
Homework 5
CS425/ECE428 Spring 2023

Due: Monday, April 24 at 11:59 p.m.

1. Two phase commit and Paxos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 points
In Spanner and similar systems, a combination of two-phase commit (2PC) and Paxos protocols are
used. Both the coordinator and participants in 2PC are implemented as replica groups, using Paxos
to achieve consensus in the group. Each replica group has a leader, so during 2PC, the leader of the
coordinator group communicates with the leaders of the participant groups.

During the execution of 2PC in such a system, there are three points at which a consensus must be
achieved within the nodes in a replica group for a transaction to be committed: (i) at each participant
group to prepare for a commit, (ii) at the coordinator to decide on a commit after receiving a vote from
each participant, and (iii) at each participant again to log the final commit.

Suppose that there is one coordinator and two participants. Each of these has a Paxos replica group with
4 nodes. The leader of each replica group also acts as the proposer and the distinguished learner for the
Paxos protocol, while the remaining three nodes are acceptors (the leader sends its prepare and accept
messages to all three acceptors). The leaders of the participant and the coordinator replica groups send
appropriate messages for 2PC to one another once consensus has been achieved (a decision has been
reached) in their respective replica groups. Assume for simplicity that the coordinator replica group only
coordinates the transaction and does not participate in processing the transaction (so the coordinator
leader need not send prepare and commit messages to itself during 2PC).

The communication latency between each pair of nodes within each group is exactly 4ms and the
communication latency between any pair of nodes in two different groups is exactly 20ms. The processing
latency at each node is negligible.

Answer the following questions assuming that there are no failures or lost messages. Further assume
that the leader of each replica group has already been elected / pre-configured. All participant groups
are willing to commit the transaction, and all nodes within each replica group are completely in sync
with one-another.

(a) (6 points) With this combined 2PC / Paxos protocol,

(i) what is the minimum amount of time it would take for each node in the participant group to
commit a transaction after the leader of the coordinator group receives the “commit” command
from the client? (3 points)

(ii) how many messages are exchanged in the system before all nodes in the participant groups
commit the transaction? (Ignore any message that a process may send to itself). (3 points)

[Hint: Think about the message exchanges required by each protocol (2PC and Paxos). Are there
messages that can be safely sent in parallel to reduce the commit latency?]

(b) (2 points) What is the earliest point at which the coordinator group’s leader can safely tell the
client that the transaction will be successfully committed? Calculate the latency until this point
(from the time since the leader of the coordinator group receives the “commit” command from the
client).

(c) (6 points) Suppose we re-configure the system such that the leader of the coordinator group also acts
as the leader (proposer and distinguished learner) for the participant Paxos groups. Three nodes in
each participant group continue to be acceptors. The original leader within each participant replica
group simply acts as a learner (and is no longer the leader/proposer/distinguished learner). With
this modification:

(i) what is the minimum time it takes for each node in the participant group to commit a transac-
tion after the leader of the coordinator group receives the “commit” command from the client?
(3 points)

(ii) how many messages are exchanged in the system before all nodes in the participant groups
commit the transaction? (Ignore any message that a process may send to itself). (3 points)



2. DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 points
Consider a Chord DHT with a 16-bit address space and the following 100 nodes (hexadecimal values in
parentheses).

209 (d1), 1759 (6df), 2233 (8b9), 2434 (982),

2775 (ad7), 4302 (10ce), 4540 (11bc), 4544 (11c0),

6112 (17e0), 6769 (1a71), 7590 (1da6), 8027 (1f5b),

8184 (1ff8), 10146 (27a2), 10636 (298c), 10810 (2a3a),

11147 (2b8b), 11841 (2e41), 12250 (2fda), 13178 (337a),

13669 (3565), 14157 (374d), 14551 (38d7), 15221 (3b75),

15250 (3b92), 15392 (3c20), 15470 (3c6e), 16201 (3f49),

20094 (4e7e), 21557 (5435), 22474 (57ca), 22716 (58bc),

22820 (5924), 23935 (5d7f), 24147 (5e53), 24317 (5efd),

24568 (5ff8), 24613 (6025), 25282 (62c2), 25336 (62f8),

26674 (6832), 26844 (68dc), 29578 (738a), 29696 (7400),

31216 (79f0), 31398 (7aa6), 31766 (7c16), 32172 (7dac),

32214 (7dd6), 32507 (7efb), 32608 (7f60), 33101 (814d),

33584 (8330), 36073 (8ce9), 36176 (8d50), 36470 (8e76),

38061 (94ad), 38362 (95da), 38700 (972c), 39140 (98e4),

39905 (9be1), 40363 (9dab), 40804 (9f64), 41615 (a28f),

44296 (ad08), 44784 (aef0), 45204 (b094), 47061 (b7d5),

47825 (bad1), 48410 (bd1a), 49032 (bf88), 49466 (c13a),

49990 (c346), 50922 (c6ea), 51135 (c7bf), 51946 (caea),

52019 (cb33), 52775 (ce27), 52943 (cecf), 53326 (d04e),

53576 (d148), 54199 (d3b7), 56746 (ddaa), 57346 (e002),

57419 (e04b), 57879 (e217), 58167 (e337), 58587 (e4db),

58897 (e611), 60500 (ec54), 60756 (ed54), 60813 (ed8d),

62387 (f3b3), 62801 (f551), 63008 (f620), 63489 (f801),

64822 (fd36), 65065 (fe29), 65198 (feae), 65376 (ff60),

For programmatic computations, these numbers have also been made available at:
https://courses.grainger.illinois.edu/ece428/sp2023/assets/hw/hw5-ids.txt

(a) (6 points) List the fingers of node 21557.

(b) (6 points) List the nodes that would be encountered on the lookup of the following keys by node
21557:

(i) 10100

(ii) 52500

(c) (4 points) A power outage takes out a few specific nodes: the ones whose identifiers are perfect
multiples of 3. Assume that each node maintains only one successor, and no stabilization algorithm
has had a chance to run, so the finger tables have not been updated. When a node in the normal
lookup protocol tries to contact a finger entry that is no longer alive (i.e. its attempt to connect
with that node fails), it switches to the next best option in its finger table that is alive. List the
nodes that would be encountered on the lookup of the key 52500 by node 21557 (include the failed
ones).
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3. MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 points
You are the IT administrator for a large class, whose records are maintained in the following key-value for-
mat: (k, v), with k = studentID (a 6-digit integer value), and v is a list of tuple (level, assignmentID, score),
where level is either UG (for an undergraduate student) or G (for a graduate student), assignmentID is
a unique identifier for an assignment, and score is the student’s score in that assignment. Please answer
the following questions in pseudo-code.

(a) (2 points) Write a MapReduce chain to compute the average score across all students for each
assignment. Your MapReduce chain must be of the form (map → reduce). The input to the map

tasks are the key-value pairs as specified above (key is studentID, and value is a list of tuple
(level, assignmentID, score)). The outputs of reduce tasks must be key-value pairs with each
assignmentID as key, and the average score (averaged across all students for that assignment) as
the value.

(i) Define the map function.

(ii) Define the reduce function.

(b) (2 points) You now need to compute the average score for each assignment computed across all
students in the same level (i.e. the average score across all undergraduate students, and the average
score across all graduate students). Your MapReduce chain must be of the form (map → reduce).
The input to the map tasks are the key-value pairs as specified above (key is studentID, and value is
a list of tuple (level, assignmentID, score)). The outputs of reduce tasks must be key-value pairs
with the tuple (assignmentID, level) as key, and the average score computed across all students in
the same level for that assignment as the value.

(i) Define the map function.

(ii) Define the reduce function.

(c) (6 points) Assume there are 80 nodes (or servers) in your MapReduce cluster. The class comprises
of 200 undergraduate students and 200 graduate students, and there are 10 assignments in total.
Modify and extend the MapReduce chain in Q3b to balance the load across the cluster nodes, such
that each node handles no more than ≈50 values at any given stage. Also explain how your modified
MapReduce chain satisfies the above requirement.

You can assume that, if allowed by your map-reduce semantics, the underlying framework perfectly
load-balances how different keys are sent to different nodes. The input to the first map function
in your chain, and the output of the last reduce function in your chain must be the same as that
specified in Q3b.
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