
Homework 4
CS425/ECE428 Spring 2023

Due: Monday, April 10 at 11:59 p.m.

1. Transaction Processing
A bank uses a transaction processing system that complies with ACID properties. Within each trans-
action, a user can issue one or more of the following operations: (i) DEPOSIT <account> <amount>

which deposits the specified amount into the specified account, (ii) WITHDRAW <account> <amount>

which withdraws the specified amount from the specified account, and (iii) BALANCE <account> which
immediately displays the current balance in the specified account (also including the effects of operations
previously executed within the same transaction). As a consistency check, if at the end of a transaction,
any account has a negative balance, the system aborts that transaction.

Consider the five transactions shown below that are executed serially (one after another) in order T1,
T2, T3, T4, T5. Answer the following questions, assuming all accounts referred in the transactions have
a balance of zero before T1 is executed.

T1: DEPOSIT A 20; DEPOSIT B 50; DEPOSIT C 40

T2: DEPOSIT A 30; WITHDRAW B 60; WITHDRAW C 10; BALANCE C

T3: DEPOSIT A 10; WITHDRAW B 40; WITHDRAW C 10; BALANCE B

T4: WITHDRAW A 50; DEPOSIT B 10; WITHDRAW C 20

T5: BALANCE A; BALANCE B; BALANCE C

(a) (5 points) For each transaction, state whether it gets committed or aborted and why.

(b) (5 points) What will be the result displayed by each of the BALANCE operations invoked in the
transactions?

2. Concurrency: Two-phase locking, Deadlocks, and Timestamped Ordering
Consider the following two transactions, each with five operations:

T1 T2
1 write E write A
2 read D write B
3 read B write C
4 read A read B
5 write C read D

(a) (2 points) Write down all the conflicting pairs of operations across the two transactions. (You can
refer to each operation as Tn.m; e.g., T2.1 is “write A”, T2.2 is “write B”, and so on).

(b) (3 points) Is the following interleaving of operations across T1 and T2 serially equivalent? Explain
why or why not.

T1 T2
write A

write E
read D
read B

write B
write C
read B

read A
read D

write C



(c) (4 points) Is there a non-serial interleaving of operations across T1 and T2, that could result from
using strict two-phase locking (with read-write locks), and is equivalent in effect to a serial execution
of T1 followed by T2? If yes, provide an example. If not, explain why.

(d) (4 points) Is there a non-serial interleaving of operations across T1 and T2, that could result from
using strict two-phase locking (with read-write locks), and is equivalent in effect to a serial execution
of T2 followed by T1? If yes, provide an example. If not, explain why.

(e) (4 points) Write down a partial interleaving of the operations across T1 and T2 that is compliant
with strict two-phase locking (with read-write locks) and leads to a deadlock. List which lock (and
in which mode – read or write) will be waited upon by each transaction in your deadlock.

(f) (4 points) Write down an interleaving of the operations across T1 and T2 that is serially equivalent,
but impossible with strict two-phase locking. Explain what makes the interleaving impossible with
strict two-phase locking.

(g) (4 points) Is there a non-serial interleaving of operations across T1 and T2, that could result from
using timestamped ordering, and is equivalent in effect to a serial execution of T1 followed by T2
(without any of these transaction getting aborted)? If not, explain why. If yes, provide an example
interleaving and indicate the relevant state maintained by the objects for timestamped ordering.
You can use the example format like “write X (X.committedTS = 1, X.RTS = [1,2], X.TW=[2])”
to indicate the state maintained by the object (i.e. timestamps for reads and tentative writes) after
an operation has been executed.

3. Two-Phase Commit
Figure 1 shows a system of three servers processing a distributed transaction. Server 1 is the coordinator
and interacts with the client. The network delay between the client and the coordinator, and among the
three servers is indicated in the figure.

Client

Server	1
(coordinator)

Server	2 Server	3

100ms

30ms

15ms 20ms

Figure 1: Figure for question 3

Any local processing at a server or self-messages take negligible time. The client issues a COMMIT
request for its transaction at time t=0s. Assuming no messages are lost, no server crashes, and no server
wishes to abort the transaction. Answer the following questions:

(a) (3 points) When will each of the three servers locally commit the transaction?

(b) (2 points) What is the earliest time at which the coordinator can safely send a message to the client
stating that the transaction will be successfully committed?

Page 2


