
CS 426—Fall 2022 1 Introductory Exercise on LLVM

Introductory Exercise on LLVM
CS 426 — Compiler Construction

Fall Semester 2022

This handout gives you a simple exercise to help you learn the LLVM code representation and tools,
before writing the intermediate code generator from COOL to LLVM for MP 2. LLVM (formerly, Low
Level Virtual Machine, although the acronym is now deprecated) is a compiler infrastructure for writing
static compilers, just-in-time compilers, and numerous compiler-based tools. It is based on a language-
independent and machine-independent, SSA-based, mid-level intermediate representation called LLVM
IR. The LLVM IR is persistent, i.e., it is designed to be used both as a compiler internal representation
and as an offline (bitcode) representation for shipping programs. (See Lattner and Adve, CGO 2004,
available at the Papers link on the course Web site, for a research paper on LLVM IR.)

1 Documentation

You can find all the documentation for LLVM at https://llvm.org/releases/14.0.0/docs/index.

html Some manuals you will find useful are:

1. LLVM Command Guide: Provides links to online man pages for the LLVM tools. Read the man
pages for llvm-as, llvm-dis and lli before doing this exercise. Other tools you may find useful
later on include llvm-bcanalyzer, opt, llvm-extract and (when writing optimization passes) bugpoint.
Available at https://releases.llvm.org/14.0.0/docs/CommandGuide/.

2. LLVM Language Reference Manual: Details the LLVM instructions and types, and some examples
of their usage. Consult this while doing this exercise. Available at https://releases.llvm.org/
14.0.0/docs/LangRef.html.

3. Getting Started with LLVM: Provides details on how to acquire and built LLVM, as well as the
structure of the LLVM code base and examples of using the LLVM tool chain. Available at https:
//releases.llvm.org/14.0.0/docs/GettingStarted.html#getting-started-with-llvm.

2 Setting up your environment

We prepared pre-built binaries for LLVM and Clang 14.0.0 at /class/cs426/llvm/llvm-14.0.0.obj/bin on
EWS, you can add them to your environment by appending the following line to your ~/.bashrc file:

export PATH=/class/cs426/llvm/llvm-14.0.0.obj/bin:$PATH

You should use Clang to compile C/C++ code as well as x86-64 assembly code for MP 2 and all subsequent
MPs. The provided makefiles will be set up to do this automatically.

Next, test your environment by doing the following:

1. Download the file llvm-examples.tar.gz from the Resources page on the course website and extract
the directory llvm-examples/. It includes the following C example programs:

University of Illinois at Urbana-Champaign Department of Computer Science

https://llvm.org/releases/14.0.0/docs/index.html
https://llvm.org/releases/14.0.0/docs/index.html
https://releases.llvm.org/14.0.0/docs/CommandGuide/
https://releases.llvm.org/14.0.0/docs/LangRef.html
https://releases.llvm.org/14.0.0/docs/LangRef.html
https://releases.llvm.org/14.0.0/docs/GettingStarted.html#getting-started-with-llvm
https://releases.llvm.org/14.0.0/docs/GettingStarted.html#getting-started-with-llvm

CS 426—Fall 2022 2 Introductory Exercise on LLVM

function declaration.c global.c printf.c fib.c
getelementprt.c ternary.c vector.c

2. Compile the programs to the LLVM IR. Use the command:

make all

If you have set your path correctly, you will see a .ll file for every C example program, except fib.c.

3. Try running printf.ll. Use the command:

llvm-as < printf .ll | lli

The output should be:

Hello World!
Once again, hello! This was the 2nd time.

3 Translation Exercise

Translate llvm-examples/fib.c into LLVM by hand. Don’t use the Clang frontend. Your code should
comply with the following rules:

• Be precise. Don’t just write a similar program.

• Use chained branches and phi nodes to implement the nested select expressions.

• Use getelementptr for indexing arrays.

• Use the c- and ll-files from the first question as examples of how to write function declarations,
global variables, printf, and getelementptr.

Test your program as before, but passing an integer argument to lli this time (fib.c will segfault if you
run it without arguments, for simplicity):

llvm-as < fib .ll | lli - N

(where N is some integer constant). Compare the results you get with the output of fib.c compiled with
clang or gcc directly, for different values of N.

Some tips:

• Omit attributes on globals, functions and function arguments: they are optional and meant for
compiler consumption. Examples of attributes you can omit are align, nounwind, uwtable,

inbounds, attributes, dbg, and the #N attributes on functions.

• After you have tested your hand-written fib.ll successfully, compare it with the output of clang
-O3 -S -emit-llvm fib.c, to see how clang chose to generate LLVM IR for this simple function.

• Also compare with the Clang output when using -O0 instead of -O3: how does the generated
LLVM IR differ when it is not optimized much? (Clang does some minimal code simplifications,
like constant folding, at the AST level, so this is not completely unoptimized, but close.)

University of Illinois at Urbana-Champaign Department of Computer Science

	Documentation
	Setting up your environment
	Translation Exercise

