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Announcements

• HW2 Released, due on Sunday 10/6 in less than 2 weeks (start early, no 

extensions!)

• MP2 is already out, due soon 9/29 (no extensions!) 

• MP1 grades released (see Piazza post)

• HW1 solutions and grades released (see Piazza post)

• In class midterm October 10th

• Make sure you’re in class that day!

• There will be two rooms, different buildings (see Piazza and the website 

for which room you should go to)



The Key-value Abstraction

• (Business) Key → Value

• (twitter.com) tweet id → information about tweet

• (amazon.com) item number → information about 

it

• (kayak.com) Flight number → information about 

flight, e.g., availability

• (yourbank.com) Account number → information 

about it
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The Key-value Abstraction (2)

• It’s a dictionary datastructure.

• Insert, lookup, and delete by key

• E.g., hash table, binary tree

• But distributed.

• Sound familiar? Remember Distributed Hash 

tables (DHT) in P2P systems?

• It’s not surprising that key-value stores reuse 

many techniques from DHTs.
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Isn’t that just a database? 

• Yes, sort of

• Relational Database Management Systems 
(RDBMSs) have been around for ages

• MySQL is the most popular among them

• Data stored in tables

• Schema-based, i.e., structured tables

• Each row (data item) in a table has a primary key 
that is unique within that table

• Queried using SQL (Structured Query Language)

• Supports joins

5



Relational Database Example

Example SQL queries 

1. SELECT zipcode 

       FROM users 

       WHERE name = “Bob”

2.    SELECT url

       FROM blog

       WHERE id = 3

3. SELECT users.zipcode, blog.num_posts

       FROM users JOIN blog

       ON users.blog_url = blog.url

user_id name zipcode blog_url  blog_id

101 Alice   12345   alice.net  1

422 Charlie 45783  charlie.com  3

555 Bob     99910  bob.blogspot.com 2

users table

Primary keys

id url  last_updated   num_posts

1 alice.net  5/2/14  332

2 bob.blogspot.com     4/2/13  10003

3 charlie.com  6/15/14  7

blog table

Foreign keys

6



Mismatch with today’s workloads 

• Data: Large and unstructured

• Lots of random reads and writes

• Sometimes write-heavy

• Foreign keys rarely needed

• Joins infrequent
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Needs of Today’s Workloads

• Speed

• Avoid Single point of Failure (SPoF)

• Low TCO (Total cost of operation/ownership) 

• Fewer system administrators

• Incremental Scalability

• Scale out, not up

• What?
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Scale out, not Scale up

• Scale up = grow your cluster capacity by replacing with 
more powerful machines

• Traditional approach

• Not cost-effective, as you’re buying above the sweet 
spot on the price curve

• And you need to replace machines often

• Scale out = incrementally grow your cluster capacity by 
adding more COTS machines (Components Off the Shelf)

• Cheaper

• Over a long duration, phase in a few newer (faster) 
machines as you phase out a few older machines

• Used by most companies who run datacenters and 
clouds today

9

What are some advantages 

of scale out over scale up?



Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”

• Necessary API operations: get(key) and put(key, value)

• And some extended operations, e.g., “CQL” in 
Cassandra key-value store

• Tables

• “Column families” in Cassandra, “Table” in HBase, 
“Collection” in MongoDB

• Like RDBMS tables, but … 

• May be unstructured: May not have schemas 

• Some columns may be missing from some rows

• Don’t always support joins or have foreign keys

• Can have index tables, just like RDBMSs
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Key-value/NoSQL Data Model 

• Unstructured

• Columns 
Missing from 
some Rows

• No schema 
imposed

• No foreign 
keys, joins may 
not be 
supported

user_id name zipcode blog_url 
 
101 Alice   12345   alice.net 

422 Charlie  charlie.com 
 
555  99910  bob.blogspot.com 

users table

id url  last_updated  num_posts

1 alice.net  5/2/14  332

2 bob.blogspot.com       10003

3 charlie.com  6/15/14  

blog table

Key
Value

Key

Value
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Column-Oriented Storage

NoSQL systems often use column-oriented storage

• RDBMSs store an entire row together (on disk or at a 
server)

• NoSQL systems typically store a column together (or a 
group of columns). 

• Entries within a column are indexed and easy to 
locate, given a key (and vice-versa)

• Why useful?

• Range searches within a column are fast since you 
don’t need to fetch the entire database

• E.g., Get me all the blog_ids from the blog table that 
were updated within the past month 

• Search in the the last_updated column, fetch 
corresponding blog_id column

• Don’t need to fetch the other columns
12

Why is column-oriented storage 

better for modern workloads/data?



Next

Design of a real key-value store, Cassandra.

13



Cassandra

• A distributed key-value store

• Intended to run in a datacenter (and also across DCs)

• Originally designed at Facebook

• Open-sourced later, today an Apache project

• Some of the companies that use Cassandra in their 
production clusters

• IBM, Adobe, HP, eBay, Ericsson, Symantec

• Twitter, Spotify

• PBS Kids

• Netflix: uses Cassandra to keep track of your 
current position in the video you’re watching

• (Version from 2015)
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Let’s go Inside Cassandra: 
    Key -> Server Mapping

• How do you decide which server(s) a key-value 

resides on?
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Cassandra uses a Ring-based DHT but without finger tables or routing

Key→server mapping is the “Partitioner”

N80

0
Say m=7

N32

N45

Backup replicas for

key K13

N112

N96

N16

Read/write K13

Primary replica for

key K13

(Remember this?)

CoordinatorClient

One ring per DC
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Why is it okay to store the 

entire membership list at 

all nodes?



Data Placement Strategies

• Replication Strategy: two options:

1. SimpleStrategy

2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner, of which there are two kinds

1. RandomPartitioner: Chord-like hash partitioning

2. ByteOrderedPartitioner: Assigns ranges of keys to servers. 

• Easier for range queries (e.g., Get me all twitter users starting 

with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments

• Two replicas per DC

• Three replicas per DC

• Per DC

• First replica placed according to Partitioner

• Then go clockwise around ring until you hit a different rack

17

Why have replica on a 

different rack?



Snitches

• Maps: IPs to racks and DCs. Configured in cassandra.yaml 
config file

• Some options:

• SimpleSnitch: Unaware of Topology (Rack-unaware)

• RackInferring: Assumes topology of network by 
octet of server’s IP address

• 101.201.202.203 = x.<DC octet>.<rack 
octet>.<node octet>

• PropertyFileSnitch: uses a config file

• EC2Snitch: uses EC2.

• EC2 Region = DC

• Availability zone = rack

• Other snitch options available
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Writes 

• Need to be lock-free and fast (no reads or disk seeks)

• Client sends write to one coordinator node in 
Cassandra cluster 

• Coordinator may be per-key, or per-client, or 
per-query

• Per-key Coordinator ensures writes for the key 
are serialized

• Coordinator uses Partitioner to send query to all 
replica nodes responsible for key

• When X replicas respond, coordinator returns an 
acknowledgement to the client

• X? We’ll see later.
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Writes (2)

• Always writable: Hinted Handoff mechanism

• If any replica is down, the coordinator writes to 
all other replicas, and keeps the write locally 
until down replica comes back up.

• When all replicas are down, the Coordinator 
(front end) buffers writes (for up to a few hours). 

• One ring per datacenter

• Per-DC coordinator elected to coordinate with 
other DCs

• Election done via Zookeeper, which runs a 
Paxos (consensus) variant

• Paxos: elsewhere in this course
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Writes at a replica node

On receiving a write

1. Log it in disk commit log (for failure recovery)

2. Make changes to appropriate memtables

• Memtable = In-memory representation of multiple key-value pairs

• Typically append-only datastructure (fast)

• Cache that can be searched by key

• Write-back cache as opposed to write-through

Later, when memtable is full or old, flush to disk

• Data File: An SSTable (Sorted String Table) – list of key-value pairs, 

sorted by key

• SSTables are immutable (once created, they don’t change)

• Index file: An SSTable of (key, position in data sstable) pairs

• And a Bloom filter (for efficient search) – next slide 21

How slow is a disk seek 

compared to DRAM?

a. 5x b.   50x

c. 5000x d. 50000x



Bloom Filter

• Compact way of representing a set of items

• Checking for existence in set is cheap

• Some probability of false positives: an item not in set may 
check true as being in set

• Never false negatives
Large Bit Map

0
1

2

3

6

9

127

111

Key-K

Hash1

Hash2

Hashm

On insert, set all hashed bits.

On check-if-present, 
return true if all hashed bits 
set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
•  3200 bits
• FP rate = 0.02%

.

.
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What if the false positive rate of 

Bloom filter is too high?



Compaction

Data updates accumulate over time and SStables and 

logs need to be compacted

• The process of compaction merges 

SSTables, i.e., by merging updates for a key

• Run periodically and locally at each server

23

When flushing Memtables why 

not update SSTables in-place?



Deletes

Delete: don’t delete item right away

• Add a tombstone to the log 

• Eventually, when compaction encounters 

tombstone it will delete item
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Reads 

Read: Similar to writes, except

• Coordinator can contact X replicas (e.g., in same rack)

• Coordinator sends read to replicas that have responded quickest in 
past

• When X replicas respond, coordinator returns the latest-
timestamped value from among those X

• (X? We’ll see later.)

• Coordinator also fetches value from other replicas

• Checks consistency in the background, initiating a read repair if 
any two values are different

• This mechanism seeks to eventually bring all replicas up to date

• At a replica

• Read looks at Memtables first, and then SSTables

• A row may be split across multiple SSTables => reads need to touch 
multiple SSTables => reads slower than writes (but still fast)

25

Which is faster in Cassandra – 

reads or writes?



Membership

• Any server in cluster could be the coordinator

• So every server needs to maintain a list of all the 

other servers that are currently in the server

• List needs to be updated automatically as servers 

join, leave, and fail

26



Cluster Membership – Gossip-Style 

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4

3

Protocol: 

•Nodes periodically gossip their 

membership list

•On receipt, the local membership list is 

updated, as shown

•If any heartbeat older than Tfail, node 

is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(Remember this?) 27



Suspicion Mechanisms in Cassandra

• Suspicion mechanisms to adaptively set the timeout based 
on underlying network and failure behavior

• Accrual detector: Failure Detector outputs a value (PHI) 
representing suspicion

• Apps set an appropriate threshold

• PHI calculation for a member

• Inter-arrival times for gossip messages

• PHI(t) = 

 – log(CDF or Probability(t_now – t_last))/log 10

• PHI basically determines the detection timeout, but 
takes into account historical inter-arrival time 
variations for gossiped heartbeats

• In practice, PHI = 5 => 10-15 sec detection time

28



Cassandra Vs. RDBMS

• MySQL is one of the most popular (and has been for 
a while)

• On > 50 GB data

• MySQL 

• Writes 300 ms avg

• Reads 350 ms avg

• Cassandra 

• Writes 0.12 ms avg

• Reads 15 ms avg

• Orders of magnitude faster

• What’s the catch? What did we lose?
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Mystery of “X”: CAP Theorem

• Proposed by Eric Brewer (Berkeley)

• Subsequently proved by Gilbert and Lynch (NUS and 
MIT)

• In a distributed system you can satisfy at 

    most 2 out of the 3 guarantees:

1. Consistency: all nodes see same data at any time, 
or reads return latest written value by any client

2. Availability: the system allows operations all the 
time, and operations return quickly

3. Partition-tolerance: the system continues to work 
in spite of network partitions
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Why is Availability Important? 

• Availability = Reads/writes complete reliably and quickly.

• Measurements have shown that a 500 ms increase in 
latency for operations at Amazon.com or at Google.com 
can cause a 20% drop in revenue. 

• More recent measurements: Amazon: 100 ms 
increase → 1% drop in sales. Akamai: 100 ms → 7% 
drop. 

• At Amazon, each added millisecond of latency implies a 
$6M yearly loss.

• More recent measurements: Amazon: 1 s → $1.6 B.

• User cognitive drift: If more than a second elapses 
between clicking and material appearing, the user’s mind 
is already somewhere else

• SLAs (Service Level Agreements) written by providers 
predominantly deal with latencies faced by clients. 31



Why is Consistency Important?

• Consistency = all nodes see same data at any 
time, or reads return latest written value by any 
client.

• When you access your bank or investment 
account via multiple clients (laptop, workstation, 
phone, tablet), you want the updates done from 
one client to be visible to other clients.

• When thousands of customers are looking to 
book a flight, all updates from any client (e.g., 
book a flight) should be accessible by other 
clients.
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Why is Partition-Tolerance Important?

• Partitions can happen across datacenters when 

the Internet gets disconnected

• Internet router outages

• Under-sea cables cut

• DNS not working

• Partitions can also occur within a datacenter, 

e.g., a rack switch outage

• Still desire system to continue functioning 

normally under this scenario
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CAP Theorem Fallout

• Since partition-tolerance is essential in today’s cloud 
computing systems, CAP theorem implies that a 
system has to choose between consistency and 
availability

• Cassandra

• Eventual (weak) consistency, Availability, 
Partition-tolerance 

• Traditional RDBMSs

• Strong consistency over availability under a 
partition

34



CAP Tradeoff

• Starting point for 

NoSQL Revolution

• A distributed storage 

system can achieve at 

most two of C, A, and 

P.

• When partition-

tolerance is important, 

you have to choose 

between consistency 

and availability

Consistency

Partition-tolerance Availability

RDBMSs 

(non-replicated)

Cassandra, Riak, 

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner
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Eventual Consistency 

• If all writes stop (to a key), then all its values 
(replicas) will converge eventually.

• If writes continue, then system always tries to keep 
converging.
• Moving “wave” of updated values lagging behind the latest values 

sent by clients, but always trying to catch up.

• May still return stale values to clients (e.g., if many 
back-to-back writes).

• But works well when there a few periods of low 
writes – system converges quickly.

36

What mechanisms in Cassandra 

we saw earlier helps with 

eventual convergence? 



RDBMS vs. Key-value stores

• While RDBMS provide ACID 

• Atomicity 

• Consistency 

• Isolation

• Durability

• Key-value stores like Cassandra provide BASE

• Basically Available Soft-state Eventual 

Consistency

• Prefers Availability over Consistency
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Back to Cassandra: Mystery of X

• Cassandra has consistency levels

• Client is allowed to choose a consistency level for each 
operation (read/write)

• ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies 
quickly to client

• ALL: all replicas

• Ensures strong consistency, but slowest

• ONE: at least one replica

• Faster than ALL

• QUORUM: quorum across all replicas in all 
datacenters (DCs)

• What?
38



Quorums?

In a nutshell:

• Quorum = majority 

• > 50%

• Any two quorums 
intersect

• Client 1 does a 
write in red quorum 

• Then client 2 does 
read in blue 
quorum

• At least one server in blue 
quorum returns latest 
write

• Quorums faster than ALL, 
but still ensure strong 
consistency

Five replicas of a key-value pair

A second 

   quorumA quorum

A server
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Quorums in Detail

• Several key-value/NoSQL stores (e.g., Riak and 
Cassandra) use quorums.

• Reads

• Client specifies value of R (≤ N = total number 
of replicas of that key). 

• R = read consistency level.

• Coordinator waits for R replicas to respond 
before sending result to client. 

• In background, coordinator checks for 
consistency of remaining (N-R) replicas, and 
initiates read repair if needed.
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Quorums in Detail (Contd.)

• Writes come in two flavors

• Client specifies W (≤ N)

• W = write consistency level.

• Client writes new value to W replicas and 

returns. Two flavors:

• Coordinator blocks until quorum is 

reached.

• Asynchronous: Just write and return.

41

When you set read and write consistency 

as QUORUM, does the system choose 

consistency or availability upon partitions? 



Quorums in Detail (Contd.)

• R = read replica count, W = write replica count

• Two necessary conditions:

1. W+R > N

2. W > N/2

• Select values based on application 

• (W=1, R=1): very few writes and reads

• (W=N, R=1): great for read-heavy workloads

• (W=N/2+1, R=N/2+1): great for write-heavy 

workloads

• (W=1, R=N):

42

great for write-heavy workloads 

with mostly one client writing per key

When can you set W=1 and still get strong 

consistency? 



Cassandra Consistency Levels (Contd.)

• Client is allowed to choose a consistency level for each operation 
(read/write)
• ANY: any server (may not be replica)

• Fastest: coordinator may cache write and reply quickly to client

• ALL: all replicas
• Slowest, but ensures strong consistency

• ONE: at least one replica
• Faster than ALL

• QUORUM: quorum across all replicas in all 
datacenters (DCs)

• Global consistency, but still fast

• LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

• EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies
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Types of Consistency

• Cassandra offers Eventual Consistency

• Are there other types of weak consistency 

models?
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Consistency Spectrum

Strong 

(e.g., Sequential)Eventual

More consistency

Faster reads and writes
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Spectrum Ends: Eventual Consistency

• Cassandra offers Eventual Consistency

• If writes to a key stop, all replicas of key 

will converge

• Originally from Amazon’s Dynamo and 

LinkedIn’s Voldemort systems

Strong 

(e.g., Sequential)Eventual

More consistency

Faster reads and writes
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Spectrum Ends: Strong Consistency Models

• Linearizability: Each operation by a client is visible (or available) 
instantaneously to all other clients
• Instantaneously in real time

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the 

processors were executed in some sequential order, and the operations of each 
individual processor appear in this sequence in the order specified by its 
program.

• After the fact, find a “reasonable” ordering of the operations (can re-order 
operations) that obeys sanity (consistency) at all clients, and across clients.

• Transaction ACID properties, e.g., newer key-value/NoSQL stores 
(sometimes called “NewSQL”)
• Hyperdex [Cornell]

• Spanner [Google]

• Yesquel [Microsoft Research], Tapir [UW], Callas [UT], Rifl [Stanford], …
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Newer Consistency Models

• Striving towards strong consistency

• While still trying to maintain high availability 

and partition-tolerance

Strong 

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic
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Newer Consistency Models (Contd.)

• Per-key sequential: Per key, all operations have a global 

order

• CRDTs (Commutative Replicated Data Types): Data 

structures for which commutated writes give same result 

[INRIA, France]

• E.g., value == int, and only op allowed is +1

• Effectively, servers don’t need to worry about 

consistency

Strong 

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic
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Newer Consistency Models (Contd.)

• Red-blue Consistency: Rewrite client transactions to 

separate ops into red ops vs. blue ops [MPI-SWS Germany]

• Blue ops can be executed (commutated) in any order 

across DCs

• Red ops need to be executed in the same order at each 

DC

Strong 

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic
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Newer Consistency Models (Contd.)

Strong 

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Causal Consistency: Reads must respect partial order based on information flow [Princeton, 

CMU]

Client A

Client B

Client C

W(K1, 33)

W(K2, 55)

R(K1) must return 33W(K1, 22) R(K1) may return 

22 or 33

Time
R(K1) returns 33

R(K2) returns 55

Causality, not messages
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Which Consistency Model should you use?

• Use the lowest consistency (to the left) 

consistency model that is “correct” for your 

application

• Gets you fastest availability

Strong 

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic
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HBase

• Google’s BigTable was first “blob-based” storage 
system

• Yahoo! Open-sourced it → HBase

• Major Apache project today

• Facebook uses HBase internally

• API functions

• Get/Put(row)

• Scan(row range, filter) – range queries

• MultiPut

• Unlike Cassandra, HBase prefers consistency (over 
availability)

• (Version of 2014)
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HBase Architecture

HDFS

. . .

HRegionServerHRegionServer 

 

Hregion  

Store   

StoreFile

HFile

StoreFile

HFile
…

MemStore Store   

StoreFile

HFile

StoreFile

HFile
…

MemStore

. . .

HLog

. . .

Client HMaster

Zookeeper

Small group of servers running

Zab, a consensus protocol (Paxos-like)
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HBase Storage hierarchy

• HBase Table

• Split it into multiple regions: replicated across servers

• ColumnFamily  = subset of columns with similar query 
patterns

• One Store per combination of ColumnFamily + region

• Memstore for each Store: in-memory updates to 
Store; flushed to disk when full

• StoreFiles for each store for each region: 
where the data lives

        - HFile

• HFile

• SSTable from Google’s BigTable
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HFile

Data … Data …  Metadata, file info, indices, and trailer

Magic      (Key, value)  (Key, value)                        … (Key, value)

Key          Value    Row         Row     Col Family    Col Family    Col            Timestamp       Key   Value

length        length   length                     length                              Qualifier                            type

SSN:000-01-2345 Demographic

Information

Ethnicity

HBase Key 56



Strong Consistency: HBase Write-Ahead Log

Write to HLog before writing to MemStore

Helps recover from failure by replaying Hlog.

Client

HRegionServer

Log flush

HLog

HRegion

HRegion

.

.

.

(k1, k2, k3, k4)

(k1, k2)

(k3, k4)

Store   

StoreFile

HFile

StoreFile

HFile
…

MemStore

Store   

StoreFile

HFile

StoreFile

HFile
…

MemStore

.

.

.1. (k1)

2. (k1)
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Log Replay

• After recovery from failure, or upon bootup 

(HRegionServer/HMaster)

• Replay any stale logs (use timestamps to 

find out where the database is w.r.t. the logs)

• Replay: add edits to the MemStore
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Cross-Datacenter Replication

• Single “Leader” (“Master”) cluster

• Other “Follower” (“Slave”) clusters replicate the 
same tables

• Leader cluster synchronously sends HLogs over to 
follower clusters

• Coordination among clusters is via Zookeeper

• Zookeeper can be used like a file system to store 
control information

1. /hbase/replication/state

2. /hbase/replication/peers/<peer cluster number>

3. /hbase/replication/rs/<hlog>
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MongoDB: A NoSQL System Installation

• MongoDB material not included in syllabus 

• http://www.mongodb.org/downloads

• http://docs.mongodb.org/manual/installation

• mongod --dbpath <path-to-data>

• Mongo

• (Version of 2015)

• (MongoDB slides adapted from Mainak Ghosh’s 
slides)

60

http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/installation


Data Model

• Stores data in form of BSON (Binary JavaScript 

Object Notation) documents

 {

  name: "travis",

  salary: 30000,

  designation: "Computer Scientist",

  teams: [ "front-end",  "database" ]

 }

• Group of related documents with a shared 

common index is a collection
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MongoDB: Typical Query

Query all employee names with salary greater than 18000 sorted in ascending order

db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1})

               Collection             Condition       Projection        Modifier

{salary:25000, …}

{salary:10000, …}

{salary:20000, …}

{salary:2000, …}

{salary:30000, …}

{salary:21000, …}

{salary:5000, …}

{salary:50000, …}

{salary:25000, …}

{salary:20000, …}

{salary:30000, …}

{salary:21000, …}

{salary:50000, …}

{salary:20000, …}

{salary:21000, …}

{salary:25000, …}

{salary:30000, …}

{salary:50000, …}
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Insert

Insert a row entry for new employee Sally

db.employee.insert({

  name: "sally",

  salary: 15000,

  designation: "MTS",

  teams: [ "cluster-management" ]

  })`
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Update

All employees with salary greater than 18000 get a designation of Manager

        db.employee.update(

Update Criteria  {salary:{$gt:18000}},

Update Action  {$set: {designation: "Manager"}},

Update Option  {multi: true}
        )

Multi-option allows multiple document update
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Delete

Remove all employees who earn less than 10000

   db.employee.remove(

Remove Criteria  {salary:{$lt:10000}},

   )

Can accept a flag to limit the number of documents removed
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Typical MongoDB Deployment

• Data split into chunks, based on 
shard key (~ primary key)

• Either use hash or range-
partitioning

• Shard: collection of chunks
• Shard assigned to a replica set 
• Replica set consists of multiple 

mongod servers (typically 3 
mongod’s)

• Replica set members are mirrors of 
each other

• One is primary
• Others are secondaries

• Routers: mongos server receives 
client queries and routes them to 
right replica set

• Config server: Stores collection level 
metadata.

Mongod
Mongod

mongod

Mongod
Mongod

Config

Router (mongos) Router (mongos)

Mongod
Mongod

mongod
Mongod

Mongod
mongod

1
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3

2

6

Replica Set
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Replication

Secondary

Primary

SecondaryHeartbeat

Write Read
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Replication

• Uses an oplog (operation log) for data sync up

• Oplog maintained at primary, delta 

transferred to secondary continuously/every 

once in a while

• When needed, Leader Election protocol elects a 

primary

• Some mongod servers do not maintain data but 

can vote – called as Arbiters
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Read Preference

• (Updated 2016 v3.2)

• Determine where to route read operation

• Default is primary. Some other options are 

• primary-preferred

• secondary

• nearest

• majority

• Helps reduce latency, improve throughput

• Reads from secondary may fetch stale data
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Write Concern

• (Updated 2016 v3.2)

• Determines the guarantee that MongoDB 

provides on the success of a write operation

• 0: no ack

• 1: ack, from primary

• majority

• Weaker write concern implies faster write time
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Write operation performance

• Journaling: Write-ahead logging to an on-disk 

journal for durability

• Journal may be memory-mapped

• Indexing: Every write needs to update every 

index associated with the collection
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Balancing

• Over time, some chunks may get larger than 

others

• Splitting: Upper bound on chunk size; when hit, 

chunk is split

• Balancing: Migrates chunks among shards if 

there is an uneven distribution
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Consistency

• Either strongly consistent or eventually 

consistent

• Depending on combination of read 

preference and write concern

• CAP Theorem: With Strong consistency, under 

partition, MongoDB becomes write-unavailable 

thereby ensuring consistency
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Performance

• 30 – 50x faster than MySQL Server 2008 for 

writes [1]

• At least 3x faster for reads [1]

• MongoDB 2.2.2 offers slower throughput for 

different YCSB workloads compared to 

Cassandra [2]

[1] http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-

performance-showdown/

[2] http://hyperdex.org/performance/
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Summary

• Traditional Databases (RDBMSs) work with strong consistency, and 

offer ACID

• Modern workloads don’t need such strong guarantees, but do need 

fast response times (availability)

• Unfortunately, CAP theorem

• Key-value/NoSQL systems offer BASE

• Eventual consistency, and a variety of other consistency models 

striving towards strong consistency

• We discussed design of

• Cassandra

• HBase

• MongoDB
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Optional: Some more MongoDB 
queries



Insert

Insert a row entry for new employee Sally

use records  -- Creates a database

db.employee.insert({
  name: "Sally",
  salary: 15000,
  designation: "MTS",
  teams: "cluster-management"
  })

Also can use save instead of insert



Bulk Load

people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", 
"Greg", "Steve", "Kristina", "Katie", "Jeff"];

money = [10000, 5000, 8000, 2000];

position = ["MTS", "Computer Scientist", "Manager", "Director"];

groups = ["cluster-management", "human-resource", "backend", "ui"];

for(var i=0; i<10000; i++){

 name = people[Math.floor(Math.random()*people.length)];

 salary = money[Math.floor(Math.random()*money.length)];

 designation = 
position[Math.floor(Math.random()*position.length)];

 teams = groups[Math.floor(Math.random()*groups.length)];

 db.employee.save({name:name, salary:salary, 
designation:designation, teams:teams});

}



Query

• db.employee.find()

• db.employee.find({name: "Sally"})

• var cursor = db.employee.find({salary: {$in: 

[5000, 2000] } } )

• Use next() to access the rest of the records



Query

• db.employee.find({name: "Steve", salary: {$lt: 

3000} } )

• db.employee.find( { $or: [ { name: "Bill" }, { 

salary: { $gt: 9000 } } ] } )

• Find records of all managers who earn more than 

5000

• db.employee.find({designation:"Manager", 

salary: {$gt: 5000}})



Aggregation Commands

• db.employee.count()

• How many employees with name Steve?

• db.employee.find({name: "Steve"}).count()

• db.employee.find({name: "Steve"}).skip(10)

• db.employee.find({name: "Steve"}).limit(10)



Modify

• Increment salary of all managers by 1000

• db.employee.update( { designation : "Manager" 

}, { $inc : { salary : 1000 } } )

• db.employee.update( { designation : "Manager" 

}, { $inc : { salary : 1000 } } , { multi: true } )

• Increment salary of all managers working in 

cluster-management group by 5000

• db.employee.update( { designation : "Manager", 

teams: "cluster-management"}, { $inc : { salary : 

5000 } } , { multi: true } )



Remove

• db.employee.remove( { name : "Sally" } )

• Remove all Computer Scientist in the ui division

• db.employee.remove( {teams: "ui", designation: 

"Computer Scientist"} )



Announcements

• MP2 due 9/29 (demos on 9/30)

• HW2 Released, due on Sunday10/6 (start early, no extensions!)

• In class midterm October 10th

• Make sure you’re in class that day!

• There will be two rooms, one in different part of campus. 

• See Piazza and the website for which room you should go to.
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