
CS 425 / ECE 428
Distributed Systems

Fall 2024

Aishwarya Ganesan

w/ Indranil Gupta (Indy)

Lecture 9-11: Key-Value/NoSQL Stores
All slides © IG

Announcements

• HW2 Released, due on Sunday 10/6 in less than 2 weeks (start early, no

extensions!)

• MP2 is already out, due soon 9/29 (no extensions!)

• MP1 grades released (see Piazza post)

• HW1 solutions and grades released (see Piazza post)

• In class midterm October 10th

• Make sure you’re in class that day!

• There will be two rooms, different buildings (see Piazza and the website

for which room you should go to)

The Key-value Abstraction

• (Business) Key → Value

• (twitter.com) tweet id → information about tweet

• (amazon.com) item number → information about

it

• (kayak.com) Flight number → information about

flight, e.g., availability

• (yourbank.com) Account number → information

about it

3

The Key-value Abstraction (2)

• It’s a dictionary datastructure.

• Insert, lookup, and delete by key

• E.g., hash table, binary tree

• But distributed.

• Sound familiar? Remember Distributed Hash

tables (DHT) in P2P systems?

• It’s not surprising that key-value stores reuse

many techniques from DHTs.

4

Isn’t that just a database?

• Yes, sort of

• Relational Database Management Systems
(RDBMSs) have been around for ages

• MySQL is the most popular among them

• Data stored in tables

• Schema-based, i.e., structured tables

• Each row (data item) in a table has a primary key
that is unique within that table

• Queried using SQL (Structured Query Language)

• Supports joins

5

Relational Database Example

Example SQL queries

1. SELECT zipcode

 FROM users

 WHERE name = “Bob”

2. SELECT url

 FROM blog

 WHERE id = 3

3. SELECT users.zipcode, blog.num_posts

 FROM users JOIN blog

 ON users.blog_url = blog.url

user_id name zipcode blog_url blog_id

101 Alice 12345 alice.net 1

422 Charlie 45783 charlie.com 3

555 Bob 99910 bob.blogspot.com 2

users table

Primary keys

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 4/2/13 10003

3 charlie.com 6/15/14 7

blog table

Foreign keys

6

Mismatch with today’s workloads

• Data: Large and unstructured

• Lots of random reads and writes

• Sometimes write-heavy

• Foreign keys rarely needed

• Joins infrequent

7

Needs of Today’s Workloads

• Speed

• Avoid Single point of Failure (SPoF)

• Low TCO (Total cost of operation/ownership)

• Fewer system administrators

• Incremental Scalability

• Scale out, not up

• What?

8

Scale out, not Scale up

• Scale up = grow your cluster capacity by replacing with
more powerful machines

• Traditional approach

• Not cost-effective, as you’re buying above the sweet
spot on the price curve

• And you need to replace machines often

• Scale out = incrementally grow your cluster capacity by
adding more COTS machines (Components Off the Shelf)

• Cheaper

• Over a long duration, phase in a few newer (faster)
machines as you phase out a few older machines

• Used by most companies who run datacenters and
clouds today

9

What are some advantages

of scale out over scale up?

Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”

• Necessary API operations: get(key) and put(key, value)

• And some extended operations, e.g., “CQL” in
Cassandra key-value store

• Tables

• “Column families” in Cassandra, “Table” in HBase,
“Collection” in MongoDB

• Like RDBMS tables, but …

• May be unstructured: May not have schemas

• Some columns may be missing from some rows

• Don’t always support joins or have foreign keys

• Can have index tables, just like RDBMSs

10

Key-value/NoSQL Data Model

• Unstructured

• Columns
Missing from
some Rows

• No schema
imposed

• No foreign
keys, joins may
not be
supported

user_id name zipcode blog_url

101 Alice 12345 alice.net

422 Charlie charlie.com

555 99910 bob.blogspot.com

users table

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 10003

3 charlie.com 6/15/14

blog table

Key
Value

Key

Value

11

Column-Oriented Storage

NoSQL systems often use column-oriented storage

• RDBMSs store an entire row together (on disk or at a
server)

• NoSQL systems typically store a column together (or a
group of columns).

• Entries within a column are indexed and easy to
locate, given a key (and vice-versa)

• Why useful?

• Range searches within a column are fast since you
don’t need to fetch the entire database

• E.g., Get me all the blog_ids from the blog table that
were updated within the past month

• Search in the the last_updated column, fetch
corresponding blog_id column

• Don’t need to fetch the other columns
12

Why is column-oriented storage

better for modern workloads/data?

Next

Design of a real key-value store, Cassandra.

13

Cassandra

• A distributed key-value store

• Intended to run in a datacenter (and also across DCs)

• Originally designed at Facebook

• Open-sourced later, today an Apache project

• Some of the companies that use Cassandra in their
production clusters

• IBM, Adobe, HP, eBay, Ericsson, Symantec

• Twitter, Spotify

• PBS Kids

• Netflix: uses Cassandra to keep track of your
current position in the video you’re watching

• (Version from 2015)

14

Let’s go Inside Cassandra:
 Key -> Server Mapping

• How do you decide which server(s) a key-value

resides on?

15

Cassandra uses a Ring-based DHT but without finger tables or routing

Key→server mapping is the “Partitioner”

N80

0
Say m=7

N32

N45

Backup replicas for

key K13

N112

N96

N16

Read/write K13

Primary replica for

key K13

(Remember this?)

CoordinatorClient

One ring per DC

16

Why is it okay to store the

entire membership list at

all nodes?

Data Placement Strategies

• Replication Strategy: two options:

1. SimpleStrategy

2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner, of which there are two kinds

1. RandomPartitioner: Chord-like hash partitioning

2. ByteOrderedPartitioner: Assigns ranges of keys to servers.

• Easier for range queries (e.g., Get me all twitter users starting

with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments

• Two replicas per DC

• Three replicas per DC

• Per DC

• First replica placed according to Partitioner

• Then go clockwise around ring until you hit a different rack

17

Why have replica on a

different rack?

Snitches

• Maps: IPs to racks and DCs. Configured in cassandra.yaml
config file

• Some options:

• SimpleSnitch: Unaware of Topology (Rack-unaware)

• RackInferring: Assumes topology of network by
octet of server’s IP address

• 101.201.202.203 = x.<DC octet>.<rack
octet>.<node octet>

• PropertyFileSnitch: uses a config file

• EC2Snitch: uses EC2.

• EC2 Region = DC

• Availability zone = rack

• Other snitch options available

18

Writes

• Need to be lock-free and fast (no reads or disk seeks)

• Client sends write to one coordinator node in
Cassandra cluster

• Coordinator may be per-key, or per-client, or
per-query

• Per-key Coordinator ensures writes for the key
are serialized

• Coordinator uses Partitioner to send query to all
replica nodes responsible for key

• When X replicas respond, coordinator returns an
acknowledgement to the client

• X? We’ll see later.

19

Writes (2)

• Always writable: Hinted Handoff mechanism

• If any replica is down, the coordinator writes to
all other replicas, and keeps the write locally
until down replica comes back up.

• When all replicas are down, the Coordinator
(front end) buffers writes (for up to a few hours).

• One ring per datacenter

• Per-DC coordinator elected to coordinate with
other DCs

• Election done via Zookeeper, which runs a
Paxos (consensus) variant

• Paxos: elsewhere in this course

20

Writes at a replica node

On receiving a write

1. Log it in disk commit log (for failure recovery)

2. Make changes to appropriate memtables

• Memtable = In-memory representation of multiple key-value pairs

• Typically append-only datastructure (fast)

• Cache that can be searched by key

• Write-back cache as opposed to write-through

Later, when memtable is full or old, flush to disk

• Data File: An SSTable (Sorted String Table) – list of key-value pairs,

sorted by key

• SSTables are immutable (once created, they don’t change)

• Index file: An SSTable of (key, position in data sstable) pairs

• And a Bloom filter (for efficient search) – next slide 21

How slow is a disk seek

compared to DRAM?

a. 5x b. 50x

c. 5000x d. 50000x

Bloom Filter

• Compact way of representing a set of items

• Checking for existence in set is cheap

• Some probability of false positives: an item not in set may
check true as being in set

• Never false negatives
Large Bit Map

0
1

2

3

6

9

127

111

Key-K

Hash1

Hash2

Hashm

On insert, set all hashed bits.

On check-if-present,
return true if all hashed bits
set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

22

What if the false positive rate of

Bloom filter is too high?

Compaction

Data updates accumulate over time and SStables and

logs need to be compacted

• The process of compaction merges

SSTables, i.e., by merging updates for a key

• Run periodically and locally at each server

23

When flushing Memtables why

not update SSTables in-place?

Deletes

Delete: don’t delete item right away

• Add a tombstone to the log

• Eventually, when compaction encounters

tombstone it will delete item

24

Reads

Read: Similar to writes, except

• Coordinator can contact X replicas (e.g., in same rack)

• Coordinator sends read to replicas that have responded quickest in
past

• When X replicas respond, coordinator returns the latest-
timestamped value from among those X

• (X? We’ll see later.)

• Coordinator also fetches value from other replicas

• Checks consistency in the background, initiating a read repair if
any two values are different

• This mechanism seeks to eventually bring all replicas up to date

• At a replica

• Read looks at Memtables first, and then SSTables

• A row may be split across multiple SSTables => reads need to touch
multiple SSTables => reads slower than writes (but still fast)

25

Which is faster in Cassandra –

reads or writes?

Membership

• Any server in cluster could be the coordinator

• So every server needs to maintain a list of all the

other servers that are currently in the server

• List needs to be updated automatically as servers

join, leave, and fail

26

Cluster Membership – Gossip-Style

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4

3

Protocol:

•Nodes periodically gossip their

membership list

•On receipt, the local membership list is

updated, as shown

•If any heartbeat older than Tfail, node

is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(Remember this?) 27

Suspicion Mechanisms in Cassandra

• Suspicion mechanisms to adaptively set the timeout based
on underlying network and failure behavior

• Accrual detector: Failure Detector outputs a value (PHI)
representing suspicion

• Apps set an appropriate threshold

• PHI calculation for a member

• Inter-arrival times for gossip messages

• PHI(t) =

 – log(CDF or Probability(t_now – t_last))/log 10

• PHI basically determines the detection timeout, but
takes into account historical inter-arrival time
variations for gossiped heartbeats

• In practice, PHI = 5 => 10-15 sec detection time

28

Cassandra Vs. RDBMS

• MySQL is one of the most popular (and has been for
a while)

• On > 50 GB data

• MySQL

• Writes 300 ms avg

• Reads 350 ms avg

• Cassandra

• Writes 0.12 ms avg

• Reads 15 ms avg

• Orders of magnitude faster

• What’s the catch? What did we lose?

29

Mystery of “X”: CAP Theorem

• Proposed by Eric Brewer (Berkeley)

• Subsequently proved by Gilbert and Lynch (NUS and
MIT)

• In a distributed system you can satisfy at

 most 2 out of the 3 guarantees:

1. Consistency: all nodes see same data at any time,
or reads return latest written value by any client

2. Availability: the system allows operations all the
time, and operations return quickly

3. Partition-tolerance: the system continues to work
in spite of network partitions

30

Why is Availability Important?

• Availability = Reads/writes complete reliably and quickly.

• Measurements have shown that a 500 ms increase in
latency for operations at Amazon.com or at Google.com
can cause a 20% drop in revenue.

• More recent measurements: Amazon: 100 ms
increase → 1% drop in sales. Akamai: 100 ms → 7%
drop.

• At Amazon, each added millisecond of latency implies a
$6M yearly loss.

• More recent measurements: Amazon: 1 s → $1.6 B.

• User cognitive drift: If more than a second elapses
between clicking and material appearing, the user’s mind
is already somewhere else

• SLAs (Service Level Agreements) written by providers
predominantly deal with latencies faced by clients. 31

Why is Consistency Important?

• Consistency = all nodes see same data at any
time, or reads return latest written value by any
client.

• When you access your bank or investment
account via multiple clients (laptop, workstation,
phone, tablet), you want the updates done from
one client to be visible to other clients.

• When thousands of customers are looking to
book a flight, all updates from any client (e.g.,
book a flight) should be accessible by other
clients.

32

Why is Partition-Tolerance Important?

• Partitions can happen across datacenters when

the Internet gets disconnected

• Internet router outages

• Under-sea cables cut

• DNS not working

• Partitions can also occur within a datacenter,

e.g., a rack switch outage

• Still desire system to continue functioning

normally under this scenario

33

CAP Theorem Fallout

• Since partition-tolerance is essential in today’s cloud
computing systems, CAP theorem implies that a
system has to choose between consistency and
availability

• Cassandra

• Eventual (weak) consistency, Availability,
Partition-tolerance

• Traditional RDBMSs

• Strong consistency over availability under a
partition

34

CAP Tradeoff

• Starting point for

NoSQL Revolution

• A distributed storage

system can achieve at

most two of C, A, and

P.

• When partition-

tolerance is important,

you have to choose

between consistency

and availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, Riak,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

35

Eventual Consistency

• If all writes stop (to a key), then all its values
(replicas) will converge eventually.

• If writes continue, then system always tries to keep
converging.
• Moving “wave” of updated values lagging behind the latest values

sent by clients, but always trying to catch up.

• May still return stale values to clients (e.g., if many
back-to-back writes).

• But works well when there a few periods of low
writes – system converges quickly.

36

What mechanisms in Cassandra

we saw earlier helps with

eventual convergence?

RDBMS vs. Key-value stores

• While RDBMS provide ACID

• Atomicity

• Consistency

• Isolation

• Durability

• Key-value stores like Cassandra provide BASE

• Basically Available Soft-state Eventual

Consistency

• Prefers Availability over Consistency

37

Back to Cassandra: Mystery of X

• Cassandra has consistency levels

• Client is allowed to choose a consistency level for each
operation (read/write)

• ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies
quickly to client

• ALL: all replicas

• Ensures strong consistency, but slowest

• ONE: at least one replica

• Faster than ALL

• QUORUM: quorum across all replicas in all
datacenters (DCs)

• What?
38

Quorums?

In a nutshell:

• Quorum = majority

• > 50%

• Any two quorums
intersect

• Client 1 does a
write in red quorum

• Then client 2 does
read in blue
quorum

• At least one server in blue
quorum returns latest
write

• Quorums faster than ALL,
but still ensure strong
consistency

Five replicas of a key-value pair

A second

 quorumA quorum

A server

39

Quorums in Detail

• Several key-value/NoSQL stores (e.g., Riak and
Cassandra) use quorums.

• Reads

• Client specifies value of R (≤ N = total number
of replicas of that key).

• R = read consistency level.

• Coordinator waits for R replicas to respond
before sending result to client.

• In background, coordinator checks for
consistency of remaining (N-R) replicas, and
initiates read repair if needed.

40

Quorums in Detail (Contd.)

• Writes come in two flavors

• Client specifies W (≤ N)

• W = write consistency level.

• Client writes new value to W replicas and

returns. Two flavors:

• Coordinator blocks until quorum is

reached.

• Asynchronous: Just write and return.

41

When you set read and write consistency

as QUORUM, does the system choose

consistency or availability upon partitions?

Quorums in Detail (Contd.)

• R = read replica count, W = write replica count

• Two necessary conditions:

1. W+R > N

2. W > N/2

• Select values based on application

• (W=1, R=1): very few writes and reads

• (W=N, R=1): great for read-heavy workloads

• (W=N/2+1, R=N/2+1): great for write-heavy

workloads

• (W=1, R=N):

42

great for write-heavy workloads

with mostly one client writing per key

When can you set W=1 and still get strong

consistency?

Cassandra Consistency Levels (Contd.)

• Client is allowed to choose a consistency level for each operation
(read/write)
• ANY: any server (may not be replica)

• Fastest: coordinator may cache write and reply quickly to client

• ALL: all replicas
• Slowest, but ensures strong consistency

• ONE: at least one replica
• Faster than ALL

• QUORUM: quorum across all replicas in all
datacenters (DCs)

• Global consistency, but still fast

• LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

• EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies

43

Types of Consistency

• Cassandra offers Eventual Consistency

• Are there other types of weak consistency

models?

44

Consistency Spectrum

Strong

(e.g., Sequential)Eventual

More consistency

Faster reads and writes

45

Spectrum Ends: Eventual Consistency

• Cassandra offers Eventual Consistency

• If writes to a key stop, all replicas of key

will converge

• Originally from Amazon’s Dynamo and

LinkedIn’s Voldemort systems

Strong

(e.g., Sequential)Eventual

More consistency

Faster reads and writes

46

Spectrum Ends: Strong Consistency Models

• Linearizability: Each operation by a client is visible (or available)
instantaneously to all other clients
• Instantaneously in real time

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its
program.

• After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

• Transaction ACID properties, e.g., newer key-value/NoSQL stores
(sometimes called “NewSQL”)
• Hyperdex [Cornell]

• Spanner [Google]

• Yesquel [Microsoft Research], Tapir [UW], Callas [UT], Rifl [Stanford], …

47

Newer Consistency Models

• Striving towards strong consistency

• While still trying to maintain high availability

and partition-tolerance

Strong

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

48

Newer Consistency Models (Contd.)

• Per-key sequential: Per key, all operations have a global

order

• CRDTs (Commutative Replicated Data Types): Data

structures for which commutated writes give same result

[INRIA, France]

• E.g., value == int, and only op allowed is +1

• Effectively, servers don’t need to worry about

consistency

Strong

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

49

Newer Consistency Models (Contd.)

• Red-blue Consistency: Rewrite client transactions to

separate ops into red ops vs. blue ops [MPI-SWS Germany]

• Blue ops can be executed (commutated) in any order

across DCs

• Red ops need to be executed in the same order at each

DC

Strong

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

50

Newer Consistency Models (Contd.)

Strong

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Causal Consistency: Reads must respect partial order based on information flow [Princeton,

CMU]

Client A

Client B

Client C

W(K1, 33)

W(K2, 55)

R(K1) must return 33W(K1, 22) R(K1) may return

22 or 33

Time
R(K1) returns 33

R(K2) returns 55

Causality, not messages

51

Which Consistency Model should you use?

• Use the lowest consistency (to the left)

consistency model that is “correct” for your

application

• Gets you fastest availability

Strong

(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

52

HBase

• Google’s BigTable was first “blob-based” storage
system

• Yahoo! Open-sourced it → HBase

• Major Apache project today

• Facebook uses HBase internally

• API functions

• Get/Put(row)

• Scan(row range, filter) – range queries

• MultiPut

• Unlike Cassandra, HBase prefers consistency (over
availability)

• (Version of 2014)

53

HBase Architecture

HDFS

. . .

HRegionServerHRegionServer

Hregion

Store

StoreFile

HFile

StoreFile

HFile
…

MemStore Store

StoreFile

HFile

StoreFile

HFile
…

MemStore

. . .

HLog

. . .

Client HMaster

Zookeeper

Small group of servers running

Zab, a consensus protocol (Paxos-like)

54

HBase Storage hierarchy

• HBase Table

• Split it into multiple regions: replicated across servers

• ColumnFamily = subset of columns with similar query
patterns

• One Store per combination of ColumnFamily + region

• Memstore for each Store: in-memory updates to
Store; flushed to disk when full

• StoreFiles for each store for each region:
where the data lives

 - HFile

• HFile

• SSTable from Google’s BigTable

55

HFile

Data … Data … Metadata, file info, indices, and trailer

Magic (Key, value) (Key, value) … (Key, value)

Key Value Row Row Col Family Col Family Col Timestamp Key Value

length length length length Qualifier type

SSN:000-01-2345 Demographic

Information

Ethnicity

HBase Key 56

Strong Consistency: HBase Write-Ahead Log

Write to HLog before writing to MemStore

Helps recover from failure by replaying Hlog.

Client

HRegionServer

Log flush

HLog

HRegion

HRegion

.

.

.

(k1, k2, k3, k4)

(k1, k2)

(k3, k4)

Store

StoreFile

HFile

StoreFile

HFile
…

MemStore

Store

StoreFile

HFile

StoreFile

HFile
…

MemStore

.

.

.1. (k1)

2. (k1)

57

Log Replay

• After recovery from failure, or upon bootup

(HRegionServer/HMaster)

• Replay any stale logs (use timestamps to

find out where the database is w.r.t. the logs)

• Replay: add edits to the MemStore

58

Cross-Datacenter Replication

• Single “Leader” (“Master”) cluster

• Other “Follower” (“Slave”) clusters replicate the
same tables

• Leader cluster synchronously sends HLogs over to
follower clusters

• Coordination among clusters is via Zookeeper

• Zookeeper can be used like a file system to store
control information

1. /hbase/replication/state

2. /hbase/replication/peers/<peer cluster number>

3. /hbase/replication/rs/<hlog>

59

MongoDB: A NoSQL System Installation

• MongoDB material not included in syllabus

• http://www.mongodb.org/downloads

• http://docs.mongodb.org/manual/installation

• mongod --dbpath <path-to-data>

• Mongo

• (Version of 2015)

• (MongoDB slides adapted from Mainak Ghosh’s
slides)

60

http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/installation

Data Model

• Stores data in form of BSON (Binary JavaScript

Object Notation) documents

 {

 name: "travis",

 salary: 30000,

 designation: "Computer Scientist",

 teams: ["front-end", "database"]

 }

• Group of related documents with a shared

common index is a collection

61

MongoDB: Typical Query

Query all employee names with salary greater than 18000 sorted in ascending order

db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1})

 Collection Condition Projection Modifier

{salary:25000, …}

{salary:10000, …}

{salary:20000, …}

{salary:2000, …}

{salary:30000, …}

{salary:21000, …}

{salary:5000, …}

{salary:50000, …}

{salary:25000, …}

{salary:20000, …}

{salary:30000, …}

{salary:21000, …}

{salary:50000, …}

{salary:20000, …}

{salary:21000, …}

{salary:25000, …}

{salary:30000, …}

{salary:50000, …}

62

Insert

Insert a row entry for new employee Sally

db.employee.insert({

 name: "sally",

 salary: 15000,

 designation: "MTS",

 teams: ["cluster-management"]

 })`

63

Update

All employees with salary greater than 18000 get a designation of Manager

 db.employee.update(

Update Criteria {salary:{$gt:18000}},

Update Action {$set: {designation: "Manager"}},

Update Option {multi: true}
)

Multi-option allows multiple document update

64

Delete

Remove all employees who earn less than 10000

 db.employee.remove(

Remove Criteria {salary:{$lt:10000}},

)

Can accept a flag to limit the number of documents removed

65

Typical MongoDB Deployment

• Data split into chunks, based on
shard key (~ primary key)

• Either use hash or range-
partitioning

• Shard: collection of chunks
• Shard assigned to a replica set
• Replica set consists of multiple

mongod servers (typically 3
mongod’s)

• Replica set members are mirrors of
each other

• One is primary
• Others are secondaries

• Routers: mongos server receives
client queries and routes them to
right replica set

• Config server: Stores collection level
metadata.

Mongod
Mongod

mongod

Mongod
Mongod

Config

Router (mongos) Router (mongos)

Mongod
Mongod

mongod
Mongod

Mongod
mongod

1

54

3

2

6

Replica Set

66

Replication

Secondary

Primary

SecondaryHeartbeat

Write Read

67

Replication

• Uses an oplog (operation log) for data sync up

• Oplog maintained at primary, delta

transferred to secondary continuously/every

once in a while

• When needed, Leader Election protocol elects a

primary

• Some mongod servers do not maintain data but

can vote – called as Arbiters

68

Read Preference

• (Updated 2016 v3.2)

• Determine where to route read operation

• Default is primary. Some other options are

• primary-preferred

• secondary

• nearest

• majority

• Helps reduce latency, improve throughput

• Reads from secondary may fetch stale data

69

Write Concern

• (Updated 2016 v3.2)

• Determines the guarantee that MongoDB

provides on the success of a write operation

• 0: no ack

• 1: ack, from primary

• majority

• Weaker write concern implies faster write time

70

Write operation performance

• Journaling: Write-ahead logging to an on-disk

journal for durability

• Journal may be memory-mapped

• Indexing: Every write needs to update every

index associated with the collection

71

Balancing

• Over time, some chunks may get larger than

others

• Splitting: Upper bound on chunk size; when hit,

chunk is split

• Balancing: Migrates chunks among shards if

there is an uneven distribution

72

Consistency

• Either strongly consistent or eventually

consistent

• Depending on combination of read

preference and write concern

• CAP Theorem: With Strong consistency, under

partition, MongoDB becomes write-unavailable

thereby ensuring consistency

73

Performance

• 30 – 50x faster than MySQL Server 2008 for

writes [1]

• At least 3x faster for reads [1]

• MongoDB 2.2.2 offers slower throughput for

different YCSB workloads compared to

Cassandra [2]

[1] http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-

performance-showdown/

[2] http://hyperdex.org/performance/

74

http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-performance-showdown/
http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-performance-showdown/
http://hyperdex.org/performance/

Summary

• Traditional Databases (RDBMSs) work with strong consistency, and

offer ACID

• Modern workloads don’t need such strong guarantees, but do need

fast response times (availability)

• Unfortunately, CAP theorem

• Key-value/NoSQL systems offer BASE

• Eventual consistency, and a variety of other consistency models

striving towards strong consistency

• We discussed design of

• Cassandra

• HBase

• MongoDB

75

Optional: Some more MongoDB
queries

Insert

Insert a row entry for new employee Sally

use records -- Creates a database

db.employee.insert({
 name: "Sally",
 salary: 15000,
 designation: "MTS",
 teams: "cluster-management"
 })

Also can use save instead of insert

Bulk Load

people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy",
"Greg", "Steve", "Kristina", "Katie", "Jeff"];

money = [10000, 5000, 8000, 2000];

position = ["MTS", "Computer Scientist", "Manager", "Director"];

groups = ["cluster-management", "human-resource", "backend", "ui"];

for(var i=0; i<10000; i++){

 name = people[Math.floor(Math.random()*people.length)];

 salary = money[Math.floor(Math.random()*money.length)];

 designation =
position[Math.floor(Math.random()*position.length)];

 teams = groups[Math.floor(Math.random()*groups.length)];

 db.employee.save({name:name, salary:salary,
designation:designation, teams:teams});

}

Query

• db.employee.find()

• db.employee.find({name: "Sally"})

• var cursor = db.employee.find({salary: {$in:

[5000, 2000] } })

• Use next() to access the rest of the records

Query

• db.employee.find({name: "Steve", salary: {$lt:

3000} })

• db.employee.find({ $or: [{ name: "Bill" }, {

salary: { $gt: 9000 } }] })

• Find records of all managers who earn more than

5000

• db.employee.find({designation:"Manager",

salary: {$gt: 5000}})

Aggregation Commands

• db.employee.count()

• How many employees with name Steve?

• db.employee.find({name: "Steve"}).count()

• db.employee.find({name: "Steve"}).skip(10)

• db.employee.find({name: "Steve"}).limit(10)

Modify

• Increment salary of all managers by 1000

• db.employee.update({ designation : "Manager"

}, { $inc : { salary : 1000 } })

• db.employee.update({ designation : "Manager"

}, { $inc : { salary : 1000 } } , { multi: true })

• Increment salary of all managers working in

cluster-management group by 5000

• db.employee.update({ designation : "Manager",

teams: "cluster-management"}, { $inc : { salary :

5000 } } , { multi: true })

Remove

• db.employee.remove({ name : "Sally" })

• Remove all Computer Scientist in the ui division

• db.employee.remove({teams: "ui", designation:

"Computer Scientist"})

Announcements

• MP2 due 9/29 (demos on 9/30)

• HW2 Released, due on Sunday10/6 (start early, no extensions!)

• In class midterm October 10th

• Make sure you’re in class that day!

• There will be two rooms, one in different part of campus.

• See Piazza and the website for which room you should go to.

	Slide 1
	Slide 2: Announcements
	Slide 3: The Key-value Abstraction
	Slide 4: The Key-value Abstraction (2)
	Slide 5: Isn’t that just a database?
	Slide 6: Relational Database Example
	Slide 7: Mismatch with today’s workloads
	Slide 8: Needs of Today’s Workloads
	Slide 9: Scale out, not Scale up
	Slide 10: Key-value/NoSQL Data Model
	Slide 11: Key-value/NoSQL Data Model
	Slide 12: Column-Oriented Storage
	Slide 13: Next
	Slide 14: Cassandra
	Slide 15: Let’s go Inside Cassandra: Key -> Server Mapping
	Slide 16
	Slide 17: Data Placement Strategies
	Slide 18: Snitches
	Slide 19: Writes
	Slide 20: Writes (2)
	Slide 21: Writes at a replica node
	Slide 22: Bloom Filter
	Slide 23: Compaction
	Slide 24: Deletes
	Slide 25: Reads
	Slide 26: Membership
	Slide 27: Cluster Membership – Gossip-Style
	Slide 28: Suspicion Mechanisms in Cassandra
	Slide 29: Cassandra Vs. RDBMS
	Slide 30: Mystery of “X”: CAP Theorem
	Slide 31: Why is Availability Important?
	Slide 32: Why is Consistency Important?
	Slide 33: Why is Partition-Tolerance Important?
	Slide 34: CAP Theorem Fallout
	Slide 35: CAP Tradeoff
	Slide 36: Eventual Consistency
	Slide 37: RDBMS vs. Key-value stores
	Slide 38: Back to Cassandra: Mystery of X
	Slide 39: Quorums?
	Slide 40: Quorums in Detail
	Slide 41: Quorums in Detail (Contd.)
	Slide 42: Quorums in Detail (Contd.)
	Slide 43: Cassandra Consistency Levels (Contd.)
	Slide 44: Types of Consistency
	Slide 45: Consistency Spectrum
	Slide 46: Spectrum Ends: Eventual Consistency
	Slide 47: Spectrum Ends: Strong Consistency Models
	Slide 48: Newer Consistency Models
	Slide 49: Newer Consistency Models (Contd.)
	Slide 50: Newer Consistency Models (Contd.)
	Slide 51: Newer Consistency Models (Contd.)
	Slide 52: Which Consistency Model should you use?
	Slide 53: HBase
	Slide 54: HBase Architecture
	Slide 55: HBase Storage hierarchy
	Slide 56: HFile
	Slide 57: Strong Consistency: HBase Write-Ahead Log
	Slide 58: Log Replay
	Slide 59: Cross-Datacenter Replication
	Slide 60: MongoDB: A NoSQL System Installation
	Slide 61: Data Model
	Slide 62: MongoDB: Typical Query
	Slide 63: Insert
	Slide 64: Update
	Slide 65: Delete
	Slide 66: Typical MongoDB Deployment
	Slide 67: Replication
	Slide 68: Replication
	Slide 69: Read Preference
	Slide 70: Write Concern
	Slide 71: Write operation performance
	Slide 72: Balancing
	Slide 73: Consistency
	Slide 74: Performance
	Slide 75: Summary
	Slide 76: Optional: Some more MongoDB queries
	Slide 77: Insert
	Slide 78: Bulk Load
	Slide 79: Query
	Slide 80: Query
	Slide 81: Aggregation Commands
	Slide 82: Modify
	Slide 83: Remove
	Slide 84: Announcements

