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Intermediate Representation (IR)

IR ≡ data structures that encode all knowledge the compiler has derived about
source program.

Also called Internal Representation.

IR is a fundamental design feature of a compiler system.
Determines compiler functionality, maintanability, speed, memory consumption.

A realistic compiler will have several IRs, including. multiple IRs at every point in
the compilation flow.
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Components and Design Goals for an IR

Components of IR

Code representation: actual statements or instructions
Symbol table with links to/from code
Analysis information with mapping to/from code
Constants table: strings, initializers, ...
Storage map: stack frame layout, register assignments

There is no universally good IR. Many forms of IR have been used. The right
choice depends strongly on the goals of the compiler system.
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Design Goals for an IR?

What are the Key Design Goals for an IR?

Assume an ahead-of-time (AOT) optimizing compiler for modern languages and
multicore superscalar architectures
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Common Code and Analysis Representations

Code representations

Usually have only one at a time

Common alternatives:
Abstract Syntax Tree (AST)
SSA form + CFG
3-address code [+ CFG]
Stack code

Influences:
semantic information
types of optimizations
ease of transformations
speed of code generation
size

Analysis representations

May have several at a time

Common choices:
Control Flow Graph (CFG)
Symbolic expression DAGs
Data dependence graph
(DDG)
SSA form
Points-to graph / Alias sets
Call graph

Influences:
analysis capabilities
optimization capabilities
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Categories of IRs By Structure

Graphical IRs

trees, directed graphs, DAGs

node / edge data structures tend
to be large

harder to rearrange

Examples: AST, CFG, SSA,
DDG, Expression DAG, Points-to
graph

Linear IRs

pseudo-code for abstract
machine

many possible semantic levels

simple, compact data structures

easier to rearrange

Examples: 3-address, 2-address,
accumulator, or stack code

Hybrid IRs as the Code Representation

CFG + 3-address code (SSA or non-SSA)

CFG + 3-address code + expression DAG

AST (for control flow) + 3-address code (for basic blocks)

AST (for control flow) + expression DAG (for basic blocks)
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Abstract syntax tree

An Abstract Syntax Tree (AST) is a simplified parse tree. It retains syntactic
structure of code.

Well-suited for source code

Widely used in source-source translators

Captures both control flow constructs and straight-line code explicitly

Traversal and transformations are both relatively expensive
both are pointer-intensive
transformations are memory-allocation-intensive
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Abstract syntax tree: Examples
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Directed acyclic graph

A Directed Acyclic Graph (DAG) is a graphical representation of symbolic
expressions where any two provably equal expressions share a single node.

Each node can be thought of as a unique (symbolic) value.

Advantages

sharing of values is explicit

exposes redundancy (value computed twice)

Disadvantages

difficult to transform (e.g., delete a stmt)

not useful for showing control flow structure

⇒ Better for analysis than transformation

Example
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Program Analysis Terminology

Informal Definitions:

Precise: A program analysis result is precise iff it represents only those
behaviors that occur during legal executions of the program.

Conservative: A program analysis result is conservative if it represents a
behavior that never occurs in any legal execution of the program.

Examples of conservative analysis results:

Constant propagation fails to prove an expression is always zero

Array bounds checking fails to prove an array index expression is always
within bounds

Alias analysis fails to prove that two pointer parameters are never aliased

DAG construction fails to prove two expressions are always equal

Control flow analysis fails to prove a given branch is never taken
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Control Flow Graph: CFG

Definitions

Basic Block ≡ a consecutive sequence of statements (or instructions) S1 . . . Sn

such that (a) the flow of control must enter the block at S1, and (b) if S1 is
executed, then S2 . . . Sn are all executed in that order (unless one of the
statements causes the program to halt).

Leader ≡ the first statement of a basic block
Maximal Basic Block ≡ a maximal-length basic block

CFG ≡ a directed graph (usually for a single procedure) in which:

Each node is a single basic block

There is an edge b1 → b2 if control may flow from last stmt of b1 to first
stmt of b2 in some execution

NOTE: A CFG is a conservative approximation of the control flow!
Why?
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Examples 1 - Conditional Control Flow

Conditional branch in C:
stmtlist0

if (x == y)
stmtlist1

else
stmtlist2

stmtlist3

“switch” statement in C:
stmtlist0

switch (V) {
case 1: stmtlist1

case 2: stmtlist2

. . .
case n: stmtlistn

default: stmtlistn

}
stmtlistn+1
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Examples 2 - Loops

“while” loop in C:
stmtlist0

while (x < k)
stmtlist1

stmtlist2

“do-while” loop in C:
stmtlist0

do
stmtlist1

while (x < k);
stmtlist2
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Examples 3 - Exceptions

“try-catch-finally” in Java:
stmtlist0

try {
S0; // may throw
S1; // may throw

} catch (etype1 e1) {
S2; // simple statement

} catch (etype2 e2) {
S3; // simple statement

} finally {
S4; // simple statement

}
stmtlist1
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Dominance in Control Flow Graphs

Dominates ≡ B1 dominates B2 iff all paths from entry node to B2 include B1.

Intuitively, B1 is always executed before executing B2 (or B1 = B2).

Which assignments dominate (X+Y)?:
X = 1;
if (...) {

Y = 4;
}
... = X + Y;

Which assignments dominate (X+Y)?:
X = 1;
if (...) {

Y = 4;
... = X + Y;

}

Topic 5: Internal Representations – p. 14/35



CS 426 Topic 5: Internal Representations

University of Illinois at Urbana-Champaign

Static Single Assignment (SSA) Form

Informally, a program can be converted into SSA form as follows:

Each assignment to a variable is given a unique name
All of the uses reached by that assignment are renamed.

Easy for straight-line code:

V ← 4 V0← 4
← V + 5 ← V0 + 5

V ← 6 V1← 6
← V + 7 . ← V1 + 7

What about flow of control?
Introduce φ-functions!
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Static Single Assignment with Control Flow

2-way branch: if (...)
X = 5;

else
X = 3;

Y = X;

if (...)
X0 = 5;

else
X1 = 3;

X2 = φ(X0, X1);
Y0 = X2;

While loop:
j = 1;

S: // while (j < x)
if (j >= X)

goto E;
j = j+1;
goto S

E:
N = j;

j5 = 1;
S: j2 = φ(j5, j4);

if (j2 >= X)
goto E;

j4 = j2+1;
goto S

E:
N = j2;
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Definition of SSA Form

Definition (φ Functions):
In a basic block B with N predecessors, P1, P2, . . . , PN ,

X = φ(V1, V2, . . . , VN )

assigns X = Vj if control enters block B from Pj , 1 ≤ j ≤ N .

Properties of φ-functions:

φ is not an executable operation.
φ has exactly as many arguments as the number of incoming BB
edges
Think about φ argument Vi as being evaluated on CFG edge from
predecessor Pi to B

Definition (SSA form):
A program is in SSA form if:
1. each variable is assigned a value in exactly one statement
2. each use of a variable is dominated by the definition
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The SSA Graph

Definition (SSA Graph):

The SSA Graph is a directed graph in which:

Nodes = All definitions and uses of SSA variables
Edges = { (d, u) : u uses the SSA variable defined in d }

Examples

Draw the SSA graphs for the examples with control flow
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So Where Do We Need Phi Functions?
Choices (for each variable X):

At every merge point in the CFG?

At every merge point after a write to X?

At every merge point (after a write to X) that reaches a read of X?

At some proper subset of the above merge points?
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So Where Do We Need Phi Functions?

Informal Conditions for Minimal SSA Form:

If basic block B contains an assignment to a variable V , then a φ must be
inserted in each basic block Z such that all of these are true:
1. there is a non-empty path B →+ Z;

2. there is a path from ENTRY to Z that does not go through B;

3. Z is the first node on the path B →+ Z that satisfies (2).

These conditions must be reapplied for every Φ inserted in the code!

Intuition for Placement Conditions:

(1) =⇒ the value of V computed in B reaches Z

(2) =⇒ there is a path that does not go through B, so some other value of V reaches
Z along that path (ignore bugs due to uses of uninitialized variables). So, two
values must be merged at B with a φ.

(3) =⇒ The φ for the value coming from B itself has not been placed in some earlier
node on the path B →+ Z.
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So Where Do We Need Phi Functions?

Optional material covered in CS 526

A constructive description

PhiFunctionPlacement
1 Worklist <-- all assignments to scalars
2 while (Worklist is not empty) {
3 Remove one assignment, S, from Worklist;
4 B <-- the basic block containing S;
5 for (every basic block, Z, such that
6 B dominates some predecessor of Z, and
7 B is not a proper dominator of Z) {
8 Place a Phi assignment at the start of block Z;
9 Add this Phi assignment to WorkList;

10 }
11 }

Does the inner (for) loop above compute exactly the set of nodes satisfying
the Informal Conditions on the previous slide?

(Definition) Pruned SSA Form ≡ Minimal SSA form with unused Phi
functions deleted.
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Common Pitfalls

Repeated arguments
1 if (p1) {
2 X = 1;
3 if (p2)
4 goto E;
5 Y = 1;
6 } else {
7 X = 2;
8 }
9 E:

10 printf("%d", X);

Arbitrary names in SSA form
1 A = 1;
2 if (p1) {
3 B1 = 1;
4 }
5 B2 = phi(A, B1);
6 printf("%d", B2);

More arbitrary names in SSA
1 x1 = 0;
2 L1: x2 = phi(x1,y1);
3 y1 = phi(x1,x2);
4 if (y1 < 10)
5 goto L1;
6 exit();
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Three address code

A term used to describe many different representations
Each statement ≡ single operator + at most three operands

Advantages

compact and very uniform

makes intermediates values explicit

suitable for many levels (high, mid, low):

high-level: e.g., array refs, min / max ops
mid-level : e.g., virtual regs, simple ops
low-level : close to assembly code

Disadvantages

Large name space (due to temporaries)

Loses syntatic structure of source

Example
if (x > y)

z = x - 2 * y

3-address code:
t1 ← load x
t2 ← load y
t3 ← t1 gt t2

br t3 L2 L1

L1: t4 ← 2 * t2

t5 ← t1 - t4

z ← store t5

L2: · · ·
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Compilation Strategies

High-level Model

Retain high-level data types:
Structs, Arrays, Pointers, Classes

Retain high-level control constructs
(AST) OR 3-address code

Generally operate directly on program
variables (i.e., no registers)

Mid-level Model

Retain some high-level data types:
Structs, Arrays, Pointers

Linear 3-address code + CFG

Distinguish virtual regs from memory

No low-level architectural details

Low-level Model

Linear memory model (no
high-level data types)

Distinguish virtual
registers from memory

Low-level 3-address code
+ CFG

Explicit addressing
arithmetic

Expose all low-level
architectural details:
Addressing modes, stack
frame, calling conventions,
data layout
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Some Examples of Real Systems

Muchnick, Chapter 21Example 1: Sun Compilers for SPARC (C, C++, Fortran, Pascal)

Code ≡ 2 different IRs
Analysis info ≡ CFG + dependence graph + ???

High-level IR: linked-list of triples

Low-level IR : SPARC-assembly-like operations

Example 2: IBM Compilers for Power, PowerPC (Same as Sun + PL.8)

Code ≡ Low-level IR (+ optional high-level IR with SSA)
Analysis info ≡ CFG + “intervals” + value graph + dataflow graphs

Low-level IR: indirect list of variable-length instructions
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Examples of Real Systems (continued)

Example 3: LLVM Compiler (C, C++, . . .)

Mid-level Code ≡ CFG + Mostly 3-address IR in SSA form
Low-level Code ≡ CFG + Mostly 3-address Machine IR

Analysis info ≡ Value Numbering + Points-to graph + Call graph

Basic blocks: doubly linked list of LLVM (or Machine IR) instructions

Example 4: dHPF Compiler (Fortran90 + HPF) dhpf.cs.rice.edu

Code ≡ AST
Analysis info ≡ CFG + SSA + Value DAG + Call Graph
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EXTRA SLIDES
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Stack machine code

Used in compilers for stack architectures: B5500, B1700, P-code, BCPL
Popular again for bytecode languages: JVM, MSIL

Advantages

compact form

introduced names are implicit, not explicit

simple to generate & execute code

Disadvantages

does not match current architectures

many spurious dependences due to stack:
⇒ difficult to do reordering transformations

cannot “reuse” expressions easily (must
store and re-load)
⇒ difficult to express optimized code

Example
x− 2 ∗ y − 2 ∗ z

Stack machine code:
push x
push 2
push y
multiply
push 2
push z
multiply
add
subtract
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Storage Formats for Three Address Code
Size vs. Ease of Reordering vs. Locality

Quadruples

x - 2 * y

load t1 y –
loadi t2 2 –
mult t3 t2 t1
load t4 x –
sub t5 t3 t4

table of k × 4 small
integers (indexes into
symbol table)

not very easy to reorder

fast to traverse

all names are explicit

Indirect Triples

x - 2 * y

Order Code

op arg1 arg2

(103) (100) load y

(100) (101) loadi 2

(101) (102) mult (100) (101)

(102) (103) load x

(104) (104) sub (103) (102)

index is implicit name

easier to reorder stmts

more expensive to
traverse

Linked list

explicit names

easy to reorder

costly to traverse
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XIL and YIL: The Intermediate Languages of TOBEY
O’Brien et al., IR’95.

Key Design Assumptions in XIL

Low-level IR with no source-level semantic assumptions

Must be capable of supporting multiple targets

All loads, stores, and addressing computations must be exposed “from front-end
onwards.”

“Main disadvantage”: Slower compile time due to larger code volume

Loops and source-level branches are lowered to compares, and conditional
branches to labels

Loop structure and induction vars. must be recovered via program analysis

Some “exotic” or complex macro instructions, expanded by Macro Expansion
phase:

String operations; multi-dim array refs; unlimited args; unlimited size for
immediate operands

Formal identities:

Identities found by hashing: hash(op, arg1, ..., argn)

All defs of a symbolic register must be formally identical

=⇒ A symbolic register is name of a unique value

Dataflow optimizations operate on symbolic registers (including loads and stores)Topic 5: Internal Representations – p. 30/35
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XIL and YIL: The Intermediate Languages of TOBEY

Structural Design Assumptions in XIL

Code representation:

Doubly linked list of pointers to instructions

Instructions live in a separate (unordered) table: Computation Table

More complex than just triples: complex operands; multiple results

Analysis representations:

DAG representation of symbolic expressions

Control-flow graph

Symbol information: types, line numbers, literal value table

IR allows flexible ordering of compiler passes

Structure stays fixed throughout optimization and code generation

Passes may be used in different orders, and repeated

Computation Table (CT): Enforces formal identities

Uses the hash function so each instruction is entered only once

Symbolic registers are simply pointers to unique instructions in CT

Exception: By client request. Called “non-canonical” instructions
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XIL and YIL: The Intermediate Languages of TOBEY

Key Design Assumptions in YIL

Require higher-level abstractions (than XIL) to support:
Dependence analysis for array subscripts
Loop transformations: memory hierarchy opts, auto-par, auto-vec

YIL abstractions can be constructed from XIL (instead of separate
generator from front-end)

This is unusual: Most compilers successively “lower” the IR

Adding a layer of structural abstraction over XIL is
better than designing a brand new IR:

YIL links back to XIL to share expression DAGs in CT
YIL exploits XIL functionality for manipulating expressions
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XIL and YIL: The Intermediate Languages of TOBEY

Structural Design of YIL

Code representation:

“Statement graph”: doubly linked list of statement nodes

Nodes for Loop, If, Assign, Call

Loops and loop nests are explicit

Assign node represents a store and all computations feeding it

Analysis representations:

SSA form for variables (probably scalars only)

Explicit use-def chains for all variables

Dependence graph with dependence distances

Links to expression DAGs and symbol information of XIL

Loop optimizations focus on “unimodular transformations”.
Described by a loop transformation matrix

SSA form is updated incrementally by many optimizations (that don’t change
control flow)
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XIL and YIL: The Intermediate Languages of TOBEY

Critique of XIL

Reasonable design for the “very back end”
⇐= Want dataflow optimization of machine-specific computations
⇐= Want rich symbolic expression manipulation

But . . .
XIL also serves as “mid-level” optimizer, i.e., many
machine-independent opts

Code volume is a significant cost
Many such optimizations require both XIL and YIL features

Unclear if XIL preserves important type information
E.g., structures, arrays, pointers
These are needed for pointer and dependence analysis (important for
both dataflow opts and scheduling)
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XIL and YIL: The Intermediate Languages of TOBEY

Critique of hierarchical IL (XIL+YIL)

Hierarchical ≡ two separate simultaneous ILs:
YIL is not a full-fledged IL with complete analysis, optimization suite
YIL relies on XIL for dataflow opts, low-level opts

Lack of dataflow opts in YIL could be a weakness:
Many high-level optimizations depend on good low-level opts
E.g., Dep. analysis needs pointer analysis, which needs extensive
low-level opts
Also, many high-level opts. must be followed by good low-level opts

Interprocedural optimization (IPO) important for both high-level and
low-level opts

Unclear how IPO can work with the XIL / YIL dichotomy
Code volume of XIL could slow down IPO
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