
CS 526 Topic 8: Intermediate Code Generation

University of Illinois at Urbana-Champaign

Intermediate Code Generation (ICG)

Transform AST to lower-level intermediate representation

Basic Goals: Separation of Concerns

Generate efficient code sequences for individual operations

Keep it fast and simple: leave most optimizations to later phases

Provide clean, easy-to-optimize code

IR forms the basis for code optimization and target code generation

Mid-level vs. Low-level Model of Compilation

Both models can use a machine-independent IR:

AST −→
machine-specific code sequences

−→ target code

AST −→

machine-independent
code sequences →

machine-level IR
→ target code

Key difference: where does “target instruction selection” happen
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Intermediate code generation — Overview

Goal: Translate AST to low-level machine-independent 3-address IR

Assumptions

Intermediate language: RISC-like 3-address code‡

Intermediate Code Generation (ICG) is independent of target ISA

Storage layout has been pre-determined

Infinite number of registers + Frame Pointer (FP)
Q. What values can live in registers?

‡ ILOC: Cooper and Torczon, Appendix A.
Strategy

1. Simple bottom-up tree-walk on AST

2. Translation uses only local info: current AST node + children

3. Good (local) code is important!
⇐= Later passes have less semantic information
⇐= E.g., array indexing, boolean expressions, case statements

4. We will discuss important special cases
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Code generation for expression trees

Illustrates the tree-walk scheme

assign a virtual register to each
operator

emit code in postorder traversal of
expression tree

Notes

assume tree reflects precedence,
associativity

assume all operands are integers

base() and offset() may emit
code

base() handles lexical scoping
Support routines

base( str ) — looks up str in the symbol table and returns a virtual
register that contains the base address for str

offset( str ) — looks up str in the symbol table and returns a virtual
register that contains the offset of str from its base register

new name() — returns a new virtual register name
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Simple treewalk for expressions

expr( node )
int result, t1, t2, t3;
switch( type of node )
{

case TIMES:
t1 = expr( left child of node );
t2 = expr( right child of node );
result = new_name();
emit( mult, t1, t2, =>, result );
break;

case PLUS:
t1 = expr( left child of node );
t2 = expr( right child of node );
result = new_name();
emit( add, t1, t2, =>, result );
break;

case ID:
t1 = base( node.val );
t2 = offset( node.val );
result = new_name();
emit( loadAO, t1, t2, =>, result
break;

case NUM:
result = new_name();
emit( loadI, node.val, =>, result
break;

}

return result;

Minus & divide follow the same pattern
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Code generation
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Assume base for x and y is fp

loadI offset of x => r1

loadAO fp, r1 => r2 ; r2 ← x

loadi 4 => r3 ; constant

loadi offset of y => r4

loadAO fp, r4 => r5 ; r5 ← y

mult r3, r5 => r6

add r2, r6 => r7
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Mixed type expressions

Mixed type expressions

E.g., x + 4 * 2.3e0

expression must have a clearly defined
meaning

typically convert to more general type

complicated, machine dependent code

Typical Language Rule
E.g., x + 4, where (Tx 6= T4):

1. Tresult ← f(+, Tx, T4)

2. convert x to Tresult

3. convert 4 to Tresult

4. add converted values
(yields Tresult)

Sample Conversion Table

+ int real double complex

int int real double complex

real real real double complex

double double double double complex

complex complex complex complex complex
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Array references

Example: A[i,j]

Basic Strategy

1. Translate i (may be an expr)
2. Translate j (may be an expr)

3. Translate &A + [i, j]

4. Emit load

Index Calculation assuming row-major order )

Let ni = highi − lowi + 1

Simple address expression (in two dimensions):
base + ((i1 − low1) × n2 + i2 − low2) × w

Reordered address expression (in k dimensions):

((...(i1n2 + i2)n3 + i3)...)nk + ik) × w

+ base −

w × ((...((low1 × n2) + low2)n3 + low3)...)nk + lowk)
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Optimizing the address calculation

((...(i1n2 + i2)n3 + i3)...)nk + ik) × w

+ base −

w × ((...((low1 × n2) + low2)n3 + low3)...)nk + lowk)

Constants

Usually, all lowi are constants

Sometimes, all ni except n1 (high-order dimension) are constant
=⇒ final term is compile-time evaluable

Expose common subexpressions

refactor first term to create terms for each ir:
ir × nr+1 × nr+2 × . . . × nk × w

LICM: update rth term only when ir changes
⇒ can remove much of the overhead
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Whole arrays as procedure parameters

Three main challenges

1. Finding extents of all dimensions (including highest if checking bounds)

2. Passing non-contiguous section of larger array, e.g., Fortran 90:
Formal Param: F(:, :)

Actual Param (whole array): A(1:100, 1:100),
Actual Param (array section): A(10:50:2,20:100:4)

3. Passing an array by value

Language design choices

C, C++, Java, Fortran 77: problem (1) is trivial and (2,3) don’t exist

Fortran 90, 95, . . . : problems (1) and (2) are non-trivial

Passing whole arrays by value

making a copy is extremely expensive
=⇒ pass by reference, copy-on-write if value modified

most languages (including call-by-value ones) pass arrays by reference
Topic 8: Intermediate Code Generation – p.9/32



CS 526 Topic 8: Intermediate Code Generation

University of Illinois at Urbana-Champaign

Whole arrays by reference

Finding extents

pass a pointer to a dope vector as parameter: [l1, u1, s1, l2, u2, s1, . . . lk, uk, sk]

stuff in all the values in the calling sequence

generate address polynomial in callee

interprocedural optimizations can eliminate this:
inlining
procedure specialization (aka cloning)
single caller

Passing non-contiguous section of larger array

Fortran 90 requires that section must have regular stride
=⇒ dope vector with strides is sufficient
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Function calls in Expressions

Key issue: Side Effects

Evaluation order is important

Example: func1(a) * globalX * func2(b)

Register save/restore will preserve intermediate values

Use standard calling sequence for each call

set up the arguments

generate the call and return sequence

get the return value into a register
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Boolean & relational expressions

Boolean expressions

boolean → not or-term

| or-term

or-term → or-term or and-term

| and-term

and-term → and-term and value

| value

value → true

| false

| rel-term

Relational expressions

rel-term → rel-term rel-op expr

| expr

rel-op → < | ≤ | = | 6= | ≥ | >

expr → . . . (rest of expr grammar)
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Short-circuiting Boolean Expressions

What is “short circuiting”?

Terms of a boolean expression can be evaluated until its value is
established. Then, any remaining terms must not be evaluated.

Example

if (a && foo(b)) ...
call to foo() should not be made if a is false.

Basic Rules

once value established, stop evaluating

true or 〈expr〉 is true

false and 〈expr〉 is false

order of evaluation must be observed

Note: If order of evaluation is unspecified, short-circuiting can be used as an
optimization: reorder by cost and short-circuit
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Relations and Booleans using numerical values

Numerical encoding

assign a value to true, such as 1 (0x00000001) or -1 (0xFFFFFFFF)

assign a value to false, such as 0

use hardware instructions — and, or, not, xor

Select values that work with the hardware (not 1 & 3)

Example: b or c and not d

1 t1 ← not d

2 t2 ← c and t1

3 t3 ← b or t2

Example: if (a < b)

1 if (a < b) br l1

2 t1 ← false

3 br l2

4 l1: t1 ← true

5 l2: nop ; now use result

Can represent relational as boolean!
⇒ Integrates well into larger boolean expressions
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Relationals using control flow

Encode using the program counter

encode answer as a position in the code

use conditional branches and hardware comparator

along one path, relation holds; on other path, it does not

Example: if (a < b) stmt1 else stmt2

Naïve code:

1 if (a < b) br lthen

2 br lelse

3 lthen: code for stmt1

4 br lafter

5 lelse: code for stmt2

6 br lafter

7 lafter: nop

After branch folding:

1 if (a < b) br lthen

2 lelse: code for stmt2

3 br lafter

4 lthen: code for stmt1

5 lafter: nop

Path lengths are balanced.
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Booleans using control flow

Example:
if (a<b or c<d and e<f)

then stmt1
else stmt2

Naïve code:

1 if (a < b) br lthen

2 br l1

3 l1: if (c < d) br l2

4 br lelse

5 l2: if (e < f) br lthen

6 br lelse

7 lthen: stmt1

8 br lafter

9 lelse: stmt2

10 br lafter

11 lafter: nop

After branch folding:

1 if (a < b) br lthen

2 if (c >= d) br lelse

3 if (e < f) br lthen

4 lelse: stmt2

5 br lafter

6 lthen: stmt1

7 lafter: nop

It cleans up pretty well.

Topic 8: Intermediate Code Generation – p.16/32



CS 526 Topic 8: Intermediate Code Generation

University of Illinois at Urbana-Champaign

Control Flow vs. Numerical Representations: Tradeoffs

Hardware Issues

Condition code (CC) registers:
encode comparisons

Conditional moves: use CC regs as
boolean values

Predicated instructions: use
boolean values for conditional
execution (instead of “control flow”)

Tradeoffs

Control flow works well when:
Result is only used for branching
Conditional moves and predicated execution are not available or code in
branches is not appropriate for them

Numerical representation works well when:
Result must be materialized in a variable
Result is used for branching but conditional moves or predicated
execution are available and appropriate to use for code in branches
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Control-flow constructs

Branches are common and expensive. Efficient inner loops are critical.

Examples

if-then-else: see Boolean/relational expressions
do, while or for loops
switch statement

Loops

Convert to a common representation

do: evaluate iteration count first

while and for: test and backward branch at bottom of loop
=⇒ simple loop becomes a single basic block
=⇒ backward branch: easy to predict
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Case statements

Basic rules

1. evaluate the controlling expression

2. branch to the selected case

3. execute its code

4. branch to the following statement

Main challenge: finding the right case

Method When Cost

linear search few cases O(| cases |)

binary search sparse O(log2(| cases |))

jump table dense O(1), but with table lookup
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Options for Implementing Assignment of Primitive Objects

Assignment
1 let x: Int <- foo() in
2 self.n <- ...

Option 1: Copy pointers
1. t0 = alloca pointer to IntObject;

2. t2 = Call foo() ;; t1 points to result object

3. *t0 = t2 ;; t0, t2 now point to same obj

4. ...

16. . . . <self.n = t10> ;; both point to same obj

Option 2: Copy values
1. t0 = alloca pointer to IntObject ; on stack

2. t1 = malloc IntObject ; on heap

3. *t0 = t1;

4. t2 = Call foo() ; foo() returns int

5. t4 = *t0 ;; t4: IntObject*

6. t4->val = t2 ;; **t0 now contains value of foo()

7. ...

18. ... <self.n->val = t12>
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Options for Implementing Assignment of Primitive Objects

Assignment
1 let x: Int <- foo() + self.n in
2 let o: Object <- x in
3 o.type_name() ...

Option 1: Copy pointers

1. tx = alloca IntObject* ;; tx: IntObject**

2. to = alloca Object* ;; to: Object**

3. t1 = Call foo() ;; t1: IntObject*

4. t2 = selfptr->n->val ;; n: IntObject on heap

?? t5 = . . . <eval t1->val + t2

?? *tx = t5 ;; store result pointer to x

?? *to = *tx ;; *to, *tx, t5 point to same obj

?? t6 = *to ;; get Int object pointer

?? . . . <dispatch t6->type_name()> ;; uses Int as
object

Option 3: Box / unbox only where needed
1. tx = alloca int ;; tx: int*

2. to = alloca Object* ;; to: Object**

3. t2 = Call foo() ;; t2: int

4. t3 = self->n ;; n: int; fields are unboxed

5. t4 = t2 + t3 ;; t2: int

6. *tx = t2 ;; store int t4 to x

7. t5 = *tx ;; t5: int; value of x

8. t6 = malloc IntObject ;; t6: IntObject*

9. t6->val = t4 ;; int is now boxed

10. . . . <dispatch t6->type_name()> ;; uses boxed
int as object
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Options for Assignment: How well can they be optimized?

This only applies to primitive objects
Option 1: Copy pointers

Uniform code generator: no special cases for primitives

Local objects on heap : many promoted to int registers; rest in heap

Fields: likely to remain objects in heap

Option 2: Copy values

Special cases for primitives: assignment, copies

Let objects on heap: all promoted to int registers

Temp objects on heap: all promoted to int registers

Fields: likely to remain objects in heap

Option 3: Box/unbox only where needed

Special cases for primitives: assignment, copies, method dispatch

Let vars, temps: held in int registers (except when boxed)

Fields: simple int fields in parent object

Overhead of boxing/unboxing only at object operations
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Structures

Structure Accesses
p->x becomes loadAI rp, offset(x) ⇒ r1

Structure Layout: Key Goals

All structure fields have constant offsets, fixed at compile-time

May need padding between fields ⇐= Why?

May need padding at end of struct ⇐= Why?

Structure Layout Example

struct Small { char* p; int n; };

struct Big { char c; struct Small m; int i };

Assume SparcV9: Byte alignments = pointer: 8, int: 4, short: 2

Offsets? p : ? n : ? c : ? m : ? i : ?

sizeof(struct Small) = ? sizeof(struct Big) = ?
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Class with single-inheritance

Key Operations and Terminology

p.x Field access

p.M(a1, a2, . . . , an) Method dispatch

Cq q = (Cq) p Downcast

Terminology and Type-Checking Assumptions

Cp, Cq : the static types of references p, q

Op, Oq : the dynamic types of the objects p, q refer to

Op ≤ Cp (in COOL notation), i.e., Op is lower in inheritance tree.

x, M are valid members of Cp =⇒ valid for Op

For downcast, Op ≤ Cq When is this checked?
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Class with single-inheritance: Code Generation Goals

Functional Goals

1. Class layouts, run-time descriptors constructed at compile-time
Note: Class-loading-time in a JVM is compile-time

2. Same code sequences must work for any Op ≤ Cp

3. Separate compilation of classes
=⇒ we know superclasses but not subclasses
=⇒ code sequences, layouts, descriptors must be consistent for all classes

Efficiency Goals

1. Small constant-time code sequences

2. Avoid hashing [class-name,method-name] → func ptr

3. Minimize #indirection steps

4. Minimize #object allocations for temporaries

5. Two important optimizations: inlining, dynamic → static dispatch
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Single-inheritance: Example

Runtime Objects

Class record : One per class

Method table: One per class

Object record : One per instance
COOL Classes

1 class C1 (* inherits Object *) { x1: Int, y1: Int; M1(): Int };
2 class C2 inherits C1 { x2: Int; M2(): Int };
3 class C3 inherits C2 { x3: Int; M1(): Int; M3(): Int };

Class Records for Example
Class Records in C

1 struct ClassC1 { struct ClassObject* p; VTableC1 { $...$ }; int 1; }

2 struct ClassC2 { struct ClassC1* p; VTableC2 { $...$ }; int 2; }

3 struct ClassC3 { struct ClassC2* p; VTableC3 { $...$ }; int 3; }
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Single-inheritance: Example (continued)

Method Tables for Example
Method Tables in C

1 struct VTableC1 { <Object methods>; int()* M1_C1; };

2 struct VTableC2 { <Object methods>; int()* M1_C1; int()* M2_C2; };

3 struct VTableC3 { <Object methods>; int()* M1_C3; int()* M2_C2; int()* M3_C3; };

Object Records for Example
Object Records in C

1 struct ObjObject { void* classPtr; /* no fields */ };
2 struct ObjC1 { struct ObjObject p1; int x1; int y1; };
3 struct ObjC2 { struct ObjC1 p2; int x2; };
4 struct ObjC3 { struct ObjC2 p3; int x3; };

Compare layouts of these object records:
ObjObject: { classPtr }
ObjC1: { classPtr; x1; y1 }
ObjC2: { classPtr; x1; y1; x2 }
ObjC3: { classPtr; x1; y1; x2; x3 }
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Single-inheritance: Example (continued)

Code Sequence for Field Access
(* r2: C2 <- new C3; r3: C3 <- new C3*)
x: Int <- r2.x1 + r3.x1;

Code Sequence for Method Dispatch
(* r3: C1 <- new C3 *)
x: Int <- r3.M1()
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Runtime Safety Checks

Fundamental cost for safe languages:
Java, ML, Modula, Ada, . . .

Loads and Stores

Initialize all pointer variables (including fields) to NULL

Check (p != 0) before every load/store using p optimize for locals!

Downcasts

Record class identifier in class object

Before downcast Cq q = (Cq) p: Check Op ≤ Cq

Array References

Empirical evidence: These are by far the most expensive run-time checks

Record size information just before array in memory

Before array reference A[expr0, . . ., exprn−1]: optimize!
Check (lbi ≤ expri), (expri ≤ ubi), ∀ 0 ≤ i ≤ n − 1
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Separation of Concerns: Principles

Read: The PL.8 Compiler, Auslander

and Hopkins, CC82.
Fundamental Principles

Each compiler pass should address one goal and leave other concerns to
other passes.

Optimization passes should use a common, standardized IR.

All code (user or compiler-generated) optimized uniformly

Key Assumptions

register allocator does a great job ⇒ simplifies optimizations

optimization phase does a great job ⇒ simplifies translation

little or no special case analysis

global data-flow analysis is worthwhile
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Separation of Concerns: Optimizations and Examples

Optimization Passes in PL.8 Compiler

Dead Code Elimination (DCE)

Constant Propagation (CONST)

Strength reduction

Reassociation

Common Subexpression
Elimination (CSE)

Global Value Numbering (GVN)

Loop Invariant Code Motion
(LICM)

Dead Store Elimination (DSE)

Control flow simplification
(Straightening)

Trap Elimination

Peephole optimizations

Separation of Concerns: Examples

ICG ignores common opts: DCE, CSE, LICM, straightening, peephole

CSE and LICM ignore register allocation

Instruction scheduling ignores register allocation
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Separation of Concerns: Tradeoffs

Advantages

Simple ICG:
bottom-up, context-independent
Opts. can ignore register
constraints

Each pass can be simpler =⇒
more reliable, perhaps faster
Each optimization pass can be run
multiple times.

Sequences of passes can be run
in different orders.

Each pass gets used nearly every
time =⇒ more reliable

User-written and
compiler-generated code
optimized uniformly

Disadvantages

Requires robust optimization
algorithms

Requires strong register allocation

Compilation time?
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