may be any lines of text, to be considered as part of the makefile if the
condition is true. If the condition is false, no text is used instead.

The syntax of a complex conditional is as follows:

conditional-directive
text-if-true

else

text-if-false

endif

If the condition is true, text-if-true is used; otherwise, text-if-false is used instead. The
text-if-false can be any number of lines of text.

The syntax of the conditional-directive is the same whether the conditional is simple or
complex. There are four different directives that test different conditions. Here is a table
of them:

ifeq (argl, arg2)

ifeq ’argl’ ’arg2’

ifeq "argl" "arg2"

ifeq "argl" ’arg2’

ifeq ’argl’ "arg2"
Expand all variable references in argl and arg2 and compare them. If they
are identical, the text-if-true is effective; otherwise, the text-if-false, if any, is
effective.

Often you want to test if a variable has a non-empty value. When the value
results from complex expansions of variables and functions, expansions you
would consider empty may actually contain whitespace characters and thus are
not seen as empty. However, you can use the strip function (see Section 8.2
[Text Functions|, page 66) to avoid interpreting whitespace as a non-empty
value. For example:

Chapter 7: Conditional Parts of Makefiles

ifeq ($(strip $(f00)),)

text-if-empty

endif
will evaluate text-if-empty even if the expansion of $(foo) contains whitespace
characters.

ifneq (argl, arg2)

ifneq ’argl’ ’arg2’

ifneq "argl" "arg2"

ifneq "argl" ’arg2’

ifneq ’argl’ "arg2"
Expand all variable references in argl and arg2 and compare them. If they
are different, the text-if-true is effective; otherwise, the text-if-false, if any, is
effective.

ifdef variable-name
If the variable variable-name has a non-empty value, the text-if-true is effective;
otherwise, the text-if-false, if any, is effective. Variables that have never been
defined have an empty value. The variable variable-name is itself expanded, so
it could be a variable or function that expands to the name of a variable.

Note that ifdef only tests whether a variable has a value. It does not expand
the variable to see if that value is nonempty. Consequently, tests using ifdef
return true for all definitions except those like foo =. To test for an empty
value, use ifeq ($(fo0),). For example,

bar =

foo = $(bar)

ifdef foo

frobozz = yes

else

frobozz

endif

no

sets ‘frobozz’ to ‘yes’, while:
foo =
ifdef foo
frobozz
else
frobozz
endif

yes

no

sets ‘frobozz’ to ‘no’.

ifndef variable-name
If the variable variable-name has an empty value, the text-if-true is effective;
otherwise, the text-if-false, if any, is effective.

Extra spaces are allowed and ignored at the beginning of the conditional directive line,
but a tab is not allowed. (If the line begins with a tab, it will be considered a command
for a rule.) Aside from this, extra spaces or tabs may be inserted with no effect anywhere
except within the directive name or within an argument. A comment starting with ‘4’ may
appear at the end of the line.

GNU make

The other two directives that play a part in a conditional are else and endif. Each of
these directives is written as one word, with no arguments. Extra spaces are allowed and
ignored at the beginning of the line, and spaces or tabs at the end. A comment starting
with ‘4’ may appear at the end of the line.

Conditionals affect which lines of the makefile make uses. If the condition is true, make
reads the lines of the text-if-true as part of the makefile; if the condition is false, make
ignores those lines completely. It follows that syntactic units of the makefile, such as rules,
may safely be split across the beginning or the end of the conditional.

make evaluates conditionals when it reads a makefile. Consequently, you cannot use
automatic variables in the tests of conditionals because they are not defined until commands
are run (see Section 10.5.3 [Automatic Variables], page 98).

To prevent intolerable confusion, it is not permitted to start a conditional in one makefile
and end it in another. However, you may write an include directive within a conditional,
provided you do not attempt to terminate the conditional inside the included file.

7.3 Conditionals that Test Flags

You can write a conditional that tests make command flags such as ‘-t’ by using the

variable MAKEFLAGS together with the findstring function (see Section 8.2 [Functions for
String Substitution and Analysis|, page 66). This is useful when touch is not enough to
make a file appear up to date.

The findstring function determines whether one string appears as a substring of an-
other. If you want to test for the ‘-t’ flag, use ‘t’ as the first string and the value of
MAKEFLAGS as the other.

For example, here is how to arrange to use ‘ranlib -t’ to finish marking an archive file
up to date:

archive.a: .

ifneq (,$(findstring t,$(MAKEFLAGS)))
+touch archive.a
+ranlib -t archive.a

else
ranlib archive.a

endif

The ‘4’ prefix marks those command lines as “recursive” so that they will be executed
despite use of the ‘~t’ flag. See Section 5.6 [Recursive Use of make], page 41.

Chapter 8: Functions for Transforming Text

8 Functions for Transforming Text

Functions allow you to do text processing in the makefile to compute the files to operate
on or the commands to use. You use a function in a function call, where you give the name
of the function and some text (the arguments) for the function to operate on. The result
of the function’s processing is substituted into the makefile at the point of the call, just as
a variable might be substituted.

8.1 Function Call Syntax

A function call resembles a variable reference. It looks like this:
$ (function arguments)
or like this:
${function arguments}

Here function is a function name; one of a short list of names that are part of make. You
can also essentially create your own functions by using the call builtin function.

The arguments are the arguments of the function. They are separated from the function
name by one or more spaces or tabs, and if there is more than one argument, then they are
separated by commas. Such whitespace and commas are not part of an argument’s value.
The delimiters which you use to surround the function call, whether parentheses or braces,
can appear in an argument only in matching pairs; the other kind of delimiters may appear
singly. If the arguments themselves contain other function calls or variable references, it is
wisest to use the same kind of delimiters for all the references; write ‘$ (subst a,b,$(x))’,
not ‘$(subst a,b,${x})’. This is because it is clearer, and because only one type of delim-
iter is matched to find the end of the reference.

The text written for each argument is processed by substitution of variables and function
calls to produce the argument value, which is the text on which the function acts. The
substitution is done in the order in which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the text of an argument
as written; leading spaces cannot appear in the text of the first argument as written. These
characters can be put into the argument value by variable substitution. First define variables
comma and space whose values are isolated comma and space characters, then substitute
these variables where such characters are wanted, like this:

comma:= ,
empty:=
space:= $(empty) $(empty)

foo:=a b c
bar:= $(subst $(space),$(comma),$(fo0))
bar is now ‘a,b,c’.

Here the subst function replaces each space with a comma, through the value of foo, and
substitutes the result.

GNU make

8.2 Functions for String Substitution and Analysis

Here are some functions that operate on strings:

$ (subst from, to, text)
Performs a textual replacement on the text text: each occurrence of from is
replaced by to. The result is substituted for the function call. For example,

$(subst ee,EE,feet on the street)
substitutes the string ‘fEEt on the strEEt’.
$ (patsubst pattern,replacement, text)
Finds whitespace-separated words in text that match pattern and replaces them
with replacement. Here pattern may contain a ‘)’ which acts as a wildcard,
matching any number of any characters within a word. If replacement also con-
tains a ‘%’, the ‘%4’ is replaced by the text that matched the ‘4’ in pattern. Only

the first ‘%’ in the pattern and replacement is treated this way; any subsequent
‘%’ is unchanged.

‘%’ characters in patsubst function invocations can be quoted with preceding
backslashes (‘\’). Backslashes that would otherwise quote ‘%’ characters can be
quoted with more backslashes. Backslashes that quote ‘%’ characters or other
backslashes are removed from the pattern before it is compared file names or has
a stem substituted into it. Backslashes that are not in danger of quoting ‘%’ char-
acters go unmolested. For example, the pattern ‘the\%weird\\/pattern\\’has
‘theweird\’ preceding the operative ‘%’ character, and ‘pattern\\’ following
it. The final two backslashes are left alone because they cannot affect any ‘%’
character.

Whitespace between words is folded into single space characters; leading and
trailing whitespace is discarded.

For example,
$(patsubst %.c,%.0,x.c.c bar.c)
produces the value ‘x.c.o bar.o’.

Substitution references (see Section 6.3.1 [Substitution References|, page 52)
are a simpler way to get the effect of the patsubst function:

$ (var: pattern=replacement)
is equivalent to
$ (patsubst pattern,replacement,$(var))

The second shorthand simplifies one of the most common uses of patsubst:
replacing the suffix at the end of file names.

$ (var : suffix=replacement)
is equivalent to
$ (patsubst %suffix,%replacement,$ (var))
For example, you might have a list of object files:
objects = foo.0 bar.o baz.o

To get the list of corresponding source files, you could simply write:

Chapter 8: Functions for Transforming Text

$(objects:.o=.c)
instead of using the general form:
$ (patsubst %.0,%.c,$(objects))

$(strip string)

Removes leading and trailing whitespace from string and replaces each inter-
nal sequence of one or more whitespace characters with a single space. Thus,
‘$(stripab c)’ resultsin ‘a b ¢’.

The function strip can be very useful when used in conjunction with condi-
tionals. When comparing something with the empty string *’ using ifeq or
ifneq, you usually want a string of just whitespace to match the empty string
(see Chapter 7 [Conditionals], page 61).

Thus, the following may fail to have the desired results:

.PHONY: all

ifneq "$(needs_made)" "
all: $(needs_made)

else

all:;@echo ’Nothing to make!’
endif

Replacing the variable reference ‘$(needs_made)’ with the function call
‘$(strip $(needs_made))’ in the ifneq directive would make it more robust.

$(findstring find, in)
Searches in for an occurrence of find. If it occurs, the value is find; otherwise,
the value is empty. You can use this function in a conditional to test for the
presence of a specific substring in a given string. Thus, the two examples,
$(findstring a,a b ¢)
$(findstring a,b c)
produce the values ‘a’ and ¢ (the empty string), respectively. See Section 7.3
[Testing Flags|, page 64, for a practical application of findstring.
$(filter pattern. .. ,text)
Returns all whitespace-separated words in text that do match any of the pattern
words, removing any words that do not match. The patterns are written using
“%’, just like the patterns used in the patsubst function above.

The filter function can be used to separate out different types of strings (such
as file names) in a variable. For example:

sources := foo.c bar.c baz.s ugh.h

foo: $(sources)

cc $(filter %.c %.s,$(sources)) -o foo

says that ‘foo’ depends of ‘foo.c’, ‘bar.c’, ‘baz.s’ and ‘ugh.h’ but only
‘foo.c’, ‘bar.c’ and ‘baz.s’ should be specified in the command to the com-
piler.

$(filter-out pattern. .. ,text)
Returns all whitespace-separated words in text that do not match any of the
pattern words, removing the words that do match one or more. This is the
exact opposite of the filter function.

GNU make

For example, given:
objects=mainl.o foo.o main2.0 bar.o
mains=mainl.o main2.o

the following generates a list which contains all the object files not in ‘mains’:
$(filter-out $(mains),$(objects))

$(sort list)
Sorts the words of list in lexical order, removing duplicate words. The output
is a list of words separated by single spaces. Thus,

$(sort foo bar lose)
returns the value ‘bar foo lose’.

Incidentally, since sort removes duplicate words, you can use it for this purpose
even if you don’t care about the sort order.

$ (word n, text)
Returns the nth word of text. The legitimate values of n start from 1. If n is
bigger than the number of words in text, the value is empty. For example,
$(word 2, foo bar baz)

returns ‘bar’.

$(wordlist s,e,text)
Returns the list of words in text starting with word s and ending with word e
(inclusive). The legitimate values of s and e start from 1. If s is bigger than
the number of words in text, the value is empty. If e is bigger than the number
of words in text, words up to the end of text are returned. If s is greater than
e, nothing is returned. For example,

$(wordlist 2, 3, foo bar baz)

returns ‘bar baz’.

$ (words text)
Returns the number of words in text. Thus, the last word of text is
$ (word $(words text) ,text).

$(firstword names. . .)
The argument names is regarded as a series of names, separated by whitespace.
The value is the first name in the series. The rest of the names are ignored.
For example,
$(firstword foo bar)

produces the result ‘foo’. Although $(firstword text) is the same as $(word
1,text), the firstword function is retained for its simplicity.

Here is a realistic example of the use of subst and patsubst. Suppose that a makefile
uses the VPATH variable to specify a list of directories that make should search for prerequisite
files (see Section 4.4.1 [VPATH Search Path for All Prerequisites], page 21). This example
shows how to tell the C compiler to search for header files in the same list of directories.

The value of VPATH is a list of directories separated by colons, such as ‘src: .. /headers’.
First, the subst function is used to change the colons to spaces:

Chapter 8: Functions for Transforming Text

$(subst :, ,$(VPATH))

This produces ‘src ../headers’. Then patsubst is used to turn each directory name
into a ‘-I’ flag. These can be added to the value of the variable CFLAGS, which is passed
automatically to the C compiler, like this:

override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))

The effect is to append the text ‘-Isrc -I../headers’ to the previously given value of
CFLAGS. The override directive is used so that the new value is assigned even if the
previous value of CFLAGS was specified with a command argument (see Section 6.7 [The
override Directive], page 57).

8.3 Functions for File Names

Several of the built-in expansion functions relate specifically to taking apart file names
or lists of file names.

Each of the following functions performs a specific transformation on a file name. The
argument of the function is regarded as a series of file names, separated by whitespace.
(Leading and trailing whitespace is ignored.) Each file name in the series is transformed in
the same way and the results are concatenated with single spaces between them.

$(dir names. . .)
Extracts the directory-part of each file name in names. The directory-part of
the file name is everything up through (and including) the last slash in it. If the
file name contains no slash, the directory part is the string ¢./’. For example,

$(dir src/foo.c hacks)

produces the result ‘src/ ./ .

$(notdir names...)
Extracts all but the directory-part of each file name in names. If the file name
contains no slash, it is left unchanged. Otherwise, everything through the last
slash is removed from it.

A file name that ends with a slash becomes an empty string. This is unfortunate,
because it means that the result does not always have the same number of
whitespace-separated file names as the argument had; but we do not see any
other valid alternative.

For example,
$(notdir src/foo.c hacks)

produces the result ‘foo.c hacks’.

$(suffix names...)
Extracts the suffix of each file name in names. If the file name contains a period,
the suffix is everything starting with the last period. Otherwise, the suffix is
the empty string. This frequently means that the result will be empty when
names is not, and if names contains multiple file names, the result may contain
fewer file names.

For example,

GNU make

$(suffix src/foo.c src-1.0/bar.c hacks)
produces the result ‘.c .c’.
$ (basename names. . .)
Extracts all but the suffix of each file name in names. If the file name contains
a period, the basename is everything starting up to (and not including) the last
period. Periods in the directory part are ignored. If there is no period, the
basename is the entire file name. For example,

$(basename src/foo.c src-1.0/bar hacks)

produces the result ‘src/foo src-1.0/bar hacks’.

$ (addsuffix suffix,names. . .)
The argument names is regarded as a series of names, separated by whitespace;
suffix is used as a unit. The value of suffix is appended to the end of each
individual name and the resulting larger names are concatenated with single
spaces between them. For example,

$(addsuffix .c,foo bar)

produces the result ‘foo.c bar.c’.

$ (addprefix prefix,names. . .)
The argument names is regarded as a series of names, separated by whitespace;
prefix is used as a unit. The value of prefix is prepended to the front of each
individual name and the resulting larger names are concatenated with single
spaces between them. For example,

$ (addprefix src/,foo bar)

produces the result ‘src/foo src/bar’.

$(join list1,list2)
Concatenates the two arguments word by word: the two first words (one from
each argument) concatenated form the first word of the result, the two second
words form the second word of the result, and so on. So the nth word of the
result comes from the nth word of each argument. If one argument has more
words that the other, the extra words are copied unchanged into the result.

For example, ‘$6(join a b,.c .0)’ produces ‘a.c b.o’.

Whitespace between the words in the lists is not preserved; it is replaced with
a single space.

This function can merge the results of the dir and notdir functions, to produce
the original list of files which was given to those two functions.

$(wildcard pattern)
The argument pattern is a file name pattern, typically containing wildcard
characters (as in shell file name patterns). The result of wildcard is a space-
separated list of the names of existing files that match the pattern. See Sec-
tion 4.3 [Using Wildcard Characters in File Names]|, page 18.

Chapter 8: Functions for Transforming Text

8.4 The foreach Function

The foreach function is very different from other functions. It causes one piece of text
to be used repeatedly, each time with a different substitution performed on it. It resembles
the for command in the shell sh and the foreach command in the C-shell csh.

The syntax of the foreach function is:
$(foreach var, list, text)

The first two arguments, var and list, are expanded before anything else is done; note that
the last argument, text, is not expanded at the same time. Then for each word of the
expanded value of list, the variable named by the expanded value of var is set to that word,
and text is expanded. Presumably text contains references to that variable, so its expansion
will be different each time.

The result is that text is expanded as many times as there are whitespace-separated
words in list. The multiple expansions of text are concatenated, with spaces between them,
to make the result of foreach.

This simple example sets the variable ‘files’ to the list of all files in the directories in
the list ‘dirs’
dirs :=abcd
files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

Here text is ‘$(wildcard $(dir)/*)’. The first repetition finds the value ‘a’ for dir, so
it produces the same result as ‘$ (wildcard a/*)’; the second repetition produces the result
of ‘$(wildcard b/*)’; and the third, that of ‘¢ (wildcard c/*)’.

This example has the same result (except for setting ‘dirs’) as the following example:
files := $(wildcard a/* b/* c/* d/*)

When text is complicated, you can improve readability by giving it a name, with an
additional variable:
find_files = $(wildcard $(dir)/x*)
dirs :(=abcd
files := $(foreach dir,$(dirs),$(find_files))

Here we use the variable find_files this way. We use plain ‘=’ to define a recursively-
expanding variable, so that its value contains an actual function call to be reexpanded under
the control of foreach; a simply-expanded variable would not do, since wildcard would be
called only once at the time of defining find_files.

The foreach function has no permanent effect on the variable var; its value and flavor
after the foreach function call are the same as they were beforehand. The other values
which are taken from list are in effect only temporarily, during the execution of foreach.
The variable var is a simply-expanded variable during the execution of foreach. If var was
undefined before the foreach function call, it is undefined after the call. See Section 6.2
[The Two Flavors of Variables|, page 50.

You must take care when using complex variable expressions that result in variable
names because many strange things are valid variable names, but are probably not what
you intended. For example,

files := $(foreach Esta escrito en espanol!,b ¢ ch,$(find_files))

GNU make

might be useful if the value of find_files references the variable whose name is ‘Esta
escrito en espanol!’ (es un nombre bastante largo, no?), but it is more likely to be a
mistake.

8.5 The if Function

The if function provides support for conditional expansion in a functional context (as
opposed to the GNU make makefile conditionals such as ifeq (see Section 7.2 [Syntax of
Conditionals]|, page 62).

An if function call can contain either two or three arguments:
$(if condition,then-part[,else-part])

The first argument, condition, first has all preceding and trailing whitespace stripped,
then is expanded. If it expands to any non-empty string, then the condition is considered
to be true. If it expands to an empty string, the condition is considered to be false.

If the condition is true then the second argument, then-part, is evaluated and this is
used as the result of the evaluation of the entire if function.

If the condition is false then the third argument, else-part, is evaluated and this is the
result of the if function. If there is no third argument, the if function evaluates to nothing
(the empty string).

Note that only one of the then-part or the else-part will be evaluated, never both. Thus,
either can contain side-effects (such as shell function calls, etc.)

8.6 The call Function

The call function is unique in that it can be used to create new parameterized functions.
You can write a complex expression as the value of a variable, then use call to expand it
with different values.

The syntax of the call function is:
$(call variable,param,param,...)

When make expands this function, it assigns each param to temporary variables $(1),
$(2), etc. The variable $(0) will contain variable. There is no maximum number of
parameter arguments. There is no minimum, either, but it doesn’t make sense to use call
with no parameters.

Then variable is expanded as a make variable in the context of these temporary assign-
ments. Thus, any reference to $(1) in the value of variable will resolve to the first param
in the invocation of call.

Note that variable is the name of a variable, not a reference to that variable. Therefore
you would not normally use a ‘$’ or parentheses when writing it. (You can, however, use a
variable reference in the name if you want the name not to be a constant.)

If variable is the name of a builtin function, the builtin function is always invoked (even
if a make variable by that name also exists).

The call function expands the param arguments before assigning them to temporary
variables. This means that variable values containing references to builtin functions that
have special expansion rules, like foreach or if, may not work as you expect.

Chapter 8: Functions for Transforming Text

Some examples may make this clearer.
This macro simply reverses its arguments:
reverse = $(2) $(1)

foo = $(call reverse,a,b)
Here foo will contain ‘b a’.

This one is slightly more interesting: it defines a macro to search for the first instance
of a program in PATH:

pathsearch = $(firstword $(wildcard $(addsuffix /$(1),$(subst :, ,$(PATH)))))|

LS := $(call pathsearch,ls)
Now the variable LS contains /bin/1s or similar.

The call function can be nested. Each recursive invocation gets its own local values for
$(1), etc. that mask the values of higher-level call. For example, here is an implementation
of a map function:

map = $(foreach a,$(2),$(call $(1),$(a)))
Now you can map a function that normally takes only one argument, such as origin,
to multiple values in one step:
o = $(call map,origin,o map MAKE)
and end up with o containing something like ‘file file default’.
A final caution: be careful when adding whitespace to the arguments to call. As with
other functions, any whitespace contained in the second and subsequent arguments is kept;

this can cause strange effects. It’s generally safest to remove all extraneous whitespace when
providing parameters to call.

8.7 The value Function

The value function provides a way for you to use the value of a variable without having it
expanded. Please note that this does not undo expansions which have already occurred; for
example if you create a simply expanded variable its value is expanded during the definition;
in that case the value function will return the same result as using the variable directly.

The syntax of the value function is:
$(value variable)

Note that variable is the name of a variable; not a reference to that variable. Therefore
you would not normally use a ‘4’ or parentheses when writing it. (You can, however, use a
variable reference in the name if you want the name not to be a constant.)

The result of this function is a string containing the value of variable, without any
expansion occurring. For example, in this makefile:
FOO = $PATH

all:
@echo $(F00)
Q@echo $(value FO0)

GNU make

The first output line would be ATH, since the “$P” would be expanded as a make variable,
while the second output line would be the current value of your $PATH environment variable,
since the value function avoided the expansion.

The value function is most often used in conjunction with the eval function (see Sec-
tion 8.8 [Eval Function], page 74).

8.8 The eval Function

The eval function is very special: it allows you to define new makefile constructs that
are not constant; which are the result of evaluating other variables and functions. The
argument to the eval function is expanded, then the results of that expansion are parsed
as makefile syntax. The expanded results can define new make variables, targets, implicit
or explicit rules, etc.

The result of the eval function is always the empty string; thus, it can be placed virtually
anywhere in a makefile without causing syntax errors.

It’s important to realize that the eval argument is expanded twice; first by the eval
function, then the results of that expansion are expanded again when they are parsed
as makefile syntax. This means you may need to provide extra levels of escaping for “$”
characters when using eval. The value function (see Section 8.7 [Value Function], page 73)
can sometimes be useful in these situations, to circumvent unwanted expansions.

Here is an example of how eval can be used; this example combines a number of concepts
and other functions. Although it might seem overly complex to use eval in this example,
rather than just writing out the rules, consider two things: first, the template definition (in
PROGRAM_template) could need to be much more complex than it is here; and second, you
might put the complex, “generic” part of this example into another makefile, then include
it in all the individual makefiles. Now your individual makefiles are quite straightforward.

Chapter 8: Functions for Transforming Text

server client

PROGRAMS

server_0BJS = server.o server_priv.o server_access.oO
server_LIBS = priv protocol

client_0BJS = client.o client_api.o client_mem.o
client_LIBS = protocol

Everything after this is generic

.PHONY: all
all: $(PROGRAMS)

define PROGRAM_template

$(1): 3($(1)_0BJ) $$($(1)_LIBS:%=-1%)
ALL_OBJS += $$($(1)_0BJS)

endef

$(foreach prog,$(PROGRAMS) ,$(eval $(call PROGRAM_template,$(prog))))

$ (PROGRAMS) :
$(LINK.o) $~ $(LDLIBS) -o $@

clean:
rm -f $(ALL_0BJS) $(PROGRAMS)

8.9 The origin Function

The origin function is unlike most other functions in that it does not operate on the
values of variables; it tells you something about a variable. Specifically, it tells you where
it came from.

The syntax of the origin function is:
$(origin variable)

Note that variable is the name of a variable to inquire about; not a reference to that
variable. Therefore you would not normally use a ‘$’ or parentheses when writing it. (You
can, however, use a variable reference in the name if you want the name not to be a
constant.)

The result of this function is a string telling you how the variable variable was defined:

‘undefined’
if variable was never defined.

‘default’

if variable has a default definition, as is usual with CC and so on. See Section 10.3
[Variables Used by Implicit Rules|, page 93. Note that if you have redefined a
default variable, the origin function will return the origin of the later definition.

GNU make

‘environment’
if variable was defined as an environment variable and the
turned on (see Section 9.7 [Summary of Options], page 84).

‘-e’ option is not

‘environment override’
if variable was defined as an environment variable and the ‘-e’ option s turned
on (see Section 9.7 [Summary of Options|, page 84).

‘file’
if variable was defined in a makefile.

‘command line’
if variable was defined on the command line.

‘override’
if variable was defined with an override directive in a makefile (see Section 6.7
[The override Directive|, page 57).

‘automatic’
if variable is an automatic variable defined for the execution of the commands
for each rule (see Section 10.5.3 [Automatic Variables], page 98).

This information is primarily useful (other than for your curiosity) to determine if you
want to believe the value of a variable. For example, suppose you have a makefile ‘foo’ that
includes another makefile ‘bar’. You want a variable bletch to be defined in ‘bar’ if you
run the command ‘make -f bar’, even if the environment contains a definition of bletch.
However, if ‘foo’ defined bletch before including ‘bar’, you do not want to override that
definition. This could be done by using an override directive in ‘foo’, giving that definition
precedence over the later definition in ‘bar’; unfortunately, the override directive would
also override any command line definitions. So, ‘bar’ could include:

ifdef bletch
ifeq "$(origin bletch)" "environment"
bletch = barf, gag, etc.
endif
endif
If bletch has been defined from the environment, this will redefine it.

If you want to override a previous definition of bletch if it came from the environment,
even under ‘-e’, you could instead write:
ifneq "$(findstring environment,$(origin bletch))" "
bletch = barf, gag, etc.
endif
Here the redefinition takes place if ‘$ (origin bletch)’ returns either ‘environment’ or
‘environment override’. See Section 8.2 [Functions for String Substitution and Analysis],
page 66.

8.10 The shell Function

The shell function is unlike any other function except the wildcard function (see
Section 4.3.3 [The Function wildcard], page 20) in that it communicates with the world
outside of make.

Chapter 8: Functions for Transforming Text

The shell function performs the same function that backquotes (‘‘’) perform in most
shells: it does command expansion. This means that it takes an argument that is a shell
command and returns the output of the command. The only processing make does on
the result, before substituting it into the surrounding text, is to convert each newline or
carriage-return / newline pair to a single space. It also removes the trailing (carriage-return
and) newline, if it’s the last thing in the result.

The commands run by calls to the shell function are run when the function calls are
expanded (see Section 3.9 [How make Reads a Makefile], page 14). Because this function
involves spawning a new shell, you should carefully consider the performance implications
of using the shell function within recursively expanded variables vs. simply expanded
variables (see Section 6.2 [The Two Flavors of Variables|, page 50).

Here are some examples of the use of the shell function:
contents := $(shell cat foo)
sets contents to the contents of the file ‘foo’, with a space (rather than a newline) sepa-
rating each line.
files := $(shell echo *.c)

sets files to the expansion of ‘*.c’. Unless make is using a very strange shell, this has the
same result as ‘$(wildcard *.c)’.

8.11 Functions That Control Make

These functions control the way make runs. Generally, they are used to provide infor-
mation to the user of the makefile or to cause make to stop if some sort of environmental
error is detected.

$(error text...)
Generates a fatal error where the message is text. Note that the error is gen-
erated whenever this function is evaluated. So, if you put it inside a command
script or on the right side of a recursive variable assignment, it won’t be evalu-
ated until later. The text will be expanded before the error is generated.

For example,
ifdef ERROR1

$(error error is $(ERROR1))
endif

will generate a fatal error during the read of the makefile if the make variable
ERROR1 is defined. Or,

ERR = $(error found an error!)

.PHONY: err
err: ; $(ERR)

will generate a fatal error while make is running, if the err target is invoked.

$(warning text...)
This function works similarly to the error function, above, except that make
doesn’t exit. Instead, text is expanded and the resulting message is displayed,
but processing of the makefile continues.

GNU make

The result of the expansion of this function is the empty string.

Chapter 9: How to Run make

9 How to Run make

A makefile that says how to recompile a program can be used in more than one way.
The simplest use is to recompile every file that is out of date. Usually, makefiles are written
so that if you run make with no arguments, it does just that.

But you might want to update only some of the files; you might want to use a different
compiler or different compiler options; you might want just to find out which files are out
of date without changing them.

By giving arguments when you run make, you can do any of these things and many
others.

The exit status of make is always one of three values:
0 The exit status is zero if make is successful.

2 The exit status is two if make encounters any errors. It will print messages
describing the particular errors.

1 The exit status is one if you use the ‘-q’ flag and make determines that some
target is not already up to date. See Section 9.3 [Instead of Executing the
Commands]|, page 81.

9.1 Arguments to Specify the Makefile

¢

The way to specify the name of the makefile is with the ‘-f’ or ‘--file’ option
(‘--makefile’ also works). For example, ‘~f altmake’ says to use the file ‘altmake’ as the
makefile.

If you use the ‘-f’ flag several times and follow each ‘-f’ with an argument, all the
specified files are used jointly as makefiles.

If you do not use the ‘-f’ or ‘--file’ flag, the default is to try ‘GNUmakefile’, ‘makefile’,
and ‘Makefile’, in that order, and use the first of these three which exists or can be made
(see Chapter 3 [Writing Makefiles|, page 9).

9.2 Arguments to Specify the Goals

The goals are the targets that make should strive ultimately to update. Other targets
are updated as well if they appear as prerequisites of goals, or prerequisites of prerequisites
of goals, etc.

By default, the goal is the first target in the makefile (not counting targets that start with
a period). Therefore, makefiles are usually written so that the first target is for compiling
the entire program or programs they describe. If the first rule in the makefile has several
targets, only the first target in the rule becomes the default goal, not the whole list.

You can specify a different goal or goals with arguments to make. Use the name of the
goal as an argument. If you specify several goals, make processes each of them in turn, in
the order you name them.

Any target in the makefile may be specified as a goal (unless it starts with ‘=’ or contains
an ‘=", in which case it will be parsed as a switch or variable definition, respectively). Even

GNU make

targets not in the makefile may be specified, if make can find implicit rules that say how to
make them.

Make will set the special variable MAKECMDGOALS to the list of goals you specified on the
command line. If no goals were given on the command line, this variable is empty. Note
that this variable should be used only in special circumstances.

An example of appropriate use is to avoid including ‘.d’ files during clean rules (see
Section 4.13 [Automatic Prerequisites|, page 34), so make won’t create them only to imme-
diately remove them again:

sources = foo.c bar.c

ifneq ($(MAKECMDGOALS),clean)

include $(sources:.c=.d)

endif

One use of specifying a goal is if you want to compile only a part of the program, or only

one of several programs. Specify as a goal each file that you wish to remake. For example,
consider a directory containing several programs, with a makefile that starts like this:

.PHONY: all

all: size nm 1d ar as

If you are working on the program size, you might want to say ‘make size’ so that only
the files of that program are recompiled.

Another use of specifying a goal is to make files that are not normally made. For
example, there may be a file of debugging output, or a version of the program that is
compiled specially for testing, which has a rule in the makefile but is not a prerequisite of
the default goal.

Another use of specifying a goal is to run the commands associated with a phony target
(see Section 4.5 [Phony Targets], page 24) or empty target (see Section 4.7 [Empty Target
Files to Record Events|, page 27). Many makefiles contain a phony target named ‘clean’
which deletes everything except source files. Naturally, this is done only if you request it
explicitly with ‘make clean’. Following is a list of typical phony and empty target names.
See Section 14.5 [Standard Targets|, page 123, for a detailed list of all the standard target
names which GNU software packages use.

‘all’ Make all the top-level targets the makefile knows about.
‘clean’ Delete all files that are normally created by running make.
‘mostlyclean’

Like ‘clean’, but may refrain from deleting a few files that people normally
don’t want to recompile. For example, the ‘mostlyclean’ target for GCC does
not delete ‘libgcc.a’, because recompiling it is rarely necessary and takes a lot
of time.

‘distclean’

‘realclean’

‘clobber’ Any of these targets might be defined to delete more files than ‘clean’ does. For
example, this would delete configuration files or links that you would normally
create as preparation for compilation, even if the makefile itself cannot create
these files.

Chapter 9:

‘install’

‘print’
‘tar’
‘shar’

‘dist’

‘TAGS’

‘check’
‘test’

How to Run make

Copy the executable file into a directory that users typically search for com-
mands; copy any auxiliary files that the executable uses into the directories
where it will look for them.

Print listings of the source files that have changed.
Create a tar file of the source files.
Create a shell archive (shar file) of the source files.

Create a distribution file of the source files. This might be a tar file, or a shar
file, or a compressed version of one of the above, or even more than one of the
above.

Update a tags table for this program.

Perform self tests on the program this makefile builds.

9.3 Instead of Executing the Commands

The makefile tells make how to tell whether a target is up to date, and how to update
each target. But updating the targets is not always what you want. Certain options specify
other activities for make.

¢ Y

-n

‘-—just-print’

‘=-dry-run’

‘--recon’
“No-op”. The activity is to print what commands would be used to make the
targets up to date, but not actually execute them.

‘g’

‘-=touch’
“Touch”. The activity is to mark the targets as up to date without actually
changing them. In other words, make pretends to compile the targets but does
not really change their contents.

c_qa

‘-—question’
“Question”. The activity is to find out silently whether the targets are up to
date already; but execute no commands in either case. In other words, neither
compilation nor output will occur.

‘-W file’

‘—--what-if=file’

‘—-assume-new=file’
‘——new-file=file’

“What if”. Each ‘-W’ flag is followed by a file name. The given files’ modification
times are recorded by make as being the present time, although the actual
modification times remain the same. You can use the ‘W’ flag in conjunction
with the ‘-n’ flag to see what would happen if you were to modify specific files.

GNU make

With the ‘-n’ flag, make prints the commands that it would normally execute but does
not execute them.

With the ‘-t’ flag, make ignores the commands in the rules and uses (in effect) the
command touch for each target that needs to be remade. The touch command is also
printed, unless ‘-s’ or .SILENT is used. For speed, make does not actually invoke the
program touch. It does the work directly.

With the ‘-q’ flag, make prints nothing and executes no commands, but the exit status
code it returns is zero if and only if the targets to be considered are already up to date. If
the exit status is one, then some updating needs to be done. If make encounters an error,
the exit status is two, so you can distinguish an error from a target that is not up to date.

It is an error to use more than one of these three flags in the same invocation of make.

The ‘-n’, ‘-t’, and ‘-q’ options do not affect command lines that begin with ‘+’ characters
or contain the strings ‘$(MAKE)’ or ‘${MAKE}’. Note that only the line containing the ‘+’
character or the strings ‘$ (MAKE)’ or ‘${MAKE}’ is run regardless of these options. Other
lines in the same rule are not run unless they too begin with ‘+’ or contain ‘$(MAKE)’ or
‘${MAKE}’ (See Section 5.6.1 [How the MAKE Variable Works|, page 42.)

The ‘-W’ flag provides two features:

3 ‘

e If you also use the ‘-n’ or ‘-q’ flag, you can see what make would do if you were to

modify some files.

e Without the ‘-n’ or ‘-q’ flag, when make is actually executing commands, the ‘-W’ flag
can direct make to act as if some files had been modified, without actually modifying
the files.

Note that the options ‘-p’ and ‘-v’ allow you to obtain other information about make or
about the makefiles in use (see Section 9.7 [Summary of Options], page 84).

9.4 Avoiding Recompilation of Some Files

Sometimes you may have changed a source file but you do not want to recompile all the
files that depend on it. For example, suppose you add a macro or a declaration to a header
file that many other files depend on. Being conservative, make assumes that any change
in the header file requires recompilation of all dependent files, but you know that they do
not need to be recompiled and you would rather not waste the time waiting for them to
compile.

If you anticipate the problem before changing the header file, you can use the ‘-t’ flag.
This flag tells make not to run the commands in the rules, but rather to mark the target
up to date by changing its last-modification date. You would follow this procedure:

1. Use the command ‘make’ to recompile the source files that really need recompilation,
ensuring that the object files are up-to-date before you begin.

2. Make the changes in the header files.
3. Use the command ‘make -t’ to mark all the object files as up to date. The next time
you run make, the changes in the header files will not cause any recompilation.

If you have already changed the header file at a time when some files do need recompila-
tion, it is too late to do this. Instead, you can use the ‘-o file’ flag, which marks a specified

Chapter 9: How to Run make

file as “old” (see Section 9.7 [Summary of Options], page 84). This means that the file itself
will not be remade, and nothing else will be remade on its account. Follow this procedure:

1. Recompile the source files that need compilation for reasons independent of the par-
ticular header file, with ‘make -o headerfile’. If several header files are involved, use a
separate ‘—o’ option for each header file.

2. Touch all the object files with ‘make -t’.

9.5 Overriding Variables

An argument that contains ‘=’ specifies the value of a variable: ‘v=x’ sets the value of

the variable v to x. If you specify a value in this way, all ordinary assignments of the same
variable in the makefile are ignored; we say they have been overridden by the command line
argument.

The most common way to use this facility is to pass extra flags to compilers. For example,
in a properly written makefile, the variable CFLAGS is included in each command that runs
the C compiler, so a file ‘foo.c’ would be compiled something like this:

cc —¢c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS affects each compilation that occurs. The
makefile probably specifies the usual value for CFLAGS, like this:

CFLAGS=-g

Each time you run make, you can override this value if you wish. For example, if you
say ‘make CFLAGS=’-g -0’’, each C compilation will be done with ‘cc -c —-g -0’. (This also
illustrates how you can use quoting in the shell to enclose spaces and other special characters
in the value of a variable when you override it.)

The variable CFLAGS is only one of many standard variables that exist just so that you
can change them this way. See Section 10.3 [Variables Used by Implicit Rules|, page 93, for
a complete list.

You can also program the makefile to look at additional variables of your own, giving
the user the ability to control other aspects of how the makefile works by changing the
variables.

When you override a variable with a command argument, you can define either a
recursively-expanded variable or a simply-expanded variable. The examples shown above
make a recursively-expanded variable; to make a simply-expanded variable, write ‘:=’
stead of ‘=". But, unless you want to include a variable reference or function call in the
value that you specify, it makes no difference which kind of variable you create.

in-

There is one way that the makefile can change a variable that you have overridden. This
is to use the override directive, which is a line that looks like this: ‘override variable =
value’ (see Section 6.7 [The override Directive], page 57).

9.6 Testing the Compilation of a Program

Normally, when an error happens in executing a shell command, make gives up immedi-
ately, returning a nonzero status. No further commands are executed for any target. The
error implies that the goal cannot be correctly remade, and make reports this as soon as it
knows.

GNU make

When you are compiling a program that you have just changed, this is not what you
want. Instead, you would rather that make try compiling every file that can be tried, to
show you as many compilation errors as possible.

4

On these occasions, you should use the ‘-k’ or ‘--keep-going’ flag. This tells make
to continue to consider the other prerequisites of the pending targets, remaking them if
necessary, before it gives up and returns nonzero status. For example, after an error in
compiling one object file, ‘make -k’ will continue compiling other object files even though it
already knows that linking them will be impossible. In addition to continuing after failed
shell commands, ‘make -k’ will continue as much as possible after discovering that it does
not know how to make a target or prerequisite file. This will always cause an error message,
but without ‘-k’, it is a fatal error (see Section 9.7 [Summary of Options|, page 84).

The usual behavior of make assumes that your purpose is to get the goals up to date;
once make learns that this is impossible, it might as well report the failure immediately.
The ‘-k’ flag says that the real purpose is to test as much as possible of the changes made
in the program, perhaps to find several independent problems so that you can correct them
all before the next attempt to compile. This is why Emacs’ M-x compile command passes
the ‘-k’ flag by default.

9.7 Summary of Options

Here is a table of all the options make understands:
-m These options are ignored for compatibility with other versions of make.

‘-—always-make’
Consider all targets out-of-date. GNU make proceeds to consider targets and
their prerequisites using the normal algorithms; however, all these targets are
remade, regardless of the status of their prerequisites.

‘~C dir’

‘--directory=dir’
Change to directory dir before reading the makefiles. If multiple ‘-C’ options
are specified, each is interpreted relative to the previous one: ‘-C / -C etc’ is
equivalent to ‘-C /etc’. This is typically used with recursive invocations of
make (see Section 5.6 [Recursive Use of make], page 41).

Print debugging information in addition to normal processing. The debugging
information says which files are being considered for remaking, which file-times
are being compared and with what results, which files actually need to be
remade, which implicit rules are considered and which are applied—everything
interesting about how make decides what to do. The -d option is equivalent to
‘~—debug=a’ (see below).

‘--debug [=options]’
Print debugging information in addition to normal processing. Various levels
and types of output can be chosen. With no arguments, print the “basic”

Chapter 9: How to Run make

level of debugging. Possible arguments are below; only the first character is
considered, and values must be comma- or space-separated.

a (all) All types of debugging output are enabled. This is equivalent to
using ‘-d’.

b (basic) Basic debugging prints each target that was found to be out-of-date,
and whether the build was successful or not.

v (verbose)
A level above ‘basic’; includes messages about which makefiles
were parsed, prerequisites that did not need to be rebuilt, etc. This
option also enables ‘basic’ messages.

i (implicit)
Prints messages describing the implicit rule searches for each target.
This option also enables ‘basic’ messages.

j (jobs) Prints messages giving details on the invocation of specific subcom-
mands.

m (makefile)
By default, the above messages are not enabled while trying to re-
make the makefiles. This option enables messages while rebuilding
makefiles, too. Note that the ‘all’ option does enable this option.
This option also enables ‘basic’ messages.

‘—g’
‘—~—environment-overrides’
Give variables taken from the environment precedence over variables from make-

files. See Section 6.9 [Variables from the Environment|, page 59.

‘~f file’
‘——file=file’
‘--makefile=file’
Read the file named file as a makefile. See Chapter 3 [Writing Makefiles|, page 9.

c_h’
‘--help’

Remind you of the options that make understands and then exit.

c_ia

‘~--ignore-errors’
Ignore all errors in commands executed to remake files. See Section 5.4 [Errors
in Commands|, page 40.

‘-1 dir’

‘~-—include-dir=dir’
Specifies a directory dir to search for included makefiles. See Section 3.3 [In-
cluding Other Makefiles], page 10. If several ‘-I’ options are used to specify
several directories, the directories are searched in the order specified.

‘-3 [jobs]’

GNU make

‘~-jobs [=jobs]’

‘

-k’

Specifies the number of jobs (commands) to run simultaneously. With no argu-
ment, make runs as many jobs simultaneously as possible. If there is more than
one ‘-j’ option, the last one is effective. See Section 5.3 [Parallel Execution],
page 39, for more information on how commands are run. Note that this option
is ignored on MS-DOS.

‘--keep-going’

‘-1 [load]’

Continue as much as possible after an error. While the target that failed, and
those that depend on it, cannot be remade, the other prerequisites of these
targets can be processed all the same. See Section 9.6 [Testing the Compilation
of a Program]|, page 83.

‘~-load-average [=load]’
‘~-max-load[=load]’

¢

I

Specifies that no new jobs (commands) should be started if there are other jobs
running and the load average is at least load (a floating-point number). With no
argument, removes a previous load limit. See Section 5.3 [Parallel Execution],
page 39.

-n
‘-—just-print’
‘=-dry-run’
‘—~-recon’
Print the commands that would be executed, but do not execute them. See
Section 9.3 [Instead of Executing the Commands], page 81.
‘-0 file’

‘——o0ld-file=file’
‘——assume-old=file’

¢

b

P

Do not remake the file file even if it is older than its prerequisites, and do not
remake anything on account of changes in file. Essentially the file is treated as
very old and its rules are ignored. See Section 9.4 [Avoiding Recompilation of
Some Files], page 82.

‘--print-data-base’

Print the data base (rules and variable values) that results from reading the
makefiles; then execute as usual or as otherwise specified. This also prints the
version information given by the ‘-v’ switch (see below). To print the data
base without trying to remake any files, use ‘make —qp’. To print the data base
of predefined rules and variables, use ‘make -p -f /dev/null’. The data base
output contains filename and linenumber information for command and variable
definitions, so it can be a useful debugging tool in complex environments.

Chapter 9: How to Run make

3)

!

‘~—question’
“Question mode”. Do not run any commands, or print anything; just return
an exit status that is zero if the specified targets are already up to date, one
if any remaking is required, or two if an error is encountered. See Section 9.3
[Instead of Executing the Commands], page 81.

s

‘—~—no-builtin-rules’

C_R’

Eliminate use of the built-in implicit rules (see Chapter 10 [Using Implicit
Rules], page 89). You can still define your own by writing pattern rules (see
Section 10.5 [Defining and Redefining Pattern Rules], page 96). The ‘-r’ option
also clears out the default list of suffixes for suffix rules (see Section 10.7 [Old-
Fashioned Suffix Rules], page 103). But you can still define your own suffixes
with a rule for .SUFFIXES, and then define your own suffix rules. Note that
only rules are affected by the -r option; default variables remain in effect (see
Section 10.3 [Variables Used by Implicit Rules], page 93); see the ‘-R’ option
below.

‘—~—no-builtin-variables’

‘g’
‘——silent’
‘-—quiet’

‘g’

Eliminate use of the built-in rule-specific variables (see Section 10.3 [Variables
Used by Implicit Rules], page 93). You can still define your own, of course.
The ‘-R’ option also automatically enables the ‘-r’ option (see above), since
it doesn’t make sense to have implicit rules without any definitions for the
variables that they use.

Silent operation; do not print the commands as they are executed. See Sec-
tion 5.1 [Command Echoing], page 37.

‘--no-keep-going’

‘--stop’

‘g
‘~=touch’

Cancel the effect of the ‘~k’ option. This is never necessary except in a recursive
make where ‘-k’ might be inherited from the top-level make via MAKEFLAGS (see
Section 5.6 [Recursive Use of make|, page 41) or if you set ‘-k’ in MAKEFLAGS in
your environment.

Touch files (mark them up to date without really changing them) instead of
running their commands. This is used to pretend that the commands were
done, in order to fool future invocations of make. See Section 9.3 [Instead of
Executing the Commands], page 81.

GNU make

—y’

‘--version’
Print the version of the make program plus a copyright, a list of authors, and a
notice that there is no warranty; then exit.

[

‘~--print-directory’
Print a message containing the working directory both before and after execut-
ing the makefile. This may be useful for tracking down errors from complicated
nests of recursive make commands. See Section 5.6 [Recursive Use of make],
page 41. (In practice, you rarely need to specify this option since ‘make’ does
it for you; see Section 5.6.4 [The ‘--print-directory’ Option], page 46.)
‘--no-print-directory’
Disable printing of the working directory under -w. This option is useful when
-w is turned on automatically, but you do not want to see the extra messages.
See Section 5.6.4 [The ‘--print-directory’ Option], page 46.

‘-W file’

‘—-—what-if=file’

‘--new-file=file’

‘~—assume-new=file’
Pretend that the target file has just been modified. When used with the ‘-n’
flag, this shows you what would happen if you were to modify that file. Without
‘-n’, it is almost the same as running a touch command on the given file
before running make, except that the modification time is changed only in the
imagination of make. See Section 9.3 [Instead of Executing the Commands],
page 81.

‘--warn-undefined-variables’
Issue a warning message whenever make sees a reference to an undefined vari-
able. This can be helpful when you are trying to debug makefiles which use
variables in complex ways.

Chapter 10: Using Implicit Rules

10 Using Implicit Rules

Certain standard ways of remaking target files are used very often. For example, one
customary way to make an object file is from a C source file using the C compiler, cc.

Implicit rules tell make how to use customary techniques so that you do not have to
specify them in detail when you want to use them. For example, there is an implicit rule
for C compilation. File names determine which implicit rules are run. For example, C
compilation typically takes a ‘.c’ file and makes a ‘.0’ file. So make applies the implicit
rule for C compilation when it sees this combination of file name endings.

A chain of implicit rules can apply in sequence; for example, make will remake a ‘.0’ file
from a ‘.y’ file by way of a ‘.c’ file. See Section 10.4 [Chains of Implicit Rules|, page 95.

The built-in implicit rules use several variables in their commands so that, by changing
the values of the variables, you can change the way the implicit rule works. For example,
the variable CFLAGS controls the flags given to the C compiler by the implicit rule for C
compilation. See Section 10.3 [Variables Used by Implicit Rules], page 93.

You can define your own implicit rules by writing pattern rules. See Section 10.5 [Defining
and Redefining Pattern Rules|, page 96.

Suftix rules are a more limited way to define implicit rules. Pattern rules are more general
and clearer, but suffix rules are retained for compatibility. See Section 10.7 [Old-Fashioned
Suffix Rules], page 103.

10.1 Using Implicit Rules

To allow make to find a customary method for updating a target file, all you have to do
is refrain from specifying commands yourself. Either write a rule with no command lines,
or don’t write a rule at all. Then make will figure out which implicit rule to use based on
which kind of source file exists or can be made.

For example, suppose the makefile looks like this:
foo : foo.o bar.o
cc -0 foo foo.o bar.o $(CFLAGS) $(LDFLAGS)
Because you mention ‘foo.o’ but do not give a rule for it, make will automatically look for
an implicit rule that tells how to update it. This happens whether or not the file ‘foo.0’
currently exists.

If an implicit rule is found, it can supply both commands and one or more prerequisites
(the source files). You would want to write a rule for ‘foo.0’ with no command lines if you
need to specify additional prerequisites, such as header files, that the implicit rule cannot
supply.

Each implicit rule has a target pattern and prerequisite patterns. There may be many
implicit rules with the same target pattern. For example, numerous rules make ‘.o’ files:
one, from a ‘. ¢’ file with the C compiler; another, from a ‘.p’ file with the Pascal compiler;
and so on. The rule that actually applies is the one whose prerequisites exist or can be
made. So, if you have a file ‘foo.c’, make will run the C compiler; otherwise, if you have a
file ‘foo.p’, make will run the Pascal compiler; and so on.

Of course, when you write the makefile, you know which implicit rule you want make
to use, and you know it will choose that one because you know which possible prerequisite

GNU make

files are supposed to exist. See Section 10.2 [Catalogue of Implicit Rules|, page 90, for a
catalogue of all the predefined implicit rules.

Above, we said an implicit rule applies if the required prerequisites “exist or can be
made”. A file “can be made” if it is mentioned explicitly in the makefile as a target or a
prerequisite, or if an implicit rule can be recursively found for how to make it. When an
implicit prerequisite is the result of another implicit rule, we say that chaining is occurring.
See Section 10.4 [Chains of Implicit Rules], page 95.

In general, make searches for an implicit rule for each target, and for each double-colon
rule, that has no commands. A file that is mentioned only as a prerequisite is considered a
target whose rule specifies nothing, so implicit rule search happens for it. See Section 10.8
[Implicit Rule Search Algorithm], page 104, for the details of how the search is done.

Note that explicit prerequisites do not influence implicit rule search. For example, con-
sider this explicit rule:

foo.o: foo.p

The prerequisite on ‘foo.p’ does not necessarily mean that make will remake ‘foo.0’ ac-
cording to the implicit rule to make an object file, a ‘.o’ file, from a Pascal source file, a
¢.p’ file. For example, if ‘foo.c’ also exists, the implicit rule to make an object file from a C
source file is used instead, because it appears before the Pascal rule in the list of predefined
implicit rules (see Section 10.2 [Catalogue of Implicit Rules], page 90).

If you do not want an implicit rule to be used for a target that has no commands, you
can give that target empty commands by writing a semicolon (see Section 5.8 [Defining
Empty Commands], page 47).

10.2 Catalogue of Implicit Rules

Here is a catalogue of predefined implicit rules which are always available unless the
makefile explicitly overrides or cancels them. See Section 10.5.6 [Canceling Implicit
Rules], page 102, for information on canceling or overriding an implicit rule. The ‘-r’ or
‘~-no-builtin-rules’ option cancels all predefined rules.

Not all of these rules will always be defined, even when the ‘-r’ option is not given.

Many of the predefined implicit rules are implemented in make as suffix rules, so which
ones will be defined depends on the suffix list (the list of prerequisites of the special target
.SUFFIXES). The default suffix list is: .out, .a, .1ln, .o, .c, .cc, .C, .p, .f, .F, .r,
.y, .1, .s, .S, .mod, .sym, .def, .h, .info, .dvi, .tex, .texinfo, .texi, .txinfo, .w,
.ch .web, .sh, .elc, .el. All of the implicit rules described below whose prerequisites
have one of these suffixes are actually suffix rules. If you modify the suffix list, the only
predefined suffix rules in effect will be those named by one or two of the suffixes that are on
the list you specify; rules whose suffixes fail to be on the list are disabled. See Section 10.7
[Old-Fashioned Suffix Rules|, page 103, for full details on suffix rules.

Compiling C programs
‘n.o’ is made automatically from ‘n.c’ with a command of the form ‘$(CC) -c
$ (CPPFLAGS) $(CFLAGS)’.

Chapter 10: Using Implicit Rules

Compiling C++ programs
‘n.o’ is made automatically from ‘n.cc’ or ‘n.C’ with a command of the form
‘$ (CXX) -c $(CPPFLAGS) $(CXXFLAGS)’. We encourage you to use the suffix
‘.cc’ for C++ source files instead of ‘.C’.

Compiling Pascal programs
‘n.o’ is made automatically from ‘n.p’ with the command ‘$(PC) -c
$ (PFLAGS)’.

Compiling Fortran and Ratfor programs
‘n.o’ is made automatically from ‘n.r’, ‘n.F’ or ‘n.f’ by running the Fortran
compiler. The precise command used is as follows:

i ‘$ (FC) -c $(FFLAGS) .
S ‘$(FC) -c $(FFLAGS) $(CPPFLAGS)’.
‘r’ ‘$(FC) -c $(FFLAGS) $(RFLAGS)’.

Preprocessing Fortran and Ratfor programs
‘n.f’ is made automatically from ‘n.r’ or ‘n.F’. This rule runs just the pre-
processor to convert a Ratfor or preprocessable Fortran program into a strict
Fortran program. The precise command used is as follows:

CF ‘$(FC) -F $(CPPFLAGS) $(FFLAGS)'.
‘or’ ‘$ (FC) -F $(FFLAGS) $(RFLAGS)’.

Compiling Modula-2 programs
‘n.sym’ is made from ‘n.def’ with a command of the form ‘$(M2C)
$ (M2FLAGS) $(DEFFLAGS)’. ‘n.o’ is made from ‘n.mod’; the form is:
‘$ (M2C) $(M2FLAGS) $(MODFLAGS)'.

Assembling and preprocessing assembler programs
‘n.o’ is made automatically from ‘n.s’ by running the assembler, as. The
precise command is ‘$ (AS) $(ASFLAGS)’.

‘n.s’ is made automatically from ‘n.S’ by running the C preprocessor, cpp.
The precise command is ‘$ (CPP) $(CPPFLAGS)’.

Linking a single object file
‘n’ is made automatically from ‘n.o’ by running the linker (usu-
ally called 1d) via the C compiler. The precise command used is

‘$(CC) $(LDFLAGS) n.o $(LOADLIBES) $(LDLIBS)’ .

This rule does the right thing for a simple program with only one source file. It
will also do the right thing if there are multiple object files (presumably coming
from various other source files), one of which has a name matching that of the
executable file. Thus,

X: y.0 Z.0

when ‘x.c’, ‘y.c’ and ‘z.c’ all exist will execute:

GNU make

CC -C X.C -0 X.0

ccC -C y.c -0 y.o

cC —C z.C -0 Z.0

CC X.0 y.0 Z.0 O X

rm -f x.0

rm -f y.o

rm -f z.0
In more complicated cases, such as when there is no object file whose name
derives from the executable file name, you must write an explicit command for
linking.
Each kind of file automatically made into ‘.o’ object files will be automatically
linked by using the compiler (‘$(CC)’, ‘$ (FC)’ or ‘$ (PC)’; the C compiler ‘$ (CC)’
is used to assemble ‘.s’ files) without the ‘-c’ option. This could be done by
using the ‘.0’ object files as intermediates, but it is faster to do the compiling
and linking in one step, so that’s how it’s done.

Yacc for C programs
‘n.c’ is made automatically from ‘n.y’ by running Yacc with the command
‘$(YACC) $(YFLAGS)’ .

Lex for C programs
‘n.c’ is made automatically from ‘n.1’ by running Lex. The actual command
is ‘$ (LEX) $(LFLAGS)’.

Lex for Ratfor programs
‘n.r’ is made automatically from ‘n.1’ by running Lex. The actual command
is ‘§ (LEX) $(LFLAGS)’.

The convention of using the same suffix ‘.1’ for all Lex files regardless of whether
they produce C code or Ratfor code makes it impossible for make to determine
automatically which of the two languages you are using in any particular case. If
make is called upon to remake an object file from a ‘.1’ file, it must guess which
compiler to use. It will guess the C compiler, because that is more common.
If you are using Ratfor, make sure make knows this by mentioning ‘n.r’ in the

3 7

makefile. Or, if you are using Ratfor exclusively, with no C files, remove ‘.c
from the list of implicit rule suffixes with:

.SUFFIXES:
.SUFFIXES: .o .r .f .1 ...

Making Lint Libraries from C, Yacc, or Lex programs
‘n.1n’ is made from ‘n.c’ by running lint. The precise command is
‘$ (LINT) $(LINTFLAGS) $(CPPFLAGS) -i’. The same command is used on the
C code produced from ‘n.y’ or ‘n.1".

TEX and Web
‘n.dvi’ is made from ‘n.tex’ with the command ‘$(TEX)’. ‘n.tex’ is made
from ‘n.web’ with ‘¢ (WEAVE)’, or from ‘n.w’ (and from ‘n.ch’ if it exists or can
be made) with ‘¢ (CWEAVE)'. ‘n.p’ is made from ‘n.web’ with ‘$ (TANGLE)’ and
‘n.c’ is made from ‘n.w’ (and from ‘n.ch’ if it exists or can be made) with
‘$ (CTANGLE) .

Chapter 10: Using Implicit Rules

Texinfo and Info

‘n.dvi’ is made from ‘n.texinfo’, ‘n.texi’, or ‘n.txinfo’, with
the command ‘$(TEXI2DVI) $(TEXI2DVI_FLAGS)’. ‘n.info’ is made
from ‘n.texinfo’, ‘n.texi’, or ‘n.txinfo’, with the command

‘$ (MAKEINFO) $(MAKEINFO_FLAGS)’.

RCS Any file ‘n’ is extracted if necessary from an RCS file named either ‘n,v’ or
‘RCS/n,v’. The precise command used is ‘$(C0) $(COFLAGS)’. ‘n’ will not be
extracted from RCS if it already exists, even if the RCS file is newer. The
rules for RCS are terminal (see Section 10.5.5 [Match-Anything Pattern Rules],
page 101), so RCS files cannot be generated from another source; they must
actually exist.

SCCS Any file ‘n’ is extracted if necessary from an SCCS file named either ‘s.n’
or ‘SCCS/s.n’. The precise command used is ‘$ (GET) $(GFLAGS)’. The rules
for SCCS are terminal (see Section 10.5.5 [Match-Anything Pattern Rules],
page 101), so SCCS files cannot be generated from another source; they must
actually exist.

For the benefit of SCCS, a file ‘n’ is copied from ‘n.sh’ and made executable
(by everyone). This is for shell scripts that are checked into SCCS. Since RCS
preserves the execution permission of a file, you do not need to use this feature
with RCS.

We recommend that you avoid using of SCCS. RCS is widely held to be superior,
and is also free. By choosing free software in place of comparable (or inferior)
proprietary software, you support the free software movement.

Usually, you want to change only the variables listed in the table above, which are
documented in the following section.

However, the commands in built-in implicit rules actually use variables such as
COMPILE.c, LINK.p, and PREPROCESS .S, whose values contain the commands listed above.

make follows the convention that the rule to compile a ‘.x’ source file uses the variable
COMPILE.x. Similarly, the rule to produce an executable from a ‘.x’ file uses LINK. x; and
the rule to preprocess a ‘.x’ file uses PREPROCESS. x.

Every rule that produces an object file uses the variable QUTPUT_QPTION. make defines
this variable either to contain ‘-0 $@’, or to be empty, depending on a compile-time option.
You need the ‘-0’ option to ensure that the output goes into the right file when the source
file is in a different directory, as when using VPATH (see Section 4.4 [Directory Search],
page 20). However, compilers on some systems do not accept a ‘-0’ switch for object files.
If you use such a system, and use VPATH, some compilations will put their output in the
wrong place. A possible workaround for this problem is to give OUTPUT_OPTION the value
“; mv $*.0 $Q°.

10.3 Variables Used by Implicit Rules

The commands in built-in implicit rules make liberal use of certain predefined variables.
You can alter these variables in the makefile, with arguments to make, or in the environment
to alter how the implicit rules work without redefining the rules themselves. You can cancel
all variables used by implicit rules with the ‘-R’ or ‘~-no-builtin-variables’ option.

GNU make

For example, the command used to compile a C source file actually says ‘$(CC) -c
$ (CFLAGS) $(CPPFLAGS)’. The default values of the variables used are ‘cc’ and nothing,
resulting in the command ‘cc -¢’. By redefining ‘CC’ to ‘ncc’, you could cause ‘ncc’ to be
used for all C compilations performed by the implicit rule. By redefining ‘CFLAGS’ to be ‘-g’,
you could pass the ‘-g’ option to each compilation. All implicit rules that do C compilation
use ‘$(CC)’ to get the program name for the compiler and all include ‘¢ (CFLAGS)’ among
the arguments given to the compiler.

The variables used in implicit rules fall into two classes: those that are names of programs
(like CC) and those that contain arguments for the programs (like CFLAGS). (The “name of
a program” may also contain some command arguments, but it must start with an actual
executable program name.) If a variable value contains more than one argument, separate
them with spaces.

Here is a table of variables used as names of programs in built-in rules:

AR
AS
CcC
CXX
CcOo
CPP

FC

GET
LEX

PC
YACC
YACCR

MAKEINFO
TEX
TEXI2DVI
WEAVE
CWEAVE
TANGLE
CTANGLE
RM

Archive-maintaining program; default ‘ar’.

Program for doing assembly; default ‘as’.

Program for compiling C programs; default ‘cc’.
Program for compiling C++ programs; default ‘g++’.
Program for extracting a file from RCS; default ‘co’.

Program for running the C preprocessor, with results to standard output; de-
fault ‘$(CC) -E’.

Program for compiling or preprocessing Fortran and Ratfor programs; default
77,

Program for extracting a file from SCCS; default ‘get’.

Program to use to turn Lex grammars into C programs or Ratfor programs;
default ‘lex’.

Program for compiling Pascal programs; default ‘pc’.
Program to use to turn Yacc grammars into C programs; default ‘yacc’.

Program to use to turn Yacc grammars into Ratfor programs; default ‘yacc

-r’.

Program to convert a Texinfo source file into an Info file; default ‘makeinfo’.
Program to make TEX DVI files from TEX source; default ‘tex’.

Program to make TEX DVI files from Texinfo source; default ‘texi2dvi’.
Program to translate Web into TEX; default ‘weave’.

Program to translate C Web into TEX; default ‘cweave’.

Program to translate Web into Pascal; default ‘tangle’.

Program to translate C Web into C; default ‘ctangle’.

Command to remove a file; default ‘rm —f’.

Chapter 10: Using Implicit Rules

Here is a table of variables whose values are additional arguments for the programs
above. The default values for all of these is the empty string, unless otherwise noted.

ARFLAGS Flags to give the archive-maintaining program; default ‘rv’.

ASFLAGS Extra flags to give to the assembler (when explicitly invoked on a ‘.8’ or ‘.8’
file).

CFLAGS Extra flags to give to the C compiler.
CXXFLAGS Extra flags to give to the C++ compiler.
COFLAGS Extra flags to give to the RCS co program.

CPPFLAGS Extra flags to give to the C preprocessor and programs that use it (the C and
Fortran compilers).

FFLAGS Extra flags to give to the Fortran compiler.
GFLAGS Extra flags to give to the SCCS get program.

LDFLAGS Extra flags to give to compilers when they are supposed to invoke the linker,
‘1d’.

LFLAGS Extra flags to give to Lex.

PFLAGS Extra flags to give to the Pascal compiler.

RFLAGS Extra flags to give to the Fortran compiler for Ratfor programs.
YFLAGS Extra flags to give to Yacc.

10.4 Chains of Implicit Rules

Sometimes a file can be made by a sequence of implicit rules. For example, a file ‘n.o’
could be made from ‘n.y’ by running first Yacc and then cc. Such a sequence is called a
chain.

If the file ‘n. ¢’ exists, or is mentioned in the makefile, no special searching is required:
make finds that the object file can be made by C compilation from ‘n.c’; later on, when
considering how to make ‘n.c’, the rule for running Yacc is used. Ultimately both ‘n.c’
and ‘n.o’ are updated.

However, even if ‘n.c’ does not exist and is not mentioned, make knows how to envision
it as the missing link between ‘n.o’ and ‘n.y’! In this case, ‘n.c’ is called an intermediate
file. Once make has decided to use the intermediate file, it is entered in the data base as if
it had been mentioned in the makefile, along with the implicit rule that says how to create
it.

Intermediate files are remade using their rules just like all other files. But intermediate
files are treated differently in two ways.

The first difference is what happens if the intermediate file does not exist. If an ordinary
file b does not exist, and make considers a target that depends on b, it invariably creates b
and then updates the target from b. But if b is an intermediate file, then make can leave well
enough alone. It won’t bother updating b, or the ultimate target, unless some prerequisite
of b is newer than that target or there is some other reason to update that target.

GNU make

The second difference is that if make does create b in order to update something else,
it deletes b later on after it is no longer needed. Therefore, an intermediate file which did
not exist before make also does not exist after make. make reports the deletion to you by
printing a ‘rm -f’ command showing which file it is deleting.

Ordinarily, a file cannot be intermediate if it is mentioned in the makefile as a target
or prerequisite. However, you can explicitly mark a file as intermediate by listing it as
a prerequisite of the special target .INTERMEDIATE. This takes effect even if the file is
mentioned explicitly in some other way.

You can prevent automatic deletion of an intermediate file by marking it as a secondary
file. To do this, list it as a prerequisite of the special target .SECONDARY. When a file
is secondary, make will not create the file merely because it does not already exist, but
make does not automatically delete the file. Marking a file as secondary also marks it as
intermediate.

You can list the target pattern of an implicit rule (such as ‘%.0’) as a prerequisite of the
special target .PRECIQUS to preserve intermediate files made by implicit rules whose target
patterns match that file’s name; see Section 5.5 [Interrupts], page 41.

A chain can involve more than two implicit rules. For example, it is possible to make a
file ‘foo’ from ‘RCS/fo0.y,v’ by running RCS, Yacc and cc. Then both ‘foo.y’ and ‘foo.c’
are intermediate files that are deleted at the end.

No single implicit rule can appear more than once in a chain. This means that make will
not even consider such a ridiculous thing as making ‘foo’ from ‘foo.o0.0’ by running the
linker twice. This constraint has the added benefit of preventing any infinite loop in the
search for an implicit rule chain.

There are some special implicit rules to optimize certain cases that would otherwise
be handled by rule chains. For example, making ‘foo’ from ‘foo.c’ could be handled by
compiling and linking with separate chained rules, using ‘foo .o’ as an intermediate file. But
what actually happens is that a special rule for this case does the compilation and linking
with a single cc command. The optimized rule is used in preference to the step-by-step
chain because it comes earlier in the ordering of rules.

10.5 Defining and Redefining Pattern Rules

You define an implicit rule by writing a pattern rule. A pattern rule looks like an ordinary
rule, except that its target contains the character ‘%4’ (exactly one of them). The target is
considered a pattern for matching file names; the ‘4’ can match any nonempty substring,
while other characters match only themselves. The prerequisites likewise use ‘%’ to show
how their names relate to the target name.

Thus, a pattern rule ‘%.0 : %.c’ says how to make any file ‘stem.o’ from another file
‘stem.c’.

Note that expansion using ‘%’ in pattern rules occurs after any variable or function ex-
pansions, which take place when the makefile is read. See Chapter 6 [How to Use Variables],
page 49, and Chapter 8 [Functions for Transforming Text|, page 65.

Chapter 10: Using Implicit Rules

10.5.1 Introduction to Pattern Rules

A pattern rule contains the character ‘)’ (exactly one of them) in the target; otherwise,
it looks exactly like an ordinary rule. The target is a pattern for matching file names; the
‘%’ matches any nonempty substring, while other characters match only themselves.

For example, ‘/%.c’ as a pattern matches any file name that ends in ‘.c’. ‘s.%.c’ as

a pattern matches any file name that starts with ‘s.’, ends in ‘.¢’ and is at least five
characters long. (There must be at least one character to match the ‘%4’.) The substring
that the ‘)4’ matches is called the stem.

‘%’ in a prerequisite of a pattern rule stands for the same stem that was matched by the
‘%’ in the target. In order for the pattern rule to apply, its target pattern must match the
file name under consideration, and its prerequisite patterns must name files that exist or
can be made. These files become prerequisites of the target.

Thus, a rule of the form
%.0 : %.c ; command...

specifies how to make a file ‘n.o’, with another file ‘n.c’ as its prerequisite, provided that
‘n.c’ exists or can be made.

There may also be prerequisites that do not use ‘%’; such a prerequisite attaches to every
file made by this pattern rule. These unvarying prerequisites are useful occasionally.

A pattern rule need not have any prerequisites that contain ‘%4’, or in fact any prerequi-
sites at all. Such a rule is effectively a general wildcard. It provides a way to make any file
that matches the target pattern. See Section 10.6 [Last Resort], page 102.

Pattern rules may have more than one target. Unlike normal rules, this does not act
as many different rules with the same prerequisites and commands. If a pattern rule has
multiple targets, make knows that the rule’s commands are responsible for making all of the
targets. The commands are executed only once to make all the targets. When searching for a
pattern rule to match a target, the target patterns of a rule other than the one that matches
the target in need of a rule are incidental: make worries only about giving commands and
prerequisites to the file presently in question. However, when this file’s commands are run,
the other targets are marked as having been updated themselves.

The order in which pattern rules appear in the makefile is important since this is the
order in which they are considered. Of equally applicable rules, only the first one found is
used. The rules you write take precedence over those that are built in. Note however, that
a rule whose prerequisites actually exist or are mentioned always takes priority over a rule
with prerequisites that must be made by chaining other implicit rules.

10.5.2 Pattern Rule Examples

Here are some examples of pattern rules actually predefined in make. First, the rule that
compiles ‘. ¢’ files into ‘.o’ files:

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

defines a rule that can make any file ‘x.0’ from ‘x.c’. The command uses the automatic
variables ‘$@’ and ‘$<’ to substitute the names of the target file and the source file in each
case where the rule applies (see Section 10.5.3 [Automatic Variables], page 98).

GNU make

Here is a second built-in rule:
% :: RCS/%,v
$(C0) $(COFLAGS) $<
defines a rule that can make any file ‘x’ whatsoever from a corresponding file ‘x,v’ in the
subdirectory ‘RCS’. Since the target is ‘%4’, this rule will apply to any file whatever, provided
the appropriate prerequisite file exists. The double colon makes the rule terminal, which
means that its prerequisite may not be an intermediate file (see Section 10.5.5 [Match-
Anything Pattern Rules|, page 101).
This pattern rule has two targets:
%.tab.c %.tab.h: %.y
bison -d $<
This tells make that the command ‘bison -d x.y’ will make both ‘x.tab.c’ and ‘x.tab.h’.
If the file ‘foo’ depends on the files ‘parse.tab.o’ and ‘scan.o’ and the file ‘scan.o’
depends on the file ‘parse.tab.h’; when ‘parse.y’ is changed, the command ‘bison -d
parse.y’ will be executed only once, and the prerequisites of both ‘parse.tab.o’ and
‘scan.o’ will be satisfied. (Presumably the file ‘parse.tab.o’ will be recompiled from
‘parse.tab.c’ and the file ‘scan.o’ from ‘scan.c’, while ‘foo’ is linked from ‘parse.tab.o’,
‘scan.o’, and its other prerequisites, and it will execute happily ever after.)

10.5.3 Automatic Variables

Suppose you are writing a pattern rule to compile a ‘.¢’ file into a ‘.o’ file: how do

you write the ‘cc’ command so that it operates on the right source file name? You cannot
write the name in the command, because the name is different each time the implicit rule
is applied.

What you do is use a special feature of make, the automatic variables. These variables
have values computed afresh for each rule that is executed, based on the target and prereqg-
uisites of the rule. In this example, you would use ‘$@’ for the object file name and ‘$<’ for
the source file name.

Here is a table of automatic variables:

$@ The file name of the target of the rule. If the target is an archive member, then
‘$@’ is the name of the archive file. In a pattern rule that has multiple targets
(see Section 10.5.1 [Introduction to Pattern Rules], page 97), ‘$@’ is the name
of whichever target caused the rule’s commands to be run.

$% The target member name, when the target is an archive member. See Chap-
ter 11 [Archives|, page 107. For example, if the target is ‘foo.a(bar.o)’ then
‘$%’ is ‘bar.o’ and ‘$@’ is ‘foo.a’. ‘$%’ is empty when the target is not an
archive member.

$< The name of the first prerequisite. If the target got its commands from an
implicit rule, this will be the first prerequisite added by the implicit rule (see
Chapter 10 [Implicit Rules], page 89).

$7 The names of all the prerequisites that are newer than the target, with spaces
between them. For prerequisites which are archive members, only the member
named is used (see Chapter 11 [Archives], page 107).

Chapter 10: Using Implicit Rules

$" The names of all the prerequisites, with spaces between them. For prerequisites
which are archive members, only the member named is used (see Chapter 11
[Archives], page 107). A target has only one prerequisite on each other file it
depends on, no matter how many times each file is listed as a prerequisite. So
if you list a prerequisite more than once for a target, the value of $~ contains
just one copy of the name.

$+ This is like ‘$~’, but prerequisites listed more than once are duplicated in the
order they were listed in the makefile. This is primarily useful for use in linking
commands where it is meaningful to repeat library file names in a particular
order.

$x The stem with which an implicit rule matches (see Section 10.5.4 [How Patterns
Match], page 100). If the target is ‘dir/a.foo.b’ and the target pattern is
‘a.’%.b’ then the stem is ‘dir/foo’. The stem is useful for constructing names
of related files.

In a static pattern rule, the stem is part of the file name that matched the ‘%’
in the target pattern.

In an explicit rule, there is no stem; so ‘$*’ cannot be determined in that way.
Instead, if the target name ends with a recognized suffix (see Section 10.7 [Old-
Fashioned Suffix Rules|, page 103), ‘¢*’ is set to the target name minus the
suffix. For example, if the target name is ‘foo.c’, then ‘$*’ is set to ‘foo’, since
‘.c¢’ is a suffix. GNU make does this bizarre thing only for compatibility with
other implementations of make. You should generally avoid using ‘$*’ except in
implicit rules or static pattern rules.

If the target name in an explicit rule does not end with a recognized suffix, ‘$*’
is set to the empty string for that rule.

‘$7’ is useful even in explicit rules when you wish to operate on only the prerequisites that
have changed. For example, suppose that an archive named ‘1ib’ is supposed to contain
copies of several object files. This rule copies just the changed object files into the archive:

lib: foo.0 bar.o lose.o win.o
ar r 1lib $7

Of the variables listed above, four have values that are single file names, and three have
values that are lists of file names. These seven have variants that get just the file’s directory
name or just the file name within the directory. The variant variables’ names are formed
by appending ‘D’ or ‘F’, respectively. These variants are semi-obsolete in GNU make since
the functions dir and notdir can be used to get a similar effect (see Section 8.3 [Functions
for File Names]|, page 69). Note, however, that the ‘D’ variants all omit the trailing slash
which always appears in the output of the dir function. Here is a table of the variants:

‘$(eD)’ The directory part of the file name of the target, with the trailing slash removed.
If the value of ‘$@’ is ‘dir/foo.0’ then ‘$(@D)’ is ‘dir’. This value is ‘.’ if ‘$@’
does not contain a slash.

‘$ (eF)’ The file-within-directory part of the file name of the target. If the value of ‘$@’
is ‘dir/foo.0’ then ‘$ (@F)’ is ‘foo.0’. ‘$(QF)’ is equivalent to ‘$ (notdir $@)’.

100 GNU make

‘$(*D)’
‘$ (xF)’ The directory part and the file-within-directory part of the stem; ‘dir’ and
‘foo’ in this example.

‘$(%D)’

‘$(%F)’ The directory part and the file-within-directory part of the target archive mem-
ber name. This makes sense only for archive member targets of the form
‘archive (member)’ and is useful only when member may contain a directory
name. (See Section 11.1 [Archive Members as Targets|, page 107.)

‘$(<D)’

‘$(<F)’ The directory part and the file-within-directory part of the first prerequisite.

‘$(°D)’

‘$C°F)’ Lists of the directory parts and the file-within-directory parts of all prerequi-
sites.

‘$(+D)’

‘$(+F)’ Lists of the directory parts and the file-within-directory parts of all prerequi-
sites, including multiple instances of duplicated prerequisites.

‘$(7D)’
‘$(7F)’ Lists of the directory parts and the file-within-directory parts of all prerequisites
that are newer than the target.

Note that we use a special stylistic convention when we talk about these automatic
variables; we write “the value of ‘$<”, rather than “the variable <” as we would write
for ordinary variables such as objects and CFLAGS. We think this convention looks more
natural in this special case. Please do not assume it has a deep significance; ‘$<’ refers to
the variable named < just as ‘¢ (CFLAGS)’ refers to the variable named CFLAGS. You could
just as well use ‘$(<)’ in place of ‘$<’.

GNU make provides support for the SysV make feature that allows special variable refer-
ences $$0, $$(@D), and $$(@F) (note the required double-"$"!) to appear with the prereq-
uisites list (normal automatic variables are available only within a command script). When
appearing in a prerequisites list, these variables are expanded to the name of the target,
the directory component of the target, and the file component of the target, respectively.

Note that these variables are available only within explicit and static pattern (see Sec-
tion 4.11 [Static Pattern Rules], page 31) rules; they have no special significance within
implicit (suffix or pattern) rules. Also note that while SysV make actually expands its en-
tire prerequisite list twice, GNU make does not behave this way: instead it simply expands
these special variables without re-expanding any other part of the prerequisites list.

This somewhat bizarre feature is included only to provide some compatibility with SysV
makefiles. In a native GNU make file there are other ways to accomplish the same results.
This feature is disabled if the special pseudo target .POSIX is defined.

10.5.4 How Patterns Match

A target pattern is composed of a ‘%’ between a prefix and a suffix, either or both of
which may be empty. The pattern matches a file name only if the file name starts with the
prefix and ends with the suffix, without overlap. The text between the prefix and the suffix

Chapter 10: Using Implicit Rules 101

is called the stem. Thus, when the pattern ‘% .o’ matches the file name ‘test.o’, the stem is
‘test’. The pattern rule prerequisites are turned into actual file names by substituting the
stem for the character ‘%’. Thus, if in the same example one of the prerequisites is written
as ‘%.c’, it expands to ‘test.c’.

When the target pattern does not contain a slash (and it usually does not), directory
names in the file names are removed from the file name before it is compared with the target
prefix and suffix. After the comparison of the file name to the target pattern, the directory
names, along with the slash that ends them, are added on to the prerequisite file names
generated from the pattern rule’s prerequisite patterns and the file name. The directories
are ignored only for the purpose of finding an implicit rule to use, not in the application of
that rule. Thus, ‘e%t’ matches the file name ‘src/eat’, with ‘src/a’ as the stem. When
prerequisites are turned into file names, the directories from the stem are added at the front,
while the rest of the stem is substituted for the ‘%4’. The stem ‘src/a’ with a prerequisite
pattern ‘cir’ gives the file name ‘src/car’.

10.5.5 Match-Anything Pattern Rules

When a pattern rule’s target is just ‘%’, it matches any file name whatever. We call these
rules match-anything rules. They are very useful, but it can take a lot of time for make to
think about them, because it must consider every such rule for each file name listed either
as a target or as a prerequisite.

Suppose the makefile mentions ‘foo.c’. For this target, make would have to consider
making it by linking an object file ‘foo.c.0’, or by C compilation-and-linking in one step
from ‘foo.c.c’, or by Pascal compilation-and-linking from ‘foo.c.p’, and many other pos-
sibilities.

We know these possibilities are ridiculous since ‘foo.c’ is a C source file, not an exe-
cutable. If make did consider these possibilities, it would ultimately reject them, because
files such as ‘foo.c.o’ and ‘foo.c.p’ would not exist. But these possibilities are so numer-
ous that make would run very slowly if it had to consider them.

To gain speed, we have put various constraints on the way make considers match-anything
rules. There are two different constraints that can be applied, and each time you define a
match-anything rule you must choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by defining it with a double
colon. When a rule is terminal, it does not apply unless its prerequisites actually exist.
Prerequisites that could be made with other implicit rules are not good enough. In other
words, no further chaining is allowed beyond a terminal rule.

For example, the built-in implicit rules for extracting sources from RCS and SCCS files
are terminal; as a result, if the file ‘foo.c,v’ does not exist, make will not even consider
trying to make it as an intermediate file from ‘foo.c,v.0’ or from ‘RCS/SCCS/s.foo.c,v .
RCS and SCCS files are generally ultimate source files, which should not be remade from
any other files; therefore, make can save time by not looking for ways to remake them.

If you do not mark the match-anything rule as terminal, then it is nonterminal. A
nonterminal match-anything rule cannot apply to a file name that indicates a specific type
of data. A file name indicates a specific type of data if some non-match-anything implicit
rule target matches it.

102 GNU make

For example, the file name ‘foo.c’ matches the target for the pattern rule ‘%.c : %.y’
(the rule to run Yacc). Regardless of whether this rule is actually applicable (which hap-
pens only if there is a file ‘foo.y’), the fact that its target matches is enough to prevent
consideration of any nonterminal match-anything rules for the file ‘foo.c’. Thus, make will
not even consider trying to make ‘foo.c’ as an executable file from ‘foo.c.0o’, ‘foo.c.c’,
‘foo.c.p’, etc.

The motivation for this constraint is that nonterminal match-anything rules are used for
making files containing specific types of data (such as executable files) and a file name with
a recognized suffix indicates some other specific type of data (such as a C source file).

Special built-in dummy pattern rules are provided solely to recognize certain file names
so that nonterminal match-anything rules will not be considered. These dummy rules have
no prerequisites and no commands, and they are ignored for all other purposes. For example,
the built-in implicit rule

%h.p :
exists to make sure that Pascal source files such as ‘foo.p’ match a specific target pattern
and thereby prevent time from being wasted looking for ‘foo.p.o’ or ‘foo.p.c’.

Dummy pattern rules such as the one for ‘/,.p’ are made for every suffix listed as valid
for use in suffix rules (see Section 10.7 [Old-Fashioned Suffix Rules], page 103).

10.5.6 Canceling Implicit Rules

You can override a built-in implicit rule (or one you have defined yourself) by defining
a new pattern rule with the same target and prerequisites, but different commands. When
the new rule is defined, the built-in one is replaced. The new rule’s position in the sequence
of implicit rules is determined by where you write the new rule.

You can cancel a built-in implicit rule by defining a pattern rule with the same target
and prerequisites, but no commands. For example, the following would cancel the rule that
runs the assembler:

%.o : %h.s

10.6 Defining Last-Resort Default Rules

You can define a last-resort implicit rule by writing a terminal match-anything pattern
rule with no prerequisites (see Section 10.5.5 [Match-Anything Rules|, page 101). This is
just like any other pattern rule; the only thing special about it is that it will match any
target. So such a rule’s commands are used for all targets and prerequisites that have no
commands of their own and for which no other implicit rule applies.

For example, when testing a makefile, you might not care if the source files contain real
data, only that they exist. Then you might do this:

%t
touch $0@
to cause all the source files needed (as prerequisites) to be created automatically.

You can instead define commands to be used for targets for which there are no rules at
all, even ones which don’t specify commands. You do this by writing a rule for the target
.DEFAULT. Such a rule’s commands are used for all prerequisites which do not appear as

Chapter 10: Using Implicit Rules 103

targets in any explicit rule, and for which no implicit rule applies. Naturally, there is no
.DEFAULT rule unless you write one.

If you use .DEFAULT with no commands or prerequisites:
.DEFAULT:

the commands previously stored for .DEFAULT are cleared. Then make acts as if you had
never defined .DEFAULT at all.

If you do not want a target to get the commands from a match-anything pattern rule or
.DEFAULT, but you also do not want any commands to be run for the target, you can give
it empty commands (see Section 5.8 [Defining Empty Commands], page 47).

You can use a last-resort rule to override part of another makefile. See Section 3.8
[Overriding Part of Another Makefile], page 14.

10.7 Old-Fashioned Suffix Rules

Suffix rules are the old-fashioned way of defining implicit rules for make. Suffix rules
are obsolete because pattern rules are more general and clearer. They are supported in
GNU make for compatibility with old makefiles. They come in two kinds: double-suffix and
single-suffix.

A double-suffix rule is defined by a pair of suffixes: the target suffix and the source
suffix. It matches any file whose name ends with the target suffix. The corresponding
implicit prerequisite is made by replacing the target suffix with the source suffix in the file
name. A two-suffix rule whose target and source suffixes are ‘.0’ and ‘.c’ is equivalent to
the pattern rule ‘%.o0 : %.c’.

A single-suffix rule is defined by a single suffix, which is the source suffix. It matches
any file name, and the corresponding implicit prerequisite name is made by appending the
source suffix. A single-suffix rule whose source suffix is ‘. ¢’ is equivalent to the pattern rule

“% : h.c.

Suffix rule definitions are recognized by comparing each rule’s target against a defined
list of known suffixes. When make sees a rule whose target is a known suffix, this rule is
considered a single-suffix rule. When make sees a rule whose target is two known suffixes
concatenated, this rule is taken as a double-suffix rule.

For example, ‘.c’ and ‘.0’ are both on the default list of known suffixes. Therefore,
if you define a rule whose target is ‘.c.o’, make takes it to be a double-suffix rule with
source suffix ‘. c’ and target suffix ‘.o’. Here is the old-fashioned way to define the rule for
compiling a C source file:

.c.o:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

Suffix rules cannot have any prerequisites of their own. If they have any, they are treated
as normal files with funny names, not as suffix rules. Thus, the rule:

.c.o: foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

tells how to make the file ‘. c.o’ from the prerequisite file ‘foo.h’, and is not at all like the
pattern rule:

104 GNU make

%.0: %.c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<
which tells how to make ‘.0’ files from ‘.c’ files, and makes all ‘.0’ files using this pattern
rule also depend on ‘foo.h’.

Suffix rules with no commands are also meaningless. They do not remove previous
rules as do pattern rules with no commands (see Section 10.5.6 [Canceling Implicit Rules],
page 102). They simply enter the suffix or pair of suffixes concatenated as a target in the
data base.

The known suffixes are simply the names of the prerequisites of the special target
.SUFFIXES. You can add your own suffixes by writing a rule for .SUFFIXES that adds
more prerequisites, as in:

.SUFFIXES: .hack .win
which adds ‘.hack’ and ‘.win’ to the end of the list of suffixes.

If you wish to eliminate the default known suffixes instead of just adding to them, write
a rule for .SUFFIXES with no prerequisites. By special dispensation, this eliminates all
existing prerequisites of .SUFFIXES. You can then write another rule to add the suffixes
you want. For example,
.SUFFIXES: # Delete the default suffixes
.SUFFIXES: .c .o .h # Define our suffix list
The ‘-1’ or ‘--no-builtin-rules’ flag causes the default list of suffixes to be empty.
The variable SUFFIXES is defined to the default list of suffixes before make reads any
makefiles. You can change the list of suffixes with a rule for the special target .SUFFIXES,
but that does not alter this variable.

10.8 Implicit Rule Search Algorithm

Here is the procedure make uses for searching for an implicit rule for a target t. This
procedure is followed for each double-colon rule with no commands, for each target of
ordinary rules none of which have commands, and for each prerequisite that is not the
target of any rule. It is also followed recursively for prerequisites that come from implicit
rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix rules are converted to
equivalent pattern rules once the makefiles have been read in.

For an archive member target of the form ‘archive (member)’, the following algorithm is
run twice, first using the entire target name t, and second using ‘ (member)’ as the target
t if the first run found no rule.

1. Split ¢t into a directory part, called d, and the rest, called n. For example, if t is
‘src/fo00.0’, then d is ‘sr¢/’ and n is ‘foo0.0’".

2. Make a list of all the pattern rules one of whose targets matches t or n. If the target
pattern contains a slash, it is matched against t; otherwise, against n.

3. If any rule in that list is not a match-anything rule, then remove all nonterminal
match-anything rules from the list.

4. Remove from the list all rules with no commands.

5. For each pattern rule in the list:

Chapter 10: Using Implicit Rules 105

a. Find the stem s, which is the nonempty part of t or n matched by the ‘%’ in the
target pattern.

b. Compute the prerequisite names by substituting s for ‘/’; if the target pattern
does not contain a slash, append d to the front of each prerequisite name.

c. Test whether all the prerequisites exist or ought to exist. (If a file name is men-
tioned in the makefile as a target or as an explicit prerequisite, then we say it
ought to exist.)

If all prerequisites exist or ought to exist, or there are no prerequisites, then this
rule applies.
6. If no pattern rule has been found so far, try harder. For each pattern rule in the list:

a. If the rule is terminal, ignore it and go on to the next rule.

b. Compute the prerequisite names as before.

c. Test whether all the prerequisites exist or ought to exist.

d. For each prerequisite that does not exist, follow this algorithm recursively to see
if the prerequisite can be made by an implicit rule.

e. If all prerequisites exist, ought to exist, or can be made by implicit rules, then this
rule applies.

7. If no implicit rule applies, the rule for .DEFAULT, if any, applies. In that case, give t
the same commands that .DEFAULT has. Otherwise, there are no commands for t.

Once a rule that applies has been found, for each target pattern of the rule other than
the one that matched t or n, the ‘)4’ in the pattern is replaced with s and the resultant file
name is stored until the commands to remake the target file t are executed. After these
commands are executed, each of these stored file names are entered into the data base and
marked as having been updated and having the same update status as the file t.

When the commands of a pattern rule are executed for t, the automatic variables are
set corresponding to the target and prerequisites. See Section 10.5.3 [Automatic Variables],
page 98.

106 GNU make

Chapter 11: Using make to Update Archive Files 107

11 Using make to Update Archive Files

Archive files are files containing named subfiles called members; they are maintained
with the program ar and their main use is as subroutine libraries for linking,.

11.1 Archive Members as Targets

An individual member of an archive file can be used as a target or prerequisite in make.
You specify the member named member in archive file archive as follows:

archive (member)

This construct is available only in targets and prerequisites, not in commands! Most pro-
grams that you might use in commands do not support this syntax and cannot act directly on
archive members. Only ar and other programs specifically designed to operate on archives
can do so. Therefore, valid commands to update an archive member target probably must
use ar. For example, this rule says to create a member ‘hack.o’ in archive ‘foolib’ by
copying the file ‘hack.o’:
foolib(hack.o) : hack.o
ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this way and there is an
implicit rule to do it for you. Note: The ‘c’ flag to ar is required if the archive file does not
already exist.

To specify several members in the same archive, you can write all the member names
together between the parentheses. For example:

foolib(hack.o kludge.o)
is equivalent to:
foolib(hack.o) foolib(kludge.o)

You can also use shell-style wildcards in an archive member reference. See Section 4.3
[Using Wildcard Characters in File Names|, page 18. For example, ‘foolib(*.0)’ ex-
pands to all existing members of the ‘foolib’ archive whose names end in ‘.0’; perhaps
‘foolib(hack.o) foolib(kludge.o)’ .

11.2 Implicit Rule for Archive Member Targets

Recall that a target that looks like ‘a(m)’ stands for the member named m in the archive
file a.

When make looks for an implicit rule for such a target, as a special feature it considers
implicit rules that match ‘(m)’, as well as those that match the actual target ‘a(m)’.

This causes one special rule whose target is ‘(%)’ to match. This rule updates the target
‘a(m)’ by copying the file m into the archive. For example, it will update the archive
member target ‘foo.a(bar.o)’ by copying the file ‘bar.o’ into the archive ‘foo.a’ as a
member named ‘bar.o’.

When this rule is chained with others, the result is very powerful. Thus, ‘make
"foo.a(bar.o)"’ (the quotes are needed to protect the ‘(" and ‘)’ from being interpreted
specially by the shell) in the presence of a file ‘bar.c’ is enough to cause the following
commands to be run, even without a makefile:

108 GNU make

¢cc -¢ bar.c -o bar.o
ar r foo.a bar.o
rm -f bar.o

Here make has envisioned the file ‘bar.o’ as an intermediate file. See Section 10.4 [Chains
of Implicit Rules|, page 95.

Implicit rules such as this one are written using the automatic variable ‘$%’. See Sec-
tion 10.5.3 [Automatic Variables], page 98.

An archive member name in an archive cannot contain a directory name, but it may
be useful in a makefile to pretend that it does. If you write an archive member target
‘foo.a(dir/file.o)’, make will perform automatic updating with this command:

ar r foo.a dir/file.o

which has the effect of copying the file ‘dir/file.o’ into a member named ‘file.o’. In
connection with such usage, the automatic variables %D and %F may be useful.

11.2.1 Updating Archive Symbol Directories

An archive file that is used as a library usually contains a special member named
‘__.SYMDEF’ that contains a directory of the external symbol names defined by all the
other members. After you update any other members, you need to update ‘__.SYMDEF’ so
that it will summarize the other members properly. This is done by running the ranlib
program:

ranlib archivefile

Normally you would put this command in the rule for the archive file, and make all the
members of the archive file prerequisites of that rule. For example,

libfoo.a: libfoo.a(x.0) libfoo.a(y.o)
ranlib libfoo.a

The effect of this is to update archive members ‘x.0’, ‘y.0’, etc., and then update the symbol
directory member ‘__.SYMDEF’ by running ranlib. The rules for updating the members are
not shown here; most likely you can omit them and use the implicit rule which copies files
into the archive, as described in the preceding section.

This is not necessary when using the GNU ar program, which updates the ‘__.SYMDEF’
member automatically.

11.3 Dangers When Using Archives

It is important to be careful when using parallel execution (the -j switch; see Section 5.3
[Parallel Execution|, page 39) and archives. If multiple ar commands run at the same time
on the same archive file, they will not know about each other and can corrupt the file.

Possibly a future version of make will provide a mechanism to circumvent this problem
by serializing all commands that operate on the same archive file. But for the time being,
you must either write your makefiles to avoid this problem in some other way, or not use

-j.

Chapter 11: Using make to Update Archive Files 109

11.4 Suffix Rules for Archive Files

You can write a special kind of suffix rule for dealing with archive files. See Section 10.7
[Suffix Rules], page 103, for a full explanation of suffix rules. Archive suffix rules are
obsolete in GNU make, because pattern rules for archives are a more general mechanism
(see Section 11.2 [Archive Update], page 107). But they are retained for compatibility with
other makes.

To write a suffix rule for archives, you simply write a suffix rule using the target suffix
‘.a’ (the usual suffix for archive files). For example, here is the old-fashioned suffix rule to
update a library archive from C source files:

.c.a:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.0
$(AR) r $0 $x.0
$(RM) $x*.0
This works just as if you had written the pattern rule:
(h.o): %h.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.0
$(AR) r $@ $x*.0
$(RM) $*.0
In fact, this is just what make does when it sees a suffix rule with ‘.a’ as the target
suffix. Any double-suffix rule ‘.x.a’ is converted to a pattern rule with the target pattern
‘(%.0)’ and a prerequisite pattern of ‘%.x’ .

Since you might want to use ‘.a’ as the suffix for some other kind of file, make also

converts archive suffix rules to pattern rules in the normal way (see Section 10.7 [Suffix
Rules], page 103). Thus a double-suffix rule ‘.x.a’ produces two pattern rules: ‘(%.0):
%.x" and ‘%.a: %.x".

110 GNU make

Chapter 12: Features of GNU make 111

12 Features of GNU make

Here is a summary of the features of GNU make, for comparison with and credit to other

versions of make. We consider the features of make in 4.2 BSD systems as a baseline. If
you are concerned with writing portable makefiles, you should not use the features of make
listed here, nor the ones in Chapter 13 [Missing], page 115.

Many features come from the version of make in System V.

The VPATH variable and its special meaning. See Section 4.4 [Searching Directories for
Prerequisites], page 20. This feature exists in System V make, but is undocumented.
It is documented in 4.3 BSD make (which says it mimics System V’s VPATH feature).

Included makefiles. See Section 3.3 [Including Other Makefiles], page 10. Allowing
multiple files to be included with a single directive is a GNU extension.

Variables are read from and communicated via the environment. See Section 6.9 [Vari-
ables from the Environment], page 59.

Options passed through the variable MAKEFLAGS to recursive invocations of make. See
Section 5.6.3 [Communicating Options to a Sub-make], page 44.

The automatic variable $% is set to the member name in an archive reference. See
Section 10.5.3 [Automatic Variables], page 98.

The automatic variables $@, $*, $<, $%, and $? have corresponding forms like $(QF)
and $(@D). We have generalized this to $~ as an obvious extension. See Section 10.5.3
[Automatic Variables], page 98.

Substitution variable references. See Section 6.1 [Basics of Variable References],
page 49.

The command-line options ‘-b’ and ‘-m’, accepted and ignored. In System V make,
these options actually do something.

Execution of recursive commands to run make via the variable MAKE even if ‘-n’, ‘-q’

or ‘-t’ is specified. See Section 5.6 [Recursive Use of make|, page 41.

Support for suffix ‘.a’ in suffix rules. See Section 11.4 [Archive Suffix Rules], page 109.
This feature is obsolete in GNU make, because the general feature of rule chaining (see
Section 10.4 [Chains of Implicit Rules], page 95) allows one pattern rule for installing
members in an archive (see Section 11.2 [Archive Update], page 107) to be sufficient.

The arrangement of lines and backslash-newline combinations in commands is retained
when the commands are printed, so they appear as they do in the makefile, except for
the stripping of initial whitespace.

The following features were inspired by various other versions of make. In some cases it

is unclear exactly which versions inspired which others.

Pattern rules using ‘%4’. This has been implemented in several versions of make. We're
not sure who invented it first, but it’s been spread around a bit. See Section 10.5
[Defining and Redefining Pattern Rules], page 96.

Rule chaining and implicit intermediate files. This was implemented by Stu Feldman
in his version of make for AT&T Eighth Edition Research Unix, and later by Andrew
Hume of AT&T Bell Labs in his mk program (where he terms it “transitive closure”).
We do not really know if we got this from either of them or thought it up ourselves at
the same time. See Section 10.4 [Chains of Implicit Rules], page 95.

112 GNU make

e The automatic variable $~ containing a list of all prerequisites of the current target.
We did not invent this, but we have no idea who did. See Section 10.5.3 [Automatic
Variables], page 98. The automatic variable $+ is a simple extension of $~.

e The “what if” flag (‘-W in GNU make) was (as far as we know) invented by Andrew
Hume in mk. See Section 9.3 [Instead of Executing the Commands|, page 81.

e The concept of doing several things at once (parallelism) exists in many incarnations
of make and similar programs, though not in the System V or BSD implementations.
See Section 5.2 [Command Execution], page 37.

e Modified variable references using pattern substitution come from SunOS 4. See Sec-
tion 6.1 [Basics of Variable References|, page 49. This functionality was provided in
GNU make by the patsubst function before the alternate syntax was implemented for
compatibility with SunOS 4. It is not altogether clear who inspired whom, since GNU
make had patsubst before SunOS 4 was released.

e The special significance of ‘+’ characters preceding command lines (see Section 9.3
[Instead of Executing the Commands]|, page 81) is mandated by IEEE Standard 1003.2-
1992 (POSIX.2).

e The ‘+=’" syntax to append to the value of a variable comes from SunOS 4 make. See
Section 6.6 [Appending More Text to Variables], page 56.

e The syntax ‘archive (meml mem?2...)’ to list multiple members in a single archive file
comes from SunOS 4 make. See Section 11.1 [Archive Members], page 107.

e The -include directive to include makefiles with no error for a nonexistent file comes
from SunOS 4 make. (But note that SunOS 4 make does not allow multiple makefiles
to be specified in one -include directive.) The same feature appears with the name
sinclude in SGI make and perhaps others.

The remaining features are inventions new in GNU make:

e Use the ‘~v’ or ‘--version’ option to print version and copyright information.

e Use the ‘-h’ or ‘--help’ option to summarize the options to make.

e Simply-expanded variables. See Section 6.2 [The Two Flavors of Variables], page 50.

e Pass command-line variable assignments automatically through the variable MAKE to
recursive make invocations. See Section 5.6 [Recursive Use of make], page 41.

e Use the ‘~C’ or ‘~-directory’ command option to change directory. See Section 9.7
[Summary of Options], page 84.

e Make verbatim variable definitions with define. See Section 6.8 [Defining Variables
Verbatim], page 58.

e Declare phony targets with the special target .PHONY.
Andrew Hume of AT&T Bell Labs implemented a similar feature with a different syntax

in his mk program. This seems to be a case of parallel discovery. See Section 4.5 [Phony
Targets], page 24.

e Manipulate text by calling functions. See Chapter 8 [Functions for Transforming Text],
page 65.

e Use the ‘-0’ or ‘-—0ld-file’ option to pretend a file’s modification-time is old. See
Section 9.4 [Avoiding Recompilation of Some Files|, page 82.

Chapter 12: Features of GNU make 113

e Conditional execution.

This feature has been implemented numerous times in various versions of make; it seems
a natural extension derived from the features of the C preprocessor and similar macro
languages and is not a revolutionary concept. See Chapter 7 [Conditional Parts of
Makefiles], page 61.

e Specify a search path for included makefiles. See Section 3.3 [Including Other Make-
files], page 10.

e Specify extra makefiles to read with an environment variable. See Section 3.4 [The
Variable MAKEFILES], page 11.

e Strip leading sequences of ‘. /’ from file names, so that ‘. /file’ and ‘file’ are considered
to be the same file.

e Use a special search method for library prerequisites written in the form ‘-1name’. See
Section 4.4.6 [Directory Search for Link Libraries], page 24.

e Allow suffixes for suffix rules (see Section 10.7 [Old-Fashioned Suffix Rules], page 103)
to contain any characters. In other versions of make, they must begin with ‘.’ and not
contain any ¢/’ characters.

e Keep track of the current level of make recursion using the variable MAKELEVEL. See
Section 5.6 [Recursive Use of make|, page 41.

e Provide any goals given on the command line in the variable MAKECMDGOALS. See
Section 9.2 [Arguments to Specify the Goals], page 79.

e Specify static pattern rules. See Section 4.11 [Static Pattern Rules|, page 31.

e Provide selective vpath search. See Section 4.4 [Searching Directories for Prerequisites],
page 20.

e Provide computed variable references. See Section 6.1 [Basics of Variable References],
page 49.

e Update makefiles. See Section 3.7 [How Makefiles Are Remade], page 12. System V
make has a very, very limited form of this functionality in that it will check out SCCS
files for makefiles.

e Various new built-in implicit rules. See Section 10.2 [Catalogue of Implicit Rules],
page 90.

e The built-in variable ‘MAKE_VERSION’ gives the version number of make.

114 GNU make

Chapter 13: Incompatibilities and Missing Features 115

13 Incompatibilities and Missing Features

The make programs in various other systems support a few features that are not imple-
mented in GNU make. The POSIX.2 standard (IEEE Standard 1003.2-1992) which specifies
make does not require any of these features.

e A target of the form ‘file((entry))’ stands for a member of archive file file. The
member is chosen, not by name, but by being an object file which defines the linker
symbol entry.

This feature was not put into GNU make because of the nonmodularity of putting knowl-
edge into make of the internal format of archive file symbol tables. See Section 11.2.1
[Updating Archive Symbol Directories|, page 108.

e Suffixes (used in suffix rules) that end with the character ‘=’ have a special meaning to
System V make; they refer to the SCCS file that corresponds to the file one would get
without the ‘~’. For example, the suffix rule ‘.c~ .0’ would make the file ‘n.o’ from the

SCCS file ‘s.n.c’. For complete coverage, a whole series of such suffix rules is required.
See Section 10.7 [Old-Fashioned Suffix Rules|, page 103.

In GNU make, this entire series of cases is handled by two pattern rules for extraction
from SCCS, in combination with the general feature of rule chaining. See Section 10.4
[Chains of Implicit Rules], page 95.

e In System V and 4.3 BSD make, files found by VPATH search (see Section 4.4 [Search-
ing Directories for Prerequisites], page 20) have their names changed inside command
strings. We feel it is much cleaner to always use automatic variables and thus make
this feature obsolete.

e In some Unix makes, the automatic variable $* appearing in the prerequisites of a rule
has the amazingly strange “feature” of expanding to the full name of the target of that
rule. We cannot imagine what went on in the minds of Unix make developers to do
this; it is utterly inconsistent with the normal definition of $x*.

e Insome Unix makes, implicit rule search (see Chapter 10 [Using Implicit Rules], page 89)
is apparently done for all targets, not just those without commands. This means you
can do:

foo.o:
cc -c foo.c
and Unix make will intuit that ‘foo.o’ depends on ‘foo.c’.

We feel that such usage is broken. The prerequisite properties of make are well-defined
(for GNU make, at least), and doing such a thing simply does not fit the model.

e GNU make does not include any built-in implicit rules for compiling or preprocessing
EFL programs. If we hear of anyone who is using EFL, we will gladly add them.

e It appears that in SVR4 make, a suffix rule can be specified with no commands, and it
is treated as if it had empty commands (see Section 5.8 [Empty Commands], page 47).
For example:

.c.a:
will override the built-in ‘.c.a’ suffix rule.
We feel that it is cleaner for a rule without commands to always simply add to the

prerequisite list for the target. The above example can be easily rewritten to get the
desired behavior in GNU make:

116 GNU make

.c.a: ;

e Some versions of make invoke the shell with the ‘-e’ flag, except under ‘-k’ (see Sec-
tion 9.6 [Testing the Compilation of a Program], page 83). The ‘e’ flag tells the shell
to exit as soon as any program it runs returns a nonzero status. We feel it is cleaner
to write each shell command line to stand on its own and not require this special
treatment.

Chapter 14: Makefile Conventions 117

14 Makefile Conventions

This chapter describes conventions for writing the Makefiles for GNU programs. Using
Automake will help you write a Makefile that follows these conventions.

14.1 General Conventions for Makefiles

Every Makefile should contain this line:
SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited from the environ-
ment. (This is never a problem with GNU make.)

Different make programs have incompatible suffix lists and implicit rules, and this some-
times creates confusion or misbehavior. So it is a good idea to set the suffix list explicitly
using only the suffixes you need in the particular Makefile, like this:

.SUFFIXES:
.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all suffixes which may be
subject to implicit rules in this Makefile.

Don’t assume that ‘.’ is in the path for command execution. When you need to run
programs that are a part of your package during the make, please make sure that it uses
¢./’ if the program is built as part of the make or ‘$(srcdir)/’ if the file is an unchanging
part of the source code. Without one of these prefixes, the current search path is used.

The distinction between ‘./’ (the build directory) and ‘¢ (srcdir)/’ (the source direc-
tory) is important because users can build in a separate directory using the ‘--srcdir’
option to ‘configure’. A rule of the form:

foo.1 : foo.man sedscript
sed -e sedscript foo.man > foo.l
will fail when the build directory is not the source directory, because ‘foo.man’ and
‘sedscript’ are in the source directory.

When using GNU make, relying on ‘VPATH’ to find the source file will work in the case
where there is a single dependency file, since the make automatic variable ‘$<’ will represent
the source file wherever it is. (Many versions of make set ‘$<’ only in implicit rules.) A
Makefile target like

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has multiple dependencies,
using an explicit ‘§(srcdir)’ is the easiest way to make the rule work well. For example,
the target above for ‘foo.1’ is best written as:

foo.1 : foo.man sedscript
sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

118 GNU make

GNU distributions usually contain some files which are not source files—for example, Info
files, and the output from Autoconf, Automake, Bison or Flex. Since these files normally
appear in the source directory, they should always appear in the source directory, not in
the build directory. So Makefile rules to update them should put the updated files in the
source directory.

However, if a file does not appear in the distribution, then the Makefile should not put
it in the source directory, because building a program in ordinary circumstances should not
modify the source directory in any way.

Try to make the build and installation targets, at least (and all their subtargets) work
correctly with a parallel make.

14.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as configure) to run in sh,
not in csh. Don’t use any special features of ksh or bash.

The configure script and the Makefile rules for building and installation should not use
any utilities directly except these:

cat cmp cp diff echo egrep expr false grep install-info
In 1s mkdir mv pwd rm rmdir sed sleep sort tar test touch true

The compression program gzip can be used in the dist rule.

Stick to the generally supported options for these programs. For example, don’t use
‘mkdir -p’, convenient as it may be, because most systems don’t support it.

It is a good idea to avoid creating symbolic links in makefiles, since a few systems don’t
support them.

The Makefile rules for building and installation can also use compilers and related pro-
grams, but should do so via make variables so that the user can substitute alternatives.
Here are some of the programs we mean:

ar bison cc flex install 1d ldconfig lex
make makeinfo ranlib texi2dvi yacc

Use the following make variables to run those programs:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX)
$ (MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib or 1ldconfig, you should make sure nothing bad happens if the
system does not have the program in question. Arrange to ignore an error from that
command, and print a message before the command to tell the user that failure of this
command does not mean a problem. (The Autoconf ‘AC_PROG_RANLIB’ macro can help
with this.)

If you use symbolic links, you should implement a fallback for systems that don’t have
symbolic links.

Additional utilities that can be used via Make variables are:
chgrp chmod chown mknod

It is ok to use other utilities in Makefile portions (or scripts) intended only for particular
systems where you know those utilities exist.

Chapter 14: Makefile Conventions 119

14.3 Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands, options, and so on.

In particular, you should run most utility programs via variables. Thus, if you use Bison,
have a variable named BISON whose default value is set with ‘BISON = bison’, and refer to
it with $(BISON) whenever you need to use Bison.

File management utilities such as 1n, rm, mv, and so on, need not be referred to through
variables in this way, since users don’t need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply
options to the program. Append ‘FLAGS’ to the program-name variable name to get the
options variable name—for example, BISONFLAGS. (The names CFLAGS for the C compiler,
YFLAGS for yacc, and LFLAGS for lex, are exceptions to this rule, but we keep them because
they are standard.) Use CPPFLAGS in any compilation command that runs the preprocessor,
and use LDFLAGS in any compilation command that does linking as well as in any direct use
of 1d.

If there are C compiler options that must be used for proper compilation of certain files,
do not include them in CFLAGS. Users expect to be able to specify CFLAGS freely themselves.
Instead, arrange to pass the necessary options to the C compiler independently of CFLAGS,
by writing them explicitly in the compilation commands or by defining an implicit rule, like
this:

CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:
$(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in CFLAGS, because that is not required for proper compilation.
You can consider it a default that is only recommended. If the package is set up so that it
is compiled with GCC by default, then you might as well include ‘-0’ in the default value
of CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler
options, so the user can use CFLAGS to override the others.

CFLAGS should be used in every invocation of the C compiler, both those which do
compilation and those which do linking.

Every Makefile should define the variable INSTALL, which is the basic command for
installing a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAM and INSTALL_DATA.
(The default for INSTALL_PROGRAM should be $(INSTALL); the default for INSTALL_DATA
should be ${INSTALL} -m 644.) Then it should use those variables as the commands for
actual installation, for executables and nonexecutables respectively. Use these variables as
follows:

$ (INSTALL_PROGRAM) foo $(bindir)/foo
$ (INSTALL_DATA) libfoo.a $(1libdir)/libfoo.a

Optionally, you may prepend the value of DESTDIR to the target filename. Doing this
allows the installer to create a snapshot of the installation to be copied onto the real target
filesystem later. Do not set the value of DESTDIR in your Makefile, and do not include it in
any installed files. With support for DESTDIR, the above examples become:

120 GNU make

$ (INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo
$ (INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a

Always use a file name, not a directory name, as the second argument of the installation
commands. Use a separate command for each file to be installed.

14.4 Variables for Installation Directories

Installation directories should always be named by variables, so it is easy to install in a
nonstandard place. The standard names for these variables are described below. They are
based on a standard filesystem layout; variants of it are used in SVR4, 4.4BSD, GNU /Linux,
Ultrix v4, and other modern operating systems.

These two variables set the root for the installation. All the other installation directories
should be subdirectories of one of these two, and nothing should be directly installed into
these two directories.

prefix A prefix used in constructing the default values of the variables listed below.
The default value of prefix should be ‘/usr/local’. When building the com-
plete GNU system, the prefix will be empty and ‘/usr’ will be a symbolic link
to ‘/’. (If you are using Autoconf, write it as ‘Oprefix@’.)
Running ‘make install’ with a different value of prefix from the one used to
build the program should not recompile the program.

exec_prefix
A prefix used in constructing the default values of some of the variables listed
below. The default value of exec_prefix should be $(prefix). (If you are
using Autoconf, write it as ‘Gexec_prefix@’.)

Generally, $ (exec_prefix) is used for directories that contain machine-specific
files (such as executables and subroutine libraries), while $(prefix) is used
directly for other directories.

Running ‘make install’ with a different value of exec_prefix from the one
used to build the program should not recompile the program.

Executable programs are installed in one of the following directories.

bindir The directory for installing executable programs that users can run. This should
normally be ‘/usr/local/bin’, but write it as ‘$ (exec_prefix)/bin’. (If you
are using Autoconf, write it as ‘@bindir@’.)

sbindir The directory for installing executable programs that can be run from the shell,
but are only generally useful to system administrators. This should normally be
‘/usr/local/sbin’, but write it as ‘¢ (exec_prefix)/sbin’. (If you are using
Autoconf, write it as ‘@sbindir@’.)

libexecdir
The directory for installing executable programs to be run by other programs
rather than by users. This directory should normally be ‘/usr/local/libexec’,
but write it as ‘$ (exec_prefix)/libexec’. (If you are using Autoconf, write
it as ‘@libexecdir@’.)

Chapter 14: Makefile Conventions 121

Data files used by the program during its execution are divided into categories in two
ways.

e Some files are normally modified by programs; others are never normally modified
(though users may edit some of these).

e Some files are architecture-independent and can be shared by all machines at a site;
some are architecture-dependent and can be shared only by machines of the same kind
and operating system; others may never be shared between two machines.

This makes for six different possibilities. However, we want to discourage the use of
architecture-dependent files, aside from object files and libraries. It is much cleaner to
make other data files architecture-independent, and it is generally not hard.

Therefore, here are the variables Makefiles should use to specify directories:

‘datadir’ The directory for installing read-only architecture independent data files. This
should normally be ‘/usr/local/share’, but write it as ‘$(prefix)/share’.
(If you are using Autoconf, write it as ‘@datadir@’.) As a special exception,
see ‘$(infodir)’ and ‘$(includedir)’ below.

‘sysconfdir’
The directory for installing read-only data files that pertain to a single machine—
that is to say, files for configuring a host. Mailer and network configuration
files, ‘/etc/passwd’, and so forth belong here. All the files in this direc-
tory should be ordinary ASCII text files. This directory should normally be
‘/usr/local/etc’, but write it as ‘$ (prefix) /etc’. (If you are using Autoconf,
write it as ‘@sysconfdir@’.)

Do not install executables here in this directory (they probably belong in
‘$ (libexecdir)’ or ‘$(sbindir)’). Also do not install files that are modified in
the normal course of their use (programs whose purpose is to change the configu-
ration of the system excluded). Those probably belong in ‘¢ (localstatedir)’.

‘sharedstatedir’
The directory for installing architecture-independent data files which the pro-
grams modify while they run. This should normally be ‘/usr/local/com’,
but write it as ‘¢(prefix)/com’. (If you are using Autoconf, write it as
‘@sharedstatedir@’.)

‘localstatedir’
The directory for installing data files which the programs modify while they run,
and that pertain to one specific machine. Users should never need to modify
files in this directory to configure the package’s operation; put such configura-
tion information in separate files that go in ‘$(datadir)’ or ‘$(sysconfdir)’.
‘¢ (localstatedir)’ should normally be ‘/usr/local/var’, but write it as
‘$ (prefix)/var’. (If you are using Autoconf, write it as ‘@localstatedir@’.)

‘libdir’ The directory for object files and libraries of object code. Do not install
executables here, they probably ought to go in ‘$(libexecdir)’ instead.
The value of 1ibdir should normally be ‘/usr/local/lib’, but write it as
‘$ (exec_prefix)/1ib’. (If you are using Autoconf, write it as ‘01ibdir@’.)

122

‘infodir’

‘lispdir’

GNU make

The directory for installing the Info files for this package. By default, it should
be ‘/usr/local/info’, but it should be written as ‘$ (prefix)/info’. (If you
are using Autoconf, write it as ‘@infodir@’.)

The directory for installing any Emacs Lisp files in this package. By default, it
should be ‘/usr/local/share/emacs/site-1lisp’, but it should be written as
‘$ (prefix)/share/emacs/site-1lisp’.

If you are using Autoconf, write the default as ‘@1ispdir@’. In order to make
‘@lispdir@’ work, you need the following lines in your ‘configure.in’ file:
lispdir="${datadir}/emacs/site-1lisp’
AC_SUBST(lispdir)

‘4ncludedir’

The directory for installing header files to be included by user programs
with the C ‘#include’ preprocessor directive. This should normally be
‘/usr/local/include’, but write it as ‘$(prefix)/include’. (If you are
using Autoconf, write it as ‘@includedir@’.)

Most compilers other than GCC do not look for header files in directory
‘/usr/local/include’. So installing the header files this way is only useful
with GCC. Sometimes this is not a problem because some libraries are only
really intended to work with GCC. But some libraries are intended to work
with other compilers. They should install their header files in two places, one
specified by includedir and one specified by oldincludedir.

‘oldincludedir’

‘mandir’

‘manidir’

‘man2dir’

‘

The directory for installing ‘#include’ header files for use with compilers other
than GCC. This should normally be ‘/usr/include’. (If you are using Auto-
conf, you can write it as ‘@oldincludedir@’.)

The Makefile commands should check whether the value of oldincludedir is
empty. If it is, they should not try to use it; they should cancel the second
installation of the header files.

A package should not replace an existing header in this directory unless the
header came from the same package. Thus, if your Foo package provides a
header file ‘foo.h’, then it should install the header file in the oldincludedir
directory if either (1) there is no ‘foo.h’ there or (2) the ‘foo.h’ that exists
came from the Foo package.

To tell whether ‘foo.h’ came from the Foo package, put a magic string in the
file—part of a comment—and grep for that string.

Unix-style man pages are installed in one of the following:

)

The top-level directory for installing the man pages (if any) for this package. It
will normally be ‘/usr/local/man’, but you should write it as ‘$ (prefix) /man’.
(If you are using Autoconf, write it as ‘Omandir@’.)

The directory for installing section 1 man pages. Write it as ‘$ (mandir) /man1’.

The directory for installing section 2 man pages. Write it as ‘$ (mandir) /man2’

Chapter 14: Makefile Conventions 123

Don’t make the primary documentation for any GNU software be a man page.
Write a manual in Texinfo instead. Man pages are just for the sake of people
running GNU software on Unix, which is a secondary application only.

‘manext’ The file name extension for the installed man page. This should contain a
period followed by the appropriate digit; it should normally be ‘. 1".

‘manlext’ The file name extension for installed section 1 man pages.

‘man2ext’ The file name extension for installed section 2 man pages.

L) Use these names instead of ‘manext’ if the package needs to install man pages

in more than one section of the manual.
And finally, you should set the following variable:

‘srcdir’ The directory for the sources being compiled. The value of this variable is
normally inserted by the configure shell script. (If you are using Autconf, use
‘srcdir = @srcdir@’.)

For example:

Common prefix for installation directories.

NOTE: This directory must exist when you start the install.
prefix = /usr/local

exec_prefix = $(prefix)

Where to put the executable for the command ‘gcc’.

bindir = $(exec_prefix)/bin

Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec

Where to put the Info files.

infodir = $(prefix)/info

If your program installs a large number of files into one of the standard user-specified
directories, it might be useful to group them into a subdirectory particular to that program.
If you do this, you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the
variables listed above. The idea of having a uniform set of variable names for installation
directories is to enable the user to specify the exact same values for several different GNU
packages. In order for this to be useful, all the packages must be designed so that they will
work sensibly when the user does so.

14.5 Standard Targets for Users

All GNU programs should have the following targets in their Makefiles:

‘all’ Compile the entire program. This should be the default target. This target need
not rebuild any documentation files; Info files should normally be included in
the distribution, and DVI files should be made only when explicitly asked for.

By default, the Make rules should compile and link with ‘-g’, so that executable
programs have debugging symbols. Users who don’t mind being helpless can
strip the executables later if they wish.

124

‘install’

‘uninstall’

GNU make

Compile the program and copy the executables, libraries, and so on to the file
names where they should reside for actual use. If there is a simple test to verify
that a program is properly installed, this target should run that test.

Do not strip executables when installing them. Devil-may-care users can use
the install-strip target to do that.

If possible, write the install target rule so that it does not modify anything in
the directory where the program was built, provided ‘make all’ has just been
done. This is convenient for building the program under one user name and
installing it under another.

The commands should create all the directories in which files are to be installed,
if they don’t already exist. This includes the directories specified as the values
of the variables prefix and exec_prefix, as well as all subdirectories that are
needed. One way to do this is by means of an installdirs target as described
below.

Use ‘=’ before any command for installing a man page, so that make will ignore
any errors. This is in case there are systems that don’t have the Unix man page
documentation system installed.

The way to install Info files is to copy them into ‘¢ (infodir)’ with $ (INSTALL_
DATA) (see Section 14.3 [Command Variables], page 119), and then run the
install-info program if it is present. install-info is a program that edits
the Info ‘dir’ file to add or update the menu entry for the given Info file; it is
part of the Texinfo package. Here is a sample rule to install an Info file:

$ (DESTDIR) $(infodir)/foo.info: foo.info
$ (POST_INSTALL)
There may be a newer info file in . than in srcdir.
-if test -f foo.info; then d=.; \
else d=$(srcdir); fi; \
$ (INSTALL_DATA) $$d/foo.info $(DESTDIR)$Q; \
Run install-info only if it exists.
Use ‘if’ instead of just prepending ‘-’ to the
line so we notice real errors from install-info.
We use ‘$(SHELL) -c’ because some shells do not
fail gracefully when there is an unknown command.
if $(SHELL) -c ’install-info --version’ \
>/dev/null 2>&1; then \
install-info --dir-file=$(DESTDIR)$(infodir)/dir \
$ (DESTDIR) $ (infodir) /foo.info; \
else true; fi

When writing the install target, you must classify all the commands into
three categories: normal ones, pre-installation commands and post-installation
commands. See Section 14.6 [Install Command Categories|, page 127.

Delete all the installed files—the copies that the ‘install’ target creates.

This rule should not modify the directories where compilation is done, only the
directories where files are installed.

Chapter 14: Makefile Conventions 125

The uninstallation commands are divided into three categories, just like the in-
stallation commands. See Section 14.6 [Install Command Categories|, page 127.

‘install-strip’

‘clean’

Like install, but strip the executable files while installing them. In simple
cases, this target can use the install target in a simple way:
install-strip:
$ (MAKE) INSTALL_PROGRAM=’$(INSTALL_PROGRAM) -s’ \
install

But if the package installs scripts as well as real executables, the install-strip
target can’t just refer to the install target; it has to strip the executables but
not the scripts.

install-strip should not strip the executables in the build directory which are
being copied for installation. It should only strip the copies that are installed.

Normally we do not recommend stripping an executable unless you are sure the
program has no bugs. However, it can be reasonable to install a stripped exe-
cutable for actual execution while saving the unstripped executable elsewhere
in case there is a bug.

Delete all files from the current directory that are normally created by build-
ing the program. Don’t delete the files that record the configuration. Also
preserve files that could be made by building, but normally aren’t because the
distribution comes with them.

Delete ‘.dvi’ files here if they are not part of the distribution.

‘distclean’

Delete all files from the current directory that are created by configuring or
building the program. If you have unpacked the source and built the program
without creating any other files, ‘make distclean’ should leave only the files
that were in the distribution.

‘mostlyclean’

Like ‘clean’, but may refrain from deleting a few files that people normally
don’t want to recompile. For example, the ‘mostlyclean’ target for GCC does
not delete ‘libgcc.a’, because recompiling it is rarely necessary and takes a lot
of time.

‘maintainer-clean’

Delete almost everything from the current directory that can be reconstructed
with this Makefile. This typically includes everything deleted by distclean,
plus more: C source files produced by Bison, tags tables, Info files, and so on.

The reason we say “almost everything” is that running the command ‘make
maintainer-clean’ should not delete ‘configure’ even if ‘configure’ can be
remade using a rule in the Makefile. More generally, ‘make maintainer-clean’
should not delete anything that needs to exist in order to run ‘configure’ and
then begin to build the program. This is the only exception; maintainer-clean
should delete everything else that can be rebuilt.

126

‘TAGS’

‘info’

‘dvi’

‘dist’

GNU make

The ‘maintainer-clean’ target is intended to be used by a maintainer of the
package, not by ordinary users. You may need special tools to reconstruct
some of the files that ‘make maintainer—-clean’ deletes. Since these files are
normally included in the distribution, we don’t take care to make them easy to
reconstruct. If you find you need to unpack the full distribution again, don’t
blame us.

To help make users aware of this, the commands for the special maintainer-
clean target should start with these two:
@echo ’This command is intended for maintainers to use; it’
Q@echo ’deletes files that may need special tools to rebuild.’
Update a tags table for this program.

Generate any Info files needed. The best way to write the rules is as follows:

info: foo.info

foo.info: foo.texi chapl.texi chap2.texi
$ (MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile. It should run the
makeinfo program, which is part of the Texinfo distribution.

Normally a GNU distribution comes with Info files, and that means the Info
files are present in the source directory. Therefore, the Make rule for an info
file should update it in the source directory. When users build the package,
ordinarily Make will not update the Info files because they will already be up
to date.

Generate DVI files for all Texinfo documentation. For example:
dvi: foo.dvi

foo.dvi: foo.texi chapl.texi chap2.texi
$ (TEXI2DVI) $(srcdir)/foo.texi

You must define the variable TEXI2DVI in the Makefile. It should run the
program texi2dvi, which is part of the Texinfo distribution.! Alternatively,
write just the dependencies, and allow GNU make to provide the command.

Create a distribution tar file for this program. The tar file should be set up so
that the file names in the tar file start with a subdirectory name which is the
name of the package it is a distribution for. This name can include the version
number.

For example, the distribution tar file of GCC version 1.40 unpacks into a sub-
directory named ‘gcc-1.40".

The easiest way to do this is to create a subdirectory appropriately named, use
1n or cp to install the proper files in it, and then tar that subdirectory.

Compress the tar file with gzip. For example, the actual distribution file for
GCC version 1.40 is called ‘gcc-1.40.tar.gz’.

1

texi2dvi uses TEX to do the real work of formatting. TEX is not distributed with Texinfo.

Chapter 14: Makefile Conventions 127

The dist target should explicitly depend on all non-source files that are in the
distribution, to make sure they are up to date in the distribution. See section
“Making Releases” in GNU Coding Standards.

‘check’ Perform self-tests (if any). The user must build the program before running
the tests, but need not install the program; you should write the self-tests so
that they work when the program is built but not installed.

The following targets are suggested as conventional names, for programs in which they
are useful.

installcheck
Perform installation tests (if any). The user must build and install the program
before running the tests. You should not assume that ‘$(bindir)’ is in the
search path.

installdirs
It’s useful to add a target named ‘installdirs’ to create the directories
where files are installed, and their parent directories. There is a script called
‘mkinstalldirs’ which is convenient for this; you can find it in the Texinfo
package. You can use a rule like this:
Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs
$(srcdir) /mkinstalldirs $(bindir) $(datadir) \
$(libdir) $(infodir) \
$(mandir)
or, if you wish to support DESTDIR,
Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs
$(srcdir) /mkinstalldirs \
$(DESTDIR) $(bindir) $(DESTDIR)$(datadir) \
$(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \
$ (DESTDIR) $ (mandir)

This rule should not modify the directories where compilation is done. It should
do nothing but create installation directories.

14.6 Install Command Categories

When writing the install target, you must classify all the commands into three cate-
gories: normal ones, pre-installation commands and post-installation commands.

Normal commands move files into their proper places, and set their modes. They may
not alter any files except the ones that come entirely from the package they belong to.

Pre-installation and post-installation commands may alter other files; in particular, they
can edit global configuration files or data bases.

Pre-installation commands are typically executed before the normal commands, and
post-installation commands are typically run after the normal commands.

128 GNU make

The most common use for a post-installation command is to run install-info. This
cannot be done with a normal command, since it alters a file (the Info directory) which
does not come entirely and solely from the package being installed. It is a post-installation
command because it needs to be done after the normal command which installs the package’s
Info files.

Most programs don’t need any pre-installation commands, but we have the feature just
in case it is needed.

To classify the commands in the install rule into these three categories, insert category
lines among them. A category line specifies the category for the commands that follow.

A category line consists of a tab and a reference to a special Make variable, plus an
optional comment at the end. There are three variables you can use, one for each category;
the variable name specifies the category. Category lines are no-ops in ordinary execution
because these three Make variables are normally undefined (and you should not define them
in the makefile).

Here are the three possible category lines, each with a comment that explains what it
means:
$ (PRE_INSTALL) # Pre-install commands follow.
$ (POST_INSTALL) # Post-install commands follow.
$ (NORMAL_INSTALL) # Normal commands follow.

If you don’t use a category line at the beginning of the install rule, all the commands
are classified as normal until the first category line. If you don’t use any category lines, all
the commands are classified as normal.

These are the category lines for uninstall:

$ (PRE_UNINSTALL) # Pre-uninstall commands follow.

$ (POST_UNINSTALL) # Post-uninstall commands follow.
$ (NORMAL_UNINSTALL) # Normal commands follow.

Typically, a pre-uninstall command would be used for deleting entries from the Info
directory.

If the install or uninstall target has any dependencies which act as subroutines of
installation, then you should start each dependency’s commands with a category line, and
start the main target’s commands with a category line also. This way, you can ensure
that each command is placed in the right category regardless of which of the dependencies
actually run.

Pre-installation and post-installation commands should not run any programs except for
these:
[basename bash cat chgrp chmod chown cmp cp dd diff echo
egrep expand expr false fgrep find getopt grep gunzip gzip
hostname install install-info kill ldconfig 1n 1s md5sum
mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee
test touch true uname xargs yes

The reason for distinguishing the commands in this way is for the sake of making binary
packages. Typically a binary package contains all the executables and other files that need
to be installed, and has its own method of installing them—so it does not need to run the
normal installation commands. But installing the binary package does need to execute the
pre-installation and post-installation commands.

Chapter 14: Makefile Conventions 129

Programs to build binary packages work by extracting the pre-installation and post-
installation commands. Here is one way of extracting the pre-installation commands:
make -n install -o all \
PRE_INSTALL=pre-install \
POST_INSTALL=post-install \
NORMAL_INSTALL=normal-install \
| gawk -f pre-install.awk

where the file ‘pre-install.awk’ could contain this:
$0 ~ /°\t[\tl*(normal_install|post_install)[\t]*$/ {on = 0}
on {print $0}
$0 ~ /°\t[\tl*pre_install[\t]*$/ {on = 1}
The resulting file of pre-installation commands is executed as a shell script as part of
installing the binary package.

130 GNU make

Appendix A: Quick Reference 131

Appendix A Quick Reference

This appendix summarizes the directives, text manipulation functions, and special vari-
ables which GNU make understands. See Section 4.8 [Special Targets|, page 27, Section 10.2
[Catalogue of Implicit Rules], page 90, and Section 9.7 [Summary of Options], page 84, for
other summaries.

Here is a summary of the directives GNU make recognizes:

define variable
endef

Define a multi-line, recursively-expanded variable.
See Section 5.7 [Sequences], page 46.

ifdef variable
ifndef variable
ifeq (a,b)
ifeq llall Ilbll
ifeq ’a’ ’b’
ifneq (a,b)

lfneq Ilall Ilbll
ifneq ’a’ ’b’
else
endif

Conditionally evaluate part of the makefile.
See Chapter 7 [Conditionals], page 61.

include file
-include file
sinclude file
Include another makefile.
See Section 3.3 [Including Other Makefiles], page 10.

override variable = value
override variable := value
override variable += value
override variable 7= value
override define variable

endef
Define a variable, overriding any previous definition, even one from the com-
mand line.
See Section 6.7 [The override Directive], page 57.

export

Tell make to export all variables to child processes by default.
See Section 5.6.2 [Communicating Variables to a Sub-make], page 42.

132 GNU make

export variable

export variable = value

export variable := value

export variable += value

export variable 7= value

unexport variable
Tell make whether or not to export a particular variable to child processes.
See Section 5.6.2 [Communicating Variables to a Sub-make], page 42.

vpath pattern path
Specify a search path for files matching a ‘%’ pattern.
See Section 4.4.2 [The vpath Directive|, page 21.

vpath pattern
Remove all search paths previously specified for pattern.

vpath Remove all search paths previously specified in any vpath directive.

Here is a summary of the text manipulation functions (see Chapter 8 [Functions],
page 65):

$ (subst from, to, text)
Replace from with to in text.
See Section 8.2 [Functions for String Substitution and Analysis]|, page 66.

$ (patsubst pattern,replacement, text)
Replace words matching pattern with replacement in text.
See Section 8.2 [Functions for String Substitution and Analysis|, page 66.

$(strip string)
Remove excess whitespace characters from string.
See Section 8.2 [Functions for String Substitution and Analysis|, page 66.

$(findstring find, text)
Locate find in text.
See Section 8.2 [Functions for String Substitution and Analysis|, page 66.

$(filter pattern. .. ,text)
Select words in text that match one of the pattern words.
See Section 8.2 [Functions for String Substitution and Analysis|, page 66.

$(filter-out pattern. .. ,text)
Select words in text that do not match any of the pattern words.
See Section 8.2 [Functions for String Substitution and Analysis|, page 66.

$ (sort list)
Sort the words in list lexicographically, removing duplicates.
See Section 8.2 [Functions for String Substitution and Analysis|, page 66.

$(dir names...)
Extract the directory part of each file name.
See Section 8.3 [Functions for File Names|, page 69.

Appendix A: Quick Reference 133

$ (notdir names...)
Extract the non-directory part of each file name.
See Section 8.3 [Functions for File Names|, page 69.

$(suffix names...)
Extract the suffix (the last ‘.’ and following characters) of each file name.
See Section 8.3 [Functions for File Names], page 69.

$ (basename names. . .)
Extract the base name (name without suffix) of each file name.
See Section 8.3 [Functions for File Names], page 69.

$ (addsuffix suffix,names...)
Append suffix to each word in names.
See Section 8.3 [Functions for File Names], page 69.

$ (addprefix prefix,names. . .)
Prepend prefix to each word in names.
See Section 8.3 [Functions for File Names], page 69.

$(join listl, list2)
Join two parallel lists of words.
See Section 8.3 [Functions for File Names|, page 69.

$ (word n, text)
Extract the nth word (one-origin) of text.
See Section 8.3 [Functions for File Names], page 69.

$ (words text)
Count the number of words in text.
See Section 8.3 [Functions for File Names], page 69.

$(wordlist s,e,text)
Returns the list of words in text from s to e.
See Section 8.3 [Functions for File Names], page 69.

$(firstword names. . .)
Extract the first word of names.
See Section 8.3 [Functions for File Names|, page 69.

$(wildcard pattern. ..)
Find file names matching a shell file name pattern (not a ‘%’ pattern).
See Section 4.3.3 [The Function wildcard], page 20.

$(error text...)
When this function is evaluated, make generates a fatal error with the message
text.
See Section 8.11 [Functions That Control Make|, page 77.

$(warning text...)
When this function is evaluated, make generates a warning with the message
text.
See Section 8.11 [Functions That Control Make|, page 77.

134 GNU make

$ (shell command)
Execute a shell command and return its output.
See Section 8.10 [The shell Function], page 76.

$(origin variable)
Return a string describing how the make variable variable was defined.
See Section 8.9 [The origin Function], page 75.

$ (foreach var, words, text)
Evaluate text with var bound to each word in words, and concatenate the
results.
See Section 8.4 [The foreach Function], page 71.

$(call var,param,...)
Evaluate the variable var replacing any references to $(1), $(2) with the first,
second, etc. param values.
See Section 8.6 [The call Function], page 72.

Here is a summary of the automatic variables. See Section 10.5.3 [Automatic Variables],
page 98, for full information.

$Q The file name of the target.

$% The target member name, when the target is an archive member.

$< The name of the first prerequisite.

$7 The names of all the prerequisites that are newer than the target, with spaces

between them. For prerequisites which are archive members, only the member
named is used (see Chapter 11 [Archives], page 107).

$A

$+ The names of all the prerequisites, with spaces between them. For prerequisites
which are archive members, only the member named is used (see Chapter 11
[Archives], page 107). The value of $~ omits duplicate prerequisites, while $+
retains them and preserves their order.

$x The stem with which an implicit rule matches (see Section 10.5.4 [How Patterns
Match], page 100).

$(@D)

$(eF) The directory part and the file-within-directory part of $@.

$(xD)

$ (xF) The directory part and the file-within-directory part of $x.

$(%D)

$(%F) The directory part and the file-within-directory part of $%.

$(<D)

$ (<F) The directory part and the file-within-directory part of $<.

$(°D)

$CH The directory part and the file-within-directory part of $~.

Appendix A: Quick Reference 135

$(+D)
$(+F)

$(?D)
$(?F)

The directory part and the file-within-directory part of $+.

The directory part and the file-within-directory part of $7.

These variables are used specially by GNU make:

MAKEFILES

Makefiles to be read on every invocation of make.
See Section 3.4 [The Variable MAKEFILES], page 11.

VPATH
Directory search path for files not found in the current directory.
See Section 4.4.1 [VPATH Search Path for All Prerequisites], page 21.
SHELL
The name of the system default command interpreter, usually ‘/bin/sh’. You
can set SHELL in the makefile to change the shell used to run commands. See
Section 5.2 [Command Execution|, page 37.
MAKESHELL
On MS-DOS only, the name of the command interpreter that is to be used by
make. This value takes precedence over the value of SHELL. See Section 5.2
[MAKESHELL variable], page 37.
MAKE
The name with which make was invoked. Using this variable in commands has
special meaning. See Section 5.6.1 [How the MAKE Variable Works|, page 42.
MAKELEVEL
The number of levels of recursion (sub-makes).
See Section 5.6.2 [Variables/Recursion|, page 42.
MAKEFLAGS
The flags given to make. You can set this in the environment or a makefile to
set flags.
See Section 5.6.3 [Communicating Options to a Sub-make], page 44.
It is never appropriate to use MAKEFLAGS directly on a command line: its con-
tents may not be quoted correctly for use in the shell. Always allow recursive
make’s to obtain these values through the environment from its parent.
MAKECMDGOALS
The targets given to make on the command line. Setting this variable has no
effect on the operation of make.
See Section 9.2 [Arguments to Specify the Goals], page 79.
CURDIR

Set to the pathname of the current working directory (after all -C options are
processed, if any). Setting this variable has no effect on the operation of make.
See Section 5.6 [Recursive Use of make]|, page 41.

136 GNU make

SUFFIXES
The default list of suffixes before make reads any makefiles.
.LIBPATTERNS

Defines the naming of the libraries make searches for, and their order.
See Section 4.4.6 [Directory Search for Link Libraries|, page 24.

Appendix B: Errors Generated by Make 137

Appendix B Errors Generated by Make

Here is a list of the more common errors you might see generated by make, and some
information about what they mean and how to fix them.

Sometimes make errors are not fatal, especially in the presence of a — prefix on a command
script line, or the -k command line option. Errors that are fatal are prefixed with the string
Kok ok,

Error messages are all either prefixed with the name of the program (usually ‘make’),
or, if the error is found in a makefile, the name of the file and linenumber containing the
problem.

In the table below, these common prefixes are left off.

‘[foo] Error NN’

‘[foo] signal description’
These errors are not really make errors at all. They mean that a program that
make invoked as part of a command script returned a non-0 error code (‘Error
NN’), which make interprets as failure, or it exited in some other abnormal
fashion (with a signal of some type). See Section 5.4 [Errors in Commands],
page 40.

If no *** is attached to the message, then the subprocess failed but the rule
in the makefile was prefixed with the - special character, so make ignored the
€error.

‘missing separator. Stop.’

‘missing separator (did you mean TAB instead of 8 spaces?). Stop.’
This means that make could not understand much of anything about the com-
mand line it just read. GNU make looks for various kinds of separators (:, =,
TAB characters, etc.) to help it decide what kind of commandline it’s seeing.
This means it couldn’t find a valid one.

One of the most common reasons for this message is that you (or perhaps
your oh-so-helpful editor, as is the case with many MS-Windows editors) have
attempted to indent your command scripts with spaces instead of a TAB char-
acter. In this case, make will use the second form of the error above. Remember
that every line in the command script must begin with a TAB character. Eight
spaces do not count. See Section 4.1 [Rule Syntax|, page 17.

‘commands commence before first target. Stop.’

‘missing rule before commands. Stop.’
This means the first thing in the makefile seems to be part of a command script:
it begins with a TAB character and doesn’t appear to be a legal make command
(such as a variable assignment). Command scripts must always be associated
with a target.

The second form is generated if the line has a semicolon as the first non-
whitespace character; make interprets this to mean you left out the "target:
prerequisite" section of a rule. See Section 4.1 [Rule Syntax], page 17.

138 GNU make

‘No rule to make target ‘xxx’.’

‘No rule to make target ‘xxx’, needed by ‘yyy’.’
This means that make decided it needed to build a target, but then couldn’t find
any instructions in the makefile on how to do that, either explicit or implicit
(including in the default rules database).

If you want that file to be built, you will need to add a rule to your makefile
describing how that target can be built. Other possible sources of this problem
are typos in the makefile (if that filename is wrong) or a corrupted source tree
(if that file is not supposed to be built, but rather only a prerequisite).

‘No targets specified and no makefile found. Stop.’

‘No targets. Stop.’
The former means that you didn’t provide any targets to be built on the com-
mand line, and make couldn’t find any makefiles to read in. The latter means
that some makefile was found, but it didn’t contain any default target and
none was given on the command line. GNU make has nothing to do in these
situations. See Section 9.1 [Arguments to Specify the Makefile], page 79.

‘Makefile ‘xxx’ was not found.’

‘Included makefile ‘xxx’ was not found.’
A makefile specified on the command line (first form) or included (second form)
was not found.

‘warning: overriding commands for target ‘xxx’’

‘warning: ignoring old commands for target ‘xxx’’
GNU make allows commands to be specified only once per target (except for
double-colon rules). If you give commands for a target which already has been
defined to have commands, this warning is issued and the second set of com-
mands will overwrite the first set. See Section 4.10 [Multiple Rules for One
Target], page 30.

‘Circular xxx <- yyy dependency dropped.’
This means that make detected a loop in the dependency graph: after tracing
the prerequisite yyy of target xxx, and its prerequisites, etc., one of them
depended on xxx again.

‘Recursive variable ‘xxx’ references itself (eventually). Stop.’
This means you've defined a normal (recursive) make variable xxx that, when
it’s expanded, will refer to itself (xxx). This is not allowed; either use simply-
expanded variables (:=) or use the append operator (+=). See Chapter 6 [How
to Use Variables], page 49.

‘Unterminated variable reference. Stop.’
This means you forgot to provide the proper closing parenthesis or brace in
your variable or function reference.

‘insufficient arguments to function ‘xxx’. Stop.’
This means you haven’t provided the requisite number of arguments for this
function. See the documentation of the function for a description of its argu-
ments. See Chapter 8 [Functions for Transforming Text|, page 65.

Appendix B: Errors Generated by Make 139

‘missing target pattern. Stop.’

‘multiple target patterns. Stop.’

‘target pattern contains no ‘J’. Stop.’

‘mixed implicit and static pattern rules. Stop.’
These are generated for malformed static pattern rules. The first means there’s
no pattern in the target section of the rule; the second means there are multiple
patterns in the target section; the third means the target doesn’t contain a
pattern character (%); and the fourth means that all three parts of the static
pattern rule contain pattern characters (%)-only the first two parts should. See
Section 4.11.1 [Syntax of Static Pattern Rules|, page 31.

‘warning: -jN forced in submake: disabling jobserver mode.’

This warning and the next are generated if make detects error conditions re-
lated to parallel processing on systems where sub-makes can communicate (see
Section 5.6.3 [Communicating Options to a Sub-make], page 44). This warning
is generated if a recursive invocation of a make process is forced to have ‘-jN’
in its argument list (where N is greater than one). This could happen, for
example, if you set the MAKE environment variable to ‘make -j2’. In this case,
the sub-make doesn’t communicate with other make processes and will simply
pretend it has two jobs of its own.

‘warning: jobserver unavailable: using -jl. Add ‘+’ to parent make rule.’

In order for make processes to communicate, the parent will pass information to
the child. Since this could result in problems if the child process isn’t actually
a make, the parent will only do this if it thinks the child is a make. The parent
uses the normal algorithms to determine this (see Section 5.6.1 [How the MAKE
Variable Works]|, page 42). If the makefile is constructed such that the parent
doesn’t know the child is a make process, then the child will receive only part
of the information necessary. In this case, the child will generate this warning
message and proceed with its build in a sequential manner.

140 GNU make

Appendix C: Complex Makefile Example 141

Appendix C Complex Makefile Example

Here is the makefile for the GNU tar program. This is a moderately complex makefile.

Because it is the first target, the default goal is ‘all’. An interesting feature of this
makefile is that ‘testpad.h’ is a source file automatically created by the testpad program,
itself compiled from ‘testpad.c’.

If you type ‘make’ or ‘make all’, then make creates the ‘tar’ executable, the ‘rmt’ daemon
that provides remote tape access, and the ‘tar.info’ Info file.

If you type ‘make install’, then make not only creates ‘tar’, ‘rmt’, and ‘tar.info’, but
also installs them.

If you type ‘make clean’, then make removes the ‘.o’ files, and the ‘tar’, ‘rmt’, ‘testpad’,
‘testpad.h’, and ‘core’ files.

If you type ‘make distclean’, then make not only removes the same files as does ‘make
clean’ but also the ‘TAGS’, ‘Makefile’, and ‘config.status’ files. (Although it is not
evident, this makefile (and ‘config.status’) is generated by the user with the configure
program, which is provided in the tar distribution, but is not shown here.)

If you type ‘make realclean’, then make removes the same files as does ‘make distclean’
and also removes the Info files generated from ‘tar.texinfo’.
In addition, there are targets shar and dist that create distribution kits.

Generated automatically from Makefile.in by configure.
Un*x Makefile for GNU tar program.
Copyright (C) 1991 Free Software Foundation, Inc.

This program is free software; you can redistribute
it and/or modify it under the terms of the GNU
General Public License ...

H oH o H R

SHELL = /bin/sh
Start of system configuration section.
srcdir = .

If you use gcc, you should either run the

fixincludes script that comes with it or else use
gcc with the -traditional option. Otherwise ioctl
calls will be compiled incorrectly on some systems.
CC = gcc -0

YACC = bison -y

INSTALL = /usr/local/bin/install -c

INSTALLDATA = /usr/local/bin/install -c -m 644

Things you might add to DEFS:

-DSTDC_HEADERS If you have ANSI C headers and
libraries.

-DPOSIX If you have POSIX.1 headers and

142

HOH H H HHHHHHHHHHEHEHHHEHHEHRHHHEHHEHHEHHEHHEHHEHHEHEHEHHHEHEHE R

DEFS =

-DBSD42

-DUSG

-DNO_MEMORY_H

-DDIRENT

-DSIGTYPE=int

-DNO_MTIO

-DNO_REMOTE

-DUSE_REXEC

-DVPRINTF_MISSING
-DDOPRNT_MISSING
-DFTIME_MISSING
-DSTRSTR_MISSING
-DVALLOC_MISSING
-DMKDIR_MISSING

-DRENAME_MISSING
-DFTRUNCATE_MISSING

-DV7

-DEMUL_OPEN3

-DNO_OPEN3

-DXENIX

GNU make

libraries.

If you have sys/dir.h (unless
you use -DPOSIX), sys/file.h,
and st_blocks in ‘struct stat’.
If you have System V/ANSI C
string and memory functions

and headers, sys/sysmacros.h,
fcntl.h, getcwd, nmo valloc,

and ndir.h (unless

you use -DDIRENT).

If USG or STDC_HEADERS but do not
include memory.h.

If USG and you have dirent.h
instead of ndir.h.

If your signal handlers

return int, not void.

If you lack sys/mtio.h

(magtape ioctls).

If you do not have a remote shell
or rexec.

To use rexec for remote tape
operations instead of

forking rsh or remsh.

If you lack vprintf function
(but have _doprnt).

If you lack _doprnt function.
Also need to define
-DVPRINTF_MISSING.

If you lack ftime system call.
If you lack strstr function.

If you lack valloc function.

If you lack mkdir and

rmdir system calls.

If you lack rename system call.
If you lack ftruncate

system call.

On Version 7 Unix (not

tested in a long time).

If you lack a 3-argument version
of open, and want to emulate it
with system calls you do have.
If you lack the 3-argument open
and want to disable the tar -k
option instead of emulating open.
If you have sys/inode.h

and need it 94 to be included.

-DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \

-DVPRINTF_MISSING -DBSD42

Appendix C: Complex Makefile Example 143

Set this to rtapelib.o unless you defined NO_REMOTE,
in which case make it empty.

RTAPELIB = rtapelib.o

LIBS =

DEF_AR_FILE = /dev/rmt8

DEFBLOCKING = 20

CDEBUG = -g

CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \
-DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \
-DDEFBLOCKING=$ (DEFBLOCKING)

LDFLAGS = -g

prefix = /usr/local

Prefix for each installed program,
normally empty or ‘g’.

binprefix =

The directory to install tar in.
bindir = $(prefix)/bin

The directory to install the info files in.
infodir = $(prefix)/info

End of system configuration section.

SRC1 = tar.c create.c extract.c buffer.c \
getoldopt.c update.c gnu.c mangle.c
SRC2 = version.c list.c names.c diffarch.c \

port.c wildmat.c getopt.c
SRC3 = getoptl.c regex.c getdate.y
SRCS = $(SRC1) $(SRC2) $(SRC3)

0BJ1 = tar.o create.o extract.o buffer.o \
getoldopt.o update.o gnu.o mangle.o
0BJ2 = version.o list.o names.o diffarch.o \

port.o wildmat.o getopt.o

0BJ3 = getoptl.o regex.o getdate.o $(RTAPELIB)

0BJS = $(0BJ1) $(0BJ2) $(0BJ3)

AUX = README COPYING ChangeLog Makefile.in \
makefile.pc configure configure.in \
tar.texinfo tar.info* texinfo.tex \
tar.h port.h open3.h getopt.h regex.h \
rmt.h rmt.c rtapelib.c alloca.c \
msd_dir.h msd_dir.c tcexparg.c \
level-0 level-1 backup-specs testpad.c

all: tar rmt tar.info

tar: $(0BJS)
$(CcC) $(LDFLAGS) -o $@ $(0BJS) $(LIBS)

144 GNU make

rmt : rmt.c
$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ rmt.c

tar.info: tar.texinfo
makeinfo tar.texinfo

install: all
$(INSTALL) tar $(bindir)/$(binprefix)tar
-test ! -f rmt || $(INSTALL) rmt /etc/rmt
$(INSTALLDATA) $(srcdir)/tar.infox $(infodir)

$(0BJS): tar.h port.h testpad.h
regex.o buffer.o tar.o: regex.h
getdate.y has 8 shift/reduce conflicts.

testpad.h: testpad
./testpad

testpad: testpad.o
$(CC) -o $@ testpad.o

TAGS: $ (SRCS)
etags $(SRCS)

clean:
rm -f *.0 tar rmt testpad testpad.h core

distclean: clean
rm -f TAGS Makefile config.status

realclean: distclean
rm -f tar.info*

shar: $(SRCS) $(AUX)
shar $(SRCS) $(AUX) | compress \
> tar-‘sed -e ’/version_string/!d’ \
-e ’s/[70-9.1*\([0-9.1*\).x/\1/> \
-e q
version.c‘.shar.Z
dist: $(SRCS) $(AUX)
echo tar-‘sed \
-e ’/version_string/!d’ \
-e ’s/[70-9.1%\([0-9.1%\) .x/\1/°> \
-e g
version.c‘ > .fname
-rm -rf ‘cat .fname°
mkdir ‘cat .fname
In $(SRCS) $(AUX) ‘cat .fname
tar chZf ‘cat .fname‘.tar.Z ‘cat .fname®
-rm -rf ‘cat .fname‘ .fname

Appendix C: Complex Makefile Example 145

tar.zoo: $(SRCS) $(AUX)

-rm -rf tmp.dir

-mkdir tmp.dir

-rm tar.zoo

for X in $(SRCS) $(AUX) ; do \
echo $$X ; \
sed ’s/$$/°M/° $$X \
> tmp.dir/$$X ; domne

cd tmp.dir ; zoo aM ../tar.zoo *

-rm -rf tmp.dir

146 GNU make

Appendix D: GNU Free Documentation License 147

Appendix D GNU Free Documentation License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

148

GNU make

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTgX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

Appendix D: GNU Free Documentation License 149

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

o

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

150

GNU make

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant

Appendix D: GNU Free Documentation License 151

Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

152

10.

GNU make

License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://wuw.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix D: GNU Free Documentation License 153

D.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

154 GNU make

Index of Concepts

Index of Concepts

#

(comments), in commands 37
(comments), in makefile 9
#include....... ... 34
$

$$Q, support for............. ...l 100
$,in function call, 65
$,inrules. ... 17
$, in variable name L. 53
$, in variable reference 49

%

% in patternrules 97
%, quoting in patsubst..................uunn 66
%, quoting in static pattern................... 32
%, quoting in vpath 22
%, quoting with \ (backslash) 22, 32, 66
%

* (wildcard character)........................ 18
+

+, and command execution 82
+,and commands i 42
+,anddefine il 47
B e 56
+=,eXpansioncoiiiiia.. 15
?

,v (RCS file extension) 93
- (in commands)............. ... 40
anddefine. ... 47
——always-make, 84
——ASSUME™NeW . . .« e e eetteae e e e ee s 81, 88
-—assume-new, and recursion 44
——assume-old................. 82, 86
--assume-old, and recursion 44
—=debug. ... 84
—=directory............., 42, 84
--directory, and --print-directory......... 46
--directory, and recursion................... 44
—=dry-Tun. ... 37, 81, 86
--environment-overrides 85
i le . e 10, 79, 85

155
—-file, and recursion 44
—mhelP . e 85
--ignore-errors......................... 40, 85
—-include-dir..............., 11, 85
--jobs ... 39, 86
—--jobs, and recursion 44
—-just-print 37, 81, 86
—-Keep-going 40, 84, 86
—=10ad-aVeTagevvvreeretiaan 39, 86
——makefile................iiiiii... 10, 79, 85
--max-load............. .o 39, 86
——new-file...........l 81, 88
--new-file, and recursion.................... 44
--no-builtin-rules......................... 87
--no-builtin-variables 87
--no-keep-going 87
—-no-print-directory 46, 88
——old-file.......... il 82, 86
--o0ld-file, and recursion.................... 44
--print-data-base............... 86
—-print-directory.................... 88
—--print-directory, and --directory......... 46
--print-directory, and recursion............ 46
—-print-directory, disabling 46
——question 81, 87
--quiet ... 37, 87
i =Y o] « 37, 81, 86
--silent........... i, 37, 87
—mSEOP . . 87
—=touch il 81, 87
—--touch, and recursion....................... 42
——version ...l 88
--warn-undefined-variables 88
-—what-if Lol 81, 88
TP 84
B 84
G 42, 84
=C,and —W ... 46
-C, and Tecursion, 44
e S 84
B e 85
—e (shell flag)................ooiiiit 34
e 10, 79, 85
-f,and recursion 44
Sho 85
e S 40, 85
e 11, 85
e [T 39, 86
-j, and archive update...................... 108
-j,and recursion 44
SR 40, 84, 86
e 86
-1 (library search)oviiiiiaa. 24

-1 (load average)ceeuueiiieaaa.n. 39

156 GNU make

1 84 .
M (to compiler) ... 34 :: rules (double-colon) 33
-MM (to GNU compiler)....................... 34 = 50, 55
s 37, 81, 86
0 e e e e 82, 86 _
-0, and recursionc.c.ooieiiiaaa... 44 -
P 86 B 50, 55
e PP 81, 87 =, expansion 15
e < P 87
SR 87 ?
B T 37, 87 ‘
P 87 7 (wildcard character)........................ 18
e 81,87 T 52, 55
—t, and TECUTSION « v evveeeeeee e, 49 7=, eXPANSION . .\ e\ttt e e 15
2P PP 88
T e e e 88
W 81, 88 Q
v T I 46 Q@ (in commands)........ouiiiiiiiieniie... 37
~w, and TeCUTSION - ..o vos e, 46 @, and define......... 47
-W,and recursion 44
-w,disablingl 46 [
[...] (wildcard characters) 18
.a (archives) ... 109 -
e 90 . SYMDEF . . oo v oo e e 108
C ot 91
CC i et it e e 91
Ch o 92 \
s PP 35 \ (backslash), for continuation lines 4
def 91 \ (backslash), incommands................... 38
AV 92 \ (backslash), to quote % 22, 32, 66
o 91
F oo 91 ~
info. ... e 93
Lo 92 T(Elde) s 18
LIBPATTERNS, and link libraries 24
1D . e 92
MOd . o ettt e e 91 A
D0 e e 90, 91 algorithm for directory search................. 22
D e e 91 all (standard target) 80
.PRECIOUS intermediate files.................. 96 appending to variables, 56
S 91 - 94
S 91 archive...... 107
S 91 archive member targets 107
Sh 93 ar“h?"e symbol directory updating 108
2 I PP 91 archive, and =3 ... 108
archive, and parallel execution 108
tex. .. 92 archive, Suffix rule foro.ovvrenn... 109
7= 93 Arg list too long 45
texinfo. 93 arguments of functions 65
txinfo........... L T 91, 94
W e e e e e e e e e 92 assembly, rule to compile..................... 91
LHED L e e 92 automatic generation of prerequisites 11, 34

2 92 automatic variables oL 98

Index of Concepts

B

backquotes Lo 76
backslash (\), for continuation lines 4
backslash (\), in commands................... 38
backslash (\), to quote % 22, 32, 66
backslashes in pathnames and wildcard expansion
.. 19
basenameccoiiiiiiiiiiiii e 70
binary packagesl 128
broken pipe ... 39
bugs, reporting L 1
built-in special targets 27

C

C++ rule to compile 91
C,rule tocompile 90
[P 90, 94
cd (shell command)....................... 37, 42
chainsofrules................... ...t 95
check (standard target) 81
clean (standard target) 80
cleantarget, 5,8
cleaning up..........oiiiiiii e 8
clobber (standard target).................... 80
GOt ittt e 93, 94
combining rules by prerequisite 7
command line variable definitions, and recursion
.. 44
command line variables 83
COMMANS -+ e et 17
commands, backslash (\) in................... 38
commands, commentsin 37
commands, echoing 37
commands, €mpty 47
commands, errors incooiioa.... 40
commands, eXecution 37
commands, execution in parallel 39
commands, eXpansionennn... 76
commands, how to write 37
commands, instead of executing............... 81
commands, introduction to 3
commands, quoting newlinesin 38
commands, sequences of 46
comments, in commands 37
comments, in makefile.............. L 9
compatibility oL 111
compatibility in exporting 44
compilation, testing, 83
computed variable name...................... 53
conditional expansion 72
conditional variable assignment 52
conditionalS 61
continuation lines............................. 4
controlling make............................. 7
conventions for makefiles 117
ctanglel 92, 94
CWEAVE ..ttt et ieit i ie i 92, 94

157
D
data base of make rules....................... 86
deducing commands (implicit rules) 7
default directories for included makefiles. 11
default goal 5, 17
default makefile name........................ 10
default rules, last-resort 102
define, expansion 15
defining variables verbatim 58
deletion of target files........................ 41
directiveoooi i 9
directories, printing them..................... 46
directories, updating archive symbol.......... 108
directory part oL 69
directory search (VPATH)...................... 20
directory search (VPATH), and implicit rules 23
directory search (VPATH), and link libraries. 24
directory search (VPATH), and shell commands.. 23
directory search algorithm.................... 22
directory search, traditional (GPATH)......... 23
dist (standard target) 81
distclean (standard target).................. 80
dollar sign ($), in function call 65
dollar sign ($),inrules....................... 17
dollar sign ($), in variable name 53
dollar sign ($), in variable reference 49
double-colon rulesouolL 33
duplicate words, removing.................... 68
E
E2BIG. ...ttt 45
echoing of commands 37
editor 3
Emacs (M-x compile) 41
empty commands 47
empty targets il 27
environmentl 59
environment, and recursion 42
environment, SHELL in........................ 38
€rror, StOPPING ON . v oottt ittt 7
errors (in commands) 40
errors with wildcards. 19
evaluating makefile syntax.................... 74
execution, in parallel 39
execution, instead of 81
execution, of commands...................... 37
exit status (errors)......................... .. 40
explicit rule, definition of 9
explicit rule, expansion 15

exporting variables................. 42

158

T e 91, 94
FDL, GNU Free Documentation License. 147
features of GNUmake....................... 111
features, missing................. 115
file name functions........................... 69
file name of makefile 10
file name of makefile, how to specify........... 10
file name prefix, adding 70
filenamesuffix il 69
file name suffix, adding....................... 70
file name with wildcards...................... 18
file name, basename of 70
file name, directory part...................... 69
file name, nondirectory part 69
files, assuming new..............oiiuieee... 81
files, assuming old 82
files, avoiding recompilation of 82
files, intermediate., 95
filtering out words 67
filtering wordsl 67
finding stringsoviiiiiiiii e 67
flags ... 84
flags for compilers 93
flavors of variables 50
FORCE . ..t e e e 27
force targets. ...l 27
Fortran, rule to compile....................... 91
functions. il 65
functions, for controlling make................ 7
functions, for file names 69
functions, for text............ 66
functions, syntax of 65
functions, user defined 72

- P 91, 94
B e ettt 90
generating prerequisites automatically 11, 34
Bt . e 93, 94
globbing (wildcards)c.c.ooiiina... 18
gOal . e 5
goal, default, 5, 17
goal, how to specify............ 79

H

home directory 18

I

IEEE Standard 1003.2 1
ifdef, expansion ool 15
ifeq, expansionoiiiiiiaaa. 15
ifndef, expansion................. ... 15
ifneq, expansion oo, 15

GNU make

implicitrule. 89
implicit rule, and directory search............. 23
implicit rule, and VPATH 23
implicit rule, definition of 9
implicit rule, expansion 15
implicit rule, how touse...................... 89
implicit rule, introduction to................... 7
implicit rule, predefined 90
implicit rule, search algorithm 104
included makefiles, default directories 11
including (MAKEFILE_LIST variable) 12
including (MAKEFILES variable)................ 11
including other makefiles 10
incompatibilities oo Ll 115
Info, rule to format 93
install (standard target) 81
intermediate files ... 95
intermediate files, preserving.................. 96
intermediate targets, explicit 28
interrupt L 41

J

jobslots ... 39
job slots, and recursion 44
jobs, limiting based on load................ ... 39
joining lists of words 70

K

killing (interruption)oovuunn... 41

L

last-resort default rules...................... 102
L.ttt e 91
1 92, 94
Lex,ruletorun.............................. 92
libraries for linking, directory search........... 24
library archive, suffix rule for................ 109
limiting jobs based onload 39
link libraries, and directory search 24
link libraries, patterns matching 24
linking, predefined rule for.................... 91
lint ..o 92
lint,ruletorun............... 92
list of all prerequisites........................ 99
list of changed prerequisites 98
load average.........oovviieeiiinn i, 39
loops in variable expansion 50

1pr (shell command) 19, 27

Index of Concepts

M2C . ottt ettt e 91
00 T 0T 49
make depend.............l 34
MAKECMDGOALS e eae e 80
makefile.. 3
makefilename il 10
makefile name, how to specify 10
makefile rule partsol 3
makefile syntax, evaluating 74
makefile, and MAKEFILES variable.............. 11
makefile, conventions for 117
makefile, how make processes. 5
makefile, how to write......................... 9
makefile, includingl 10
makefile, overridingo L 14
makefile, parsing. 14
makefile, remaking of L 12
makefile, simple................... oL 4
makefiles, and MAKEFILE_LIST variable 12
makefiles, and special variables 12
makeinfo.......... L il 93, 94
match-anythingrule 101
match-anything rule, used to override 14
missing features L 115
mistakes with wildcards 19
modified variable reference 52
Modula-2, rule to compile 91
mostlyclean (standard target)................ 80
multiple rules for one target 30
multiple rules for one target (::).............. 33
multiple targets.oooiiiiiie i 30
multiple targets, in patternrule............... 97

N

name of makefile........ 10
name of makefile, how to specify 10
nested variable reference 53
newline, quoting, in commands 38
newline, quoting, in makefile................ ... 4
nondirectory part.................. ... 69
normal prerequisites 18

0D o 6
102 PP 6
objects........ ... 6
OBJECTS . ..ttt ettt 6
ObJS .o 6
OBJS .ot e 6
old-fashioned suffix rules 103
OPEIONS .o v ittt e 84
options, and recursionl 44
options, setting from environment 45
options, setting in makefiles 45
order of patternrules 97

159
order-only prerequisites 18
origin of variable.............. Ll 75
overriding makefiles.............. L. 14
overriding variables with arguments........... 83
overriding with override..................... 57
P
parallel execution, 39
parallel execution, and archive update........ 108
parallel execution, overriding 29
parts of makefilerule.......................... 3
Pascal, rule to compile 91
patternrule...... L 97
pattern rule, expansion....................... 15
pattern rules, order of 97
pattern rules, static (not implicit)............. 31
pattern rules, static, syntax of 31
pattern-specific variables 60
POttt e e 91, 94
phony targetsl 24
pitfalls of wildcards 19
portability 111
POSIX . 1
POSIX.2 . 45
post-installation commands.................. 127
pre-installation commands................... 127
precious targets.l 28
predefined rules and variables, printing 86
prefix, addingl 70
prerequisite oo 17
prerequisite pattern, implicit.................. 97
prerequisite pattern, static (not implicit) 32
prerequisite types..........coo i 18
prerequisite, expansion 15
prerequisites. i 17
prerequisites, automatic generation 11, 34
prerequisites, introduction to 3
prerequisites, list of all 99
prerequisites, list of changed 98
prerequisites, normal 18
prerequisites, order-only 18
prerequisites, varying (static pattern).......... 31
preserving intermediate files 96
preserving with .PRECIOUS................ 28, 96
preserving with .SECONDARY 28
print (standard target) 81
print targetl 19, 27
printing directories. 46
printing of commands.................... ... 37
printing user warnings 7
problems and bugs, reporting 1
problems with wildcards...................... 19

processing a makefile............. 5

160

Q

question modet 81
quoting %, in patsubst....................... 66
quoting %, in static pattern 32
quoting %, in vpath 22
quoting newline, in commands................ 38
quoting newline, in makefile 4

R

Ratfor, rule to compile 91
RCS, rule to extract from 93
reading makefiles oL 14
README.ottt iaaens 10
realclean (standard target).................. 80
recompilation....... oLl 3
recompilation, avoiding....................... 82
recording events with empty targets........... 27
TECUTSION .« oo vttt et et e e e e e eee 41
recursion, and =Ccoviiinneninaann 44
recursion, and =f il 44
recursion, and -j ...l 44
recursion, and =0 il 44
recursion, and =t e 42
recursion, and =W i 46
recursion, and ~W................ illL. 44
recursion, and command line variable definitions
.. 44
recursion, and environment 42
recursion, and MAKE variable 42
recursion, and MAKEFILES variable............. 11
recursion, and options. 44
recursion, and printing directories............. 46
recursion, and variables 42
recursion, level of, 44
recursive variable expansion 49, 50
recursively expanded variables................ 50
reference to variables 49, 52
relinking ..o 5
remaking makefiles............ oL 12
removal of target files........................ 41
removing duplicate words 68
removing targets on failure 28
removing, toclean up 8
reporting bugs.......... .. 1
o 94
rm (shell command)................. 5, 19, 25, 40
rule commandso i 37
rule prerequisitesiiiiia.... 17
rule syntaxcc i 17
ruletargets........... ... il 17
rule,and $... 17
rule, double-colon (::) 33
rule, explicit, definition of 9
rule, how to write................ 17
rule, implicit 89
rule, implicit, and directory search 23

rule, implicit, and VPATH. 23

GNU make

rule, implicit, chainsof 95
rule, implicit, definition of 9
rule, implicit, how touse 89
rule, implicit, introduction to.................. 7
rule, implicit, predefined 90
rule, introduction to oL, 3
rule, multiple for one target 30
rule, no commands or prerequisites............ 27
rule, pattern.......... 97
rule, static pattern........................... 31
rule, static pattern versus implicit............. 33
rule, with multiple targets.................... 30

S

s. (SCCSfile prefix)ooouut. 93
SCCS, rule to extract from 93
search algorithm, implicit rule 104
search path for prerequisites (VPATH) 20
search path for prerequisites (VPATH), and implicit
Tules. ..o 23
search path for prerequisites (VPATH), and link
libraries.c.oov i 24
searching for strings.......................... 67
secondary files............ 96
secondary targets........................... 28
sed (shell command)......................... 34
selecting awordLl.L. 68
selecting word lists........................... 68
sequences of commands 46
setting options from environment 45
setting options in makefiles................... 45
setting variables oL 55
several rules for one target.................... 30
several targets inarule 30
shar (standard target) 81
shell command 5
shell command, and directory search 23
shell command, execution 37
shell command, function for 76
shell file name pattern (in include) 10
shell wildcards (in include) 10
SHELL, MS-DOS specificSocvvvnnn... 38
signal 41
silent operation............... 37
simple makefile L. 4
simple variable expansion..................... 49
simplifying with variables...................... 6
simply expanded variables.................... 50
SOrting words. ...t 68
spaces, in variable values 51
spaces, Strippingooviiiiiiiiiiii., 67
special targets il 27
special variables 12
specifying makefile name 10
standard inputl 39
standards conformance........................ 1
standards for makefiles...................... 117

Index of Concepts

static patternrule 31
static pattern rule, syntaxof.................. 31
static pattern rule, versus implicit............. 33
stem ... 31, 100
stem, variable for 99
stopping make 7
strings, searching for......................... 67
stripping whitespace 67
Sub-make 42
subdirectories, recursion for................... 41
substitution variable reference 52
suffixrule....... ... 103
suffix rule, for archive....................... 109
suffix, adding oo 70
suffix, function to find........................ 69
suffix, substituting in variables................ 52
switches. 84
symbol directories, updating archive.......... 108
syntax of rules..............ooieiiii i 17

T

tab character (in commands) 17
tabsinrules.......... L.l 3
TAGS (standard target) 81
tangle ... 92, 94
tar (standard target) 81
target 17
target pattern, implicit................ 97
target pattern, static (not implicit)............ 31
target, deleting on error...................... 41
target, deleting on interrupt 41
target, expansion 15
target, multiple in patternrule................ 97
target, multiple rules for one.................. 30
target, touching 81
target-specific variables.................... .. 59
targets........ ... 17
targets without afile................ 24
targets, built-in special oL 27
targets, empty............ ... i 27
targets, force Lol 27
targets, introduction to.................. . oL 3
targets, multiple............. 30
targets, phony 24
terminal rulel 101
test (standard target) 81
testing compilationo L. 83
7= P 92, 94
TeX,ruletorun............................. 92
texi2dvil 93, 94
Texinfo, rule to format 93
tilde (7). .o 18
touch (shell command) 19, 27
touching files........... ..., 81
traditional directory search (GPATH) 23

types of prerequisites. 18

161
U
undefined variables, warning message.......... 88
updating archive symbol directories 108
updating makefiles........................... 12
user defined functions........................ 72
AV
value 49
value, how a variable getsit 55
variable 49
variable definition............ 9
variables 6
variables, ‘¢’ in name 53
variables, and implicit rule 98
variables, appending to....................... 56
variables, automatic.......................... 98
variables, command line...................... 83
variables, command line, and recursion 44
variables, computed names 53
variables, conditional assignment.............. 52
variables, defining verbatim................... 58
variables, environment 42, 59
variables, exporting 42
variables, flavors............. 50
variables, how they get their values 55
variables, how to reference.................... 49
variables, loops in expansion.................. 50
variables, modified reference 52
variables, nested references 53
variables, origin of 75
variables, overriding.................. 57
variables, overriding with arguments 83
variables, pattern-specific..................... 60
variables, recursively expanded................ 50
variables, setting............... 55
variables, simply expanded 50
variables, spaces in values 51
variables, substituting suffixin................ 52
variables, substitution reference............... 52
variables, target-specific...................... 59
variables, unexpanded value 73
variables, warning for undefined............... 88
varying prerequisites......................... 31
verbatim variable definition................... 58
vpath 20
VPATH, and implicit rules 23
VPATH, and link libraries...................... 24

162

A%

warnings, printing 7
WEAVE ..ottt it ete e i 92, 94
Web, ruletorun.......... 92
what if. 81
whitespace, in variable values................. 51
whitespace, stripping............. 67
wildcard 18
wildcard pitfallso ... 19
wildcard, function o ... 70
wildcard, in archive member................. 107
wildcard, in include 10
wildcards and MS-DOS/MS-Windows backslashes
.. 19

GNU make

words, extracting first................ ... 68
words, filtering oL 67
words, filtering out.............. ... o i 67
words, finding number oL 68
words, iterating over00 71
words, joining lists.................... 70
words, removing duplicates................... 68
words, selecting lists of 68
writing rule commands........... 37
writing rules.............o oo 17

Y

FACC o oot 46, 92, 94
Yacc,ruletorun................. 92

Index of Functions, Variables, & Directives

Index of Functions, Variables, & Directives

$

$S(AD) .. 100
FS(OF) ..o e 100
$8@. 100
/R 98
BCAD) 100
SOAE) o 100
S (KD . 99
G 100
S(AD) oo 100
SHF) o 100
$C.VARIABLES) © vt v iieteieeteiaieeannnn, 12
B(RD) oo 100
€4 2 100
BCTD) ot 100
G) 100
(D) . 99
SOF) o 99
SO D) o 100
SO o 100
Bk 99
$*, and static pattern 32
Bt e 99
< 98
B 98
P 98
B 98

%

% (automatic variable)........................ 98
%D (automatic variable) 100
%F (automatic variable) 100
*
* (automatic variable)................ 99
* (automatic variable), unsupported bizarre usage
....................................... 115
*D (automatic variable) 99
*F (automatic variable) 100
+
+ (automatic variable)................ 99
+D (automatic variable) 100

+F (automatic variable) 100

163
CDEFAULT . ..o e e 28, 102
.DEFAULT, and empty commands.............. 47
.DELETE_ON_ERRORcvvuunn. 28, 41
.EXPORT_ALL_VARIABLES 29, 44
CIGNORE . ..o e 28, 40
INTERMEDIATE ... e e 28
LIBPATTERNS ... e 24
.LOW_RESOLUTION_TIME....................... 29
NOTPARALLEL ... e e e e e e et 29
131000\ G 25, 27
POSTIX . .. e 45
PRECIOUS . ..o 28, 41
SECONDARY ...t e et 28
STLENT ..o e e e 29, 37
CSUFFIXES . ..ot 28, 104
.VARIABLES (list of variables) 12
/
/usr/gnu/include..................i.an 11
/usr/include 11
/usr/local/include. 11
<
< (automatic variable)........................ 98
<D (automatic variable) 100
<F (automatic variable) 100
?
? (automatic variable)................ 98
?D (automatic variable) 100
?F (automatic variable) 100
@
@ (automatic variable)........................ 98
@D (automatic variable) 99
QF (automatic variable) 99
" (automatic variable)........................ 98
"D (automatic variable) 100
“F (automatic variable) 100

164

A

addprefix i 70
addsuffix 70
N 94
ARFLAGS e 95
B e 94
ASFLAGS 95
B

basename.iiiiii . 70
bindir. e e 120
Call ... e 72
CC e 94
CELAGS e 95
[0 0 94
COFLAGS i e 95
COMSPEC. ..ottt e et 38
CPP . . 94
CPPFLAGSot 95
CTANGLE. e e 94
CWEAVE e e 94
CXX o 94
CXXFLAGSo e 95
D
define............iiiiii i e 58
L T Pt 69
E

€lSe . .. e e 62
endef 58
endif e 62
123 s o 77
eVl . .. e 74
exec_prefixl 120
@XPOTL ..ot 43
F

o P 94
FELAGS . . .o e 95
filter. ... e e 67
filter-out i 67
findstring Ll 67
firstwordot e e 68
foreach.......... 71

GNU make

GET .. e 94
GELAGS . ..o e 95
GNUmakefileo, 10
GPATHt e et e 23
I

5 72
Afdef 62
ifeq........ 62
ifndef 62
ifneq..... 62
include.t 10
joim. 70
L

LDFLAGS e 95
LEX i e e e 94
LELAGS . ..ot e 95
libexecdir ..ot 120
MAKE e 42, 51
MAKECMDGOALS 80
makefile........... ..., 10
Makefile...........ouiiuiiiiiiiaennnn, 10
MAKEFILES0ttt iieennnnnnn 11, 44
MAKEFLAGS e 44
MAKEINFO. . ..o e e e e 94
MAKELEVEL iiiiieannn. 44, 51
MAKEOVERRIDESttt iinnnnns 45
MELAGS . .ttt e e 45
N

NOtAir . ..ot e 69
origin........... ...l 75
OUTPUT_OPTION i 93
override.t e 57
P

patsubst 52, 66
PC 94
PELAGS . ..ttt e 95

Index of Functions, Variables, & Directives

RFLAGS 95
RM . e 94
S

sbindir......l 120
shell...... 76
SHELL 38
SHELL (command execution) 37
SOTL .o e 68
Strip.... ... 67
SUBSE ... 30, 66
suffix.. ... 69
SUFFIXES 104
T

TANGLE 94
TR e e 94

165
UNEXPOT L. ottt 43
Vv
value............ i 73
vpath 20, 21
VPATH ..ot e 20, 21
Warning............. ... il 7
WEAVE 94
Wildeard .. vvviii e 20, 70
L o 68
WOrdlist......ovvviiiiii i 68
WOXdS . ..ottt 68
Y
YACC . . 94
YACCR . .ottt e 94
YFLAGS . ..o 95

166 GNU make

Short Contents

1 Overviewofmake......ooiteerneeenossossnssasss 1
2 An Introduction to Makefiles « v v v v v v v vv v i e 3
3 Writing Makefiles « « e v oot i i ittt it 9
4 WritingRules . o oo v e v i eennns 17
5 Writing the Commands in Rules 37
6 HowtoUse Variables...ooeveeennnneeeeeeennns 49
7 Conditional Parts of Makefiles. . o oo oo oo oo iiiian.. 61
8 Functions for Transforming Text « « v v v v vv v e v 65
9 HowtoRunmake.........oovivevineireennenens 79
10 Using Implicit Rules oo v v e in e eenns 89
11 Using make to Update Archive Files ¢« v v v v v v o v v e vvsnn 107
12 Featuresof GNUmMakecvviveiveenennnanns 111
13 Incompatibilities and Missing Features . « v v v v vv v v v v 115
14 Makefile Conventions « « o o v v oo veeeveeeeeeeeonnans 117
A Quick Referencec0vveiiiiiieiieeennnn. 131
B Errors Generated by Make ... oveennnssiiiinnn... 137
C Complex Makefile Example « o o v o oo v v v v veeesonnenss 141
D GNU Free Documentation License « « v v v v v v v v v vevnnne 147
Index of CONCEPLS & o s v v v v v veeeeeenesseesnononsosaans 155

Index of Functions, Variables, & Directives « « s s o s s 0 0 0 00 0 s 163

1

GNU make

Table of Contents

1 Overview Oof maKe....vveesesoneeoesansesenas 1l

1.1 How to Read ThisManual 1
1.2 Problemsand Bugs...............c. i 1
2 An Introduction to Makefiles............... 3
2.1 What a Rule Looks Like 3
2.2 A Simple Makefile.o 4
2.3 How make Processes a Makefile........................... 5
2.4 Variables Make Makefiles Simpler......................... 6
2.5 Letting make Deduce the Commands...................... 7
2.6 Another Style of Makefile 7
2.7 Rules for Cleaning the Directory.......................... 8
3 Writing Makefiles.......................... 9
3.1 What Makefiles Contain 9
3.2 What Name to Give Your Makefile 10
3.3 Including Other Makefiles............................... 10
3.4 The Variable MAKEFILESttt 11
3.5 The Variable MAKEFILE _LIST.. ...ttt 12
3.6 Other Special Variables................................. 12
3.7 How Makefiles Are Remade 12
3.8 Overriding Part of Another Makefile..................... 14
3.9 How make Reads a Makefile............................. 14
4 Writing Rules 17
4.1 RuleSyntax 17
4.2 Types of Prerequisitesoo s, 18
4.3 Using Wildcard Characters in File Names................ 18
4.3.1 Wildcard Examples............................ 19

4.3.2 Pitfalls of Using Wildcards 19

4.3.3 The Function wildcard........................ 20

4.4 Searching Directories for Prerequisites 20
4.4.1 VPATH: Search Path for All Prerequisites......... 21

4.4.2 The vpath Directive 21

4.4.3 How Directory Searches are Performed 22

4.4.4 Writing Shell Commands with Directory Search.. 23

4.4.5 Directory Search and Implicit Rules............. 23

4.4.6 Directory Search for Link Libraries.............. 24

4.5 Phony Targetst 24
4.6 Rules without Commands or Prerequisites 27
4.7 Empty Target Files to Record Events.................... 27

4.8 Special Built-in Target Names........................... 27

v
4.9 Multiple Targets ina Rule.......... 30
4.10 Multiple Rules for One Target.......................... 30
411 StaticPattern Rules.................. 31
4.11.1 Syntax of Static Pattern Rules................. 31
4.11.2 Static Pattern Rules versus Implicit Rules....... 33
4.12 Double-Colon Rules........... ..., 33
4.13 Generating Prerequisites Automatically 34
5 Writing the Commands in Rules........... 37
5.1 Command Echoing 37
5.2 Command Execution, 37
5.3 Parallel Execution..............., 39
5.4 FErrorsin Commandsociiiiiiiiaan.. 40
5.5 Interrupting or Killingmake............................. 41
5.6 Recursive Useofmake, 41
5.6.1 How the MAKE Variable Works 42
5.6.2 Communicating Variables to a Sub-make......... 42
5.6.3 Communicating Options to a Sub-make.......... 44
5.6.4 The ‘~-print-directory’ Option............... 46
5.7 Defining Canned Command Sequences 46
5.8 Using Empty Commands 47
6 How to Use Variables..................... 49
6.1 Basics of Variable References............................ 49
6.2 The Two Flavors of Variables 50
6.3 Advanced Features for Reference to Variables............. 52
6.3.1 Substitution References 52
6.3.2 Computed Variable Names 53
6.4 How Variables Get Their Values......................... 55
6.5 Setting Variables............. i 55
6.6 Appending More Text to Variables 56
6.7 The override Directive ..., 57
6.8 Defining Variables Verbatim 58
6.9 Variables from the Environment 59
6.10 Target-specific Variable Values......................... 59
6.11 Pattern-specific Variable Values 60
7 Conditional Parts of Makefiles............. 61
7.1 Example of a Conditional 61
7.2 Syntax of Conditionals............... 62
7.3 Conditionals that Test Flags............................ 64

GNU make

8 Functions for Transforming Text........... 65

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

9 How

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Function Call Syntax, 65
Functions for String Substitution and Analysis 66
Functions for File Names 69
The foreach Function.............. 71
The if Function i 72
The call Function............. 72
The value Function............. 73
The eval Function............. i, 74
The origin Function................................... 75

The shell Function........... ..., 76

Functions That Control Make.......................... 7
to Runmake 79
Arguments to Specify the Makefile....................... 79
Arguments to Specify the Goals......................... 79
Instead of Executing the Commands..................... 81
Avoiding Recompilation of Some Files 82
Overriding Variables.................. 83
Testing the Compilation of a Program 83
Summary of Options ... 84

10 Using Implicit Rules..................... 89

10.1 Using Implicit Rules.......... 89
10.2 Catalogue of Implicit Rules 90
10.3 Variables Used by Implicit Rules 93
10.4 Chains of Implicit Rules 95
10.5 Defining and Redefining Pattern Rules.................. 96
10.5.1 Introduction to Pattern Rules 97

10.5.2 Pattern Rule Examples 97

10.5.3 Automatic Variables.......................... 98

10.5.4 How Patterns Match......................... 100

10.5.5 Match-Anything Pattern Rules............... 101

10.5.6 Canceling Implicit Rules 102

10.6 Defining Last-Resort Default Rules.................... 102
10.7 Old-Fashioned Suffix Rules............................ 103
10.8 Implicit Rule Search Algorithm 104
11 Using make to Update Archive Files...... 107
11.1 Archive Members as Targetscoiin.... 107
11.2 Implicit Rule for Archive Member Targets 107
11.2.1 Updating Archive Symbol Directories 108

11.3 Dangers When Using Archives 108
11.4 Suffix Rules for Archive Files.......................... 109

12 Features of GNU makecoveun... 111

vi

13 Incompatibilities and Missing Features... 115

14 Makefile Conventions 117
14.1 General Conventions for Makefiles..................... 117
14.2 Utilities in Makefiles 118
14.3 Variables for Specifying Commands.................... 119
14.4 Variables for Installation Directories................... 120
14.5 Standard Targets for Users..................cocnn... 123
14.6 Install Command Categories 127
Appendix A Quick Reference............... 131
Appendix B Errors Generated by Make..... 137

Appendix C Complex Makefile Example 141

Appendix D GNU Free Documentation License

....................................... 147

D.1 ADDENDUM: How to use this License for your documents
.. 153
Index of Conceptsoviaaa.... 155

Index of Functions, Variables, & Directives... 163

GNU make

