
CS 425 / ECE 428

Distributed Systems

Fall 2024
Indranil Gupta (Indy)

w/ Aishwarya Ganesan

Lecture 6: Failure Detection and

Membership, Grids
All slides © IG

Announcements
• MP1: Due Sunday 9/16, demos Monday 9/17

– VMs distributed: see Piazza

– Demo signup sheet: now on Piazza (see signup deadline – this Friday!)

– Demo details: see Piazza

• Make sure you print individual and total linecounts

• HW1: due 9/19! (You should have started on it already!)

• Check Piazza often! It’s where all the announcements are at!

• Please view Grid Computing Lecture Video from website!
– Included in midterm syllabus! (We won’t lecture in class)

2

• You’ve been put in charge of a datacenter, and your

manager has told you, “Oh no! We don’t have any failures

in our datacenter!”

• Do you believe him/her?

• What would be your first responsibility?

• Build a failure detector

• What are some things that could go wrong if you didn’t do

this?

A Challenge

3

… not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,

etc.) is once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)

of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every

7.2 hours!

Soft crashes and failures are even more frequent!

Failures are the Norm

4

• You have a few options

1. Hire 1000 people, each to monitor one machine in the datacenter and

report to you when it fails.

2. Write a failure detector program (distributed) that automatically detects

failures and reports to your workstation.

Which is more preferable, and why?

To build a failure detector

5

6

Target Settings

• Process ‘group’-based systems

– Clouds/Datacenters

– Replicated servers

– Distributed databases

• Fail-stop (crash) process failures

7

Group Membership Service
Application Queries

 e.g., gossip, overlays,

DHT’s, etc.

Membership

Protocol
Group

Membership List

joins, leaves, failures

of members

Unreliable

Communication

Application Process pi

Membership List

8

Two sub-protocols

Dissemination

Failure Detector

Application Process pi
Group

Membership List

Unreliable

Communication

•Complete list all the time (Strongly consistent)

•Virtual synchrony

•Almost-Complete list (Weakly consistent)

•Gossip-style, SWIM, …

•Or Partial-random list (other systems)

•SCAMP, T-MAN, Cyclon,…

Focus of this series of lecture

pj

9

Large Group: Scalability A Goal
this is us (pi)

Unreliable Communication

Network

1000’s of processes

Process Group

“Members”

10

pj

Group Membership Protocol

Unreliable Communication

Network

pi
Some process

finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only

Next

• How do you design a group membership

protocol?

11

12

I. pj crashes

• Nothing we can do about it!

• A frequent occurrence

• Common case rather than exception

• Frequency goes up linearly with size of

datacenter

13

II. Distributed Failure Detectors:
Desirable Properties

• Completeness = each failure is detected

• Accuracy = there is no mistaken detection

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

14

Distributed Failure Detectors:
Properties

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

Impossible together in

lossy networks [Chandra

and Toueg]

If possible, then can

solve consensus! (but

consensus is known to be

unsolvable in

asynchronous systems)

15

What Real Failure Detectors Prefer

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

Guaranteed

Partial/Probabilistic

 guarantee

16

What Real Failure Detectors Prefer

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

Guaranteed

Partial/Probabilistic

 guarantee

Time until some non-faulty

process detects the failure

17

What Real Failure Detectors Prefer

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

Guaranteed

Partial/Probabilistic

 guarantee

Time until some non-faulty

process detects the failure

No bottlenecks/single

failure point

18

Failure Detector Properties

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

In spite of

arbitrary simultaneous

process failures

19

Centralized Heartbeating

pi, Heartbeat Seq. l++

pi
 Hotspot

pj •Heartbeats sent periodically

•If heartbeat not received from pi within

timeout, mark pi as failed

20

Ring Heartbeating

pi, Heartbeat Seq. l++

 Unpredictable on

simultaneous multiple

failures

pi

pj

21

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

☺ Equal load per member

 Single hb loss → false

 detection

pi

pj

Next

• How do we increase the robustness of all-to-all

heartbeating?

22

23

Gossip-style Heartbeating

Array of

Heartbeat Seq. l

for member subset

☺ Good accuracy

propertiespi

24

Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

•Nodes periodically gossip their membership

list: pick random nodes, send it list

•On receipt, it is merged with local

membership list

•When an entry times out, member is marked

as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

25

Gossip-Style Failure Detection

• If the heartbeat has not increased for more than

Tfail seconds,

the member is considered failed

• And after a further Tcleanup seconds, it will

delete the member from the list

• Why an additional timeout? Why not delete

right away?

26

• What if an entry pointing to a failed node is
deleted right after Tfail (=24) seconds?

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

Gossip-Style Failure Detection

27

Analysis/Discussion
• Well-known result: a gossip takes O(log(N)) time to propagate.

• So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to

propagate.

• So: N heartbeats take:

– O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be

O(N)

– O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)

– What about O(k) bandwidth?

• What happens if gossip period Tgossip is decreased?

• What happens to Pmistake (false positive rate) as Tfail ,Tcleanup is increased?

• Tradeoff: False positive rate vs. detection time vs. bandwidth

Next

• So, is this the best we can do? What is the best

we can do?

28

29

Failure Detector Properties …

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

30

…Are application-defined Requirements

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

Guarantee always

Probability PM(T)

T time units

31

• Completeness

• Accuracy

• Speed

– Time to first detection of a failure

• Scale

– Equal Load on each member

– Network Message Load

Guarantee always

Probability PM(T)

T time units

N*L: Compare this across protocols

…Are application-defined Requirements

32

All-to-All Heartbeating

pi, Heartbeat Seq. l++ pi Every T units

L=N/T

33

Gossip-style Heartbeating

Array of

Heartbeat Seq. l

for member subset

pi

Every tg units

=gossip period,

send O(N) gossip

message

T=logN * tg

L=N/tg=N*logN/T

• Worst case load L* per member in the group

(messages per second)

– as a function of T, PM(T), N

– Independent Message Loss probability pml

•

34

What’s the Best/Optimal we can do?

T

TPM

p
ml

1
.

)log(

))(log(
L* =

35

Heartbeating
• Optimal L is independent of N (!)

• All-to-all and gossip-based: sub-optimal
• L=O(N/T)

• try to achieve simultaneous detection at all processes

• fail to distinguish Failure Detection and Dissemination
components

Can we reach this bound?

Key:

Separate the two components

Use a non heartbeat-based Failure Detection Component

Next

• Is there a better failure detector?

36

37

SWIM Failure Detector Protocol

Protocol period

= T’ time units

X

K random

processes

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

38

• Prob. of being pinged in T’=

• E[T] =

• Completeness: Any alive member detects failure

– Eventually

– By using a trick: within worst case O(N) protocol periods

Detection Time

1
.T'
−e

e

11 1)
1

1(1 −− −=−− e
N

N

39

Accuracy, Load

• PM(T) is exponential in -K. Also depends on pml (and

pf)

– See paper

• for up to 15 % loss rates
28

*


L

L
8

*

][


L

LE

40

SWIM Failure Detector

Parameter SWIM

First Detection Time

• Expected periods

• Constant (independent of group size)

Process Load • Constant per period

• < 8 L* for 15% loss

False Positive Rate • Tunable (via K)

• Falls exponentially as load is scaled

Completeness • Deterministic time-bounded

• Within O(log(N)) periods w.h.p.










−1e

e

41

Time-bounded Completeness

• Key: select each membership element once as a

ping target in a traversal

– Round-robin pinging

– Random permutation of list after each traversal

• Each failure is detected in worst case 2N-1

(local) protocol periods

• Preserves FD properties

42

SWIM versus Heartbeating

Process Load

First Detection

Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :

• False Positive Rate

• Message Loss Rate

Heartbeating

Heartbeating

Next

• How do failure detectors fit into the big picture

of a group membership protocol?

• What are the missing blocks?

43

44

pj

Group Membership Protocol

Unreliable Communication

Network

pi
Some process

finds out quickly

Failure DetectorII

DisseminationIII

Fail-stop Failures only

45

Dissemination Options

• Multicast (Hardware / IP)

– unreliable

– multiple simultaneous multicasts

• Point-to-point (TCP / UDP)

– expensive

• Zero extra messages: Piggyback on Failure
Detector messages

– Infection-style Dissemination

46

Infection-style Dissemination

Protocol period

= T time units

X

pi

ping

ack

ping-req

ack

•random pj

X

ack

ping

•random K

pj

Piggybacked

membership

information

K random

processes

47

Infection-style Dissemination
• Epidemic/Gossip style dissemination

– After protocol periods, processes would not
have heard about an update

• Maintain a buffer of recently joined/evicted processes

– Piggyback from this buffer

– Prefer recent updates

• Buffer elements are garbage collected after a while

– After protocol periods, i.e., once they’ve propagated
through the system; this defines weak consistency

)log(. N

)log(. N

-(2l-2)

N

48

Suspicion Mechanism
• False detections, due to

– Perturbed processes

– Packet losses, e.g., from congestion

• Indirect pinging may not solve the problem

• Key: suspect a process before declaring it as

failed in the group

49

Suspicion Mechanism

Dissmn

FD

pi

Alive

Suspected

Failed

Dissmn (Suspect pj)

Dissmn (Alive pj) Dissmn (Failed pj)

50

Suspicion Mechanism

• Distinguish multiple suspicions of a process

– Per-process incarnation number

– Inc # for pi can be incremented only by pi

• e.g., when it receives a (Suspect, pi) message

– Somewhat similar to DSDV (routing protocol in ad-hoc nets)

• Higher inc# notifications over-ride lower inc#’s

• Within an inc#: (Suspect inc #) > (Alive, inc #)

• (Failed, inc #) overrides everything else

51

SWIM In Industry

• First used in Oasis/CoralCDN

• Implemented open-source by Hashicorp Inc.

– Called “Serf”

– Later “Consul”

• Today: Uber implemented it, uses it for failure detection

in their infrastructure

– See “ringpop” system

52

Wrap Up
• Failures the norm, not the exception in datacenters

• Every distributed system uses a failure detector

• Many distributed systems use a membership service

• Ring failure detection underlies
– IBM SP2 and many other similar clusters/machines

• Gossip-style failure detection underlies
– Amazon EC2/S3 (rumored!)

Grid Computing

53

“A Cloudy History of Time”

1940

1950

1960

1970

1980

1990

2000

Timesharing Companies

& Data Processing Industry

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012

54

“A Cloudy History of Time”

1940

1950

1960

1970

1980

1990

2000

2012 CloudsGrids (1980s-2000s):

•GriPhyN (1970s-80s)

•Open Science Grid and Lambda Rail (2000s)

•Globus & other standards (1990s-2000s)

Timesharing Industry (1975):

•Market Share: Honeywell 34%, IBM 15%,

•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%

•Honeywell 6000 & 635, IBM 370/168,

 Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry

 - 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC

Many used vacuum tubes and mechanical relays

Berkeley NOW Project

Supercomputers

Server Farms (e.g., Oceano)

P2P Systems (90s-00s)

•Many Millions of users

•Many GB per day

55

Example: Rapid Atmospheric Modeling System,
ColoState U

• Hurricane Georges, 17 days in Sept 1998
– “RAMS modeled the mesoscale convective complex that

dropped so much rain, in good agreement with recorded data”
– Used 5 km spacing instead of the usual 10 km

– Ran on 256+ processors

• Computation-intenstive computing (or HPC = high
performance computing)

• Can one run such a program without access to a
supercomputer?

56

Distributed Computing Resources

Wisconsin

MIT NCSA

57

An Application Coded by a Physicist

Job 0

Job 2
Job 1

Job 3

Output files of Job 0

Input to Job 2

Output files of Job 2

Input to Job 3

Jobs 1 and 2 can

be concurrent

58

An Application Coded by a Physicist

Job 2

Output files of Job 0

Input to Job 2

Output files of Job 2

Input to Job 3

May take several hours/days

4 stages of a job

Init

Stage in

Execute

Stage out

Publish

Computation Intensive,

 so Massively Parallel

Several GBs

59

Scheduling Problem

MIT NCSA

Job 0

Job 2Job 1

Job 3

Wisconsin

60

2-level Scheduling Infrastructure

61

Job 0

Job 2Job 1

Job 3

MIT

HTCondor Protocol

NCSA
Globus Protocol

Wisconsin

61Some other intra-site protocol

Intra-site Protocol

Job 0

Job 3Wisconsin

HTCondor Protocol

Internal Allocation & Scheduling

Monitoring

Distribution and Publishing of Files
62

Condor (now HTCondor)
• High-throughput computing system from U. Wisconsin Madison

• Belongs to a class of “Cycle-scavenging” systems

– SETI@Home and Folding@Home are other systems in this category

Such systems

• Run on a lot of workstations

• When workstation is free, ask site’s central server (or Globus) for tasks

• If user hits a keystroke or mouse click, stop task

– Either kill task or ask server to reschedule task

• Can also run on dedicated machines

63

Inter-site Protocol

Job 0

Job 2
Job 1

Job 3
Wisconsin

MIT NCSA

Internal structure of different

sites invisible to Globus

External Allocation & Scheduling

Stage in & Stage out of Files 64

Globus Protocol

Globus
• Globus Alliance involves universities, national US research labs, and some

companies

• Standardized several things, especially software tools

• Separately, but related: Open Grid Forum

• Globus Alliance has developed the Globus Toolkit

http://toolkit.globus.org/toolkit/

65

http://toolkit.globus.org/toolkit/

Globus Toolkit

• Open-source

• Consists of several components

– GridFTP: Wide-area transfer of bulk data

– GRAM5 (Grid Resource Allocation Manager): submit, locate, cancel, and

manage jobs

• Not a scheduler

• Globus communicates with the schedulers in intra-site protocols like HTCondor

or Portable Batch System (PBS)

– RLS (Replica Location Service): Naming service that translates from a

file/dir name to a target location (or another file/dir name)

– Libraries like XIO to provide a standard API for all Grid IO functionalities

– Grid Security Infrastructure (GSI)

66

Security Issues
• Important in Grids because they are federated, i.e., no single entity controls the

entire infrastructure

• Single sign-on: collective job set should require once-only user authentication

• Mapping to local security mechanisms: some sites use Kerberos, others using Unix

• Delegation: credentials to access resources inherited by subcomputations, e.g., job 0
to job 1

• Community authorization: e.g., third-party authentication

• These are also important in clouds, but less so because clouds are typically run
under a central control

• In clouds the focus is on failures, scale, on-demand nature

67

Summary

• Grid computing focuses on computation-intensive computing

(HPC)

• Though often federated, architecture and key concepts have a

lot in common with that of clouds

• Are Grids/HPC converging towards clouds?

– E.g., Compare OpenStack and Globus

68

Announcements
• MP1: Due Sunday 9/16, demos Monday 9/17

– VMs distributed: see Piazza

– Demo signup sheet: now on Piazza (see signup deadline – this Friday!)

– Demo details: see Piazza

• Make sure you print individual and total linecounts

• HW1: due 9/19! (You should have started on it already!)

• Check Piazza often! It’s where all the announcements are at!

• Please view Grid Computing Lecture Video from website!
– Included in midterm syllabus! (We won’t lecture in class)

69

	Slide 1
	Slide 2: Announcements
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Target Settings
	Slide 7: Group Membership Service
	Slide 8: Two sub-protocols
	Slide 9: Large Group: Scalability A Goal
	Slide 10: Group Membership Protocol
	Slide 11: Next
	Slide 12: I. pj crashes
	Slide 13: II. Distributed Failure Detectors: Desirable Properties
	Slide 14: Distributed Failure Detectors: Properties
	Slide 15: What Real Failure Detectors Prefer
	Slide 16: What Real Failure Detectors Prefer
	Slide 17: What Real Failure Detectors Prefer
	Slide 18: Failure Detector Properties
	Slide 19: Centralized Heartbeating
	Slide 20: Ring Heartbeating
	Slide 21: All-to-All Heartbeating
	Slide 22: Next
	Slide 23: Gossip-style Heartbeating
	Slide 24: Gossip-Style Failure Detection
	Slide 25: Gossip-Style Failure Detection
	Slide 26: Gossip-Style Failure Detection
	Slide 27: Analysis/Discussion
	Slide 28: Next
	Slide 29: Failure Detector Properties …
	Slide 30: …Are application-defined Requirements
	Slide 31: …Are application-defined Requirements
	Slide 32: All-to-All Heartbeating
	Slide 33: Gossip-style Heartbeating
	Slide 34: What’s the Best/Optimal we can do?
	Slide 35: Heartbeating
	Slide 36: Next
	Slide 37: SWIM Failure Detector Protocol
	Slide 38: Detection Time
	Slide 39: Accuracy, Load
	Slide 40: SWIM Failure Detector
	Slide 41: Time-bounded Completeness
	Slide 42: SWIM versus Heartbeating
	Slide 43: Next
	Slide 44: Group Membership Protocol
	Slide 45: Dissemination Options
	Slide 46: Infection-style Dissemination
	Slide 47: Infection-style Dissemination
	Slide 48: Suspicion Mechanism
	Slide 49: Suspicion Mechanism
	Slide 50: Suspicion Mechanism
	Slide 51: SWIM In Industry
	Slide 52: Wrap Up
	Slide 53
	Slide 54: “A Cloudy History of Time”
	Slide 55: “A Cloudy History of Time”
	Slide 56: Example: Rapid Atmospheric Modeling System, ColoState U
	Slide 57: Distributed Computing Resources
	Slide 58: An Application Coded by a Physicist
	Slide 59: An Application Coded by a Physicist
	Slide 60: Scheduling Problem
	Slide 61: 2-level Scheduling Infrastructure
	Slide 62: Intra-site Protocol
	Slide 63: Condor (now HTCondor)
	Slide 64: Inter-site Protocol
	Slide 65: Globus
	Slide 66: Globus Toolkit
	Slide 67: Security Issues
	Slide 68: Summary
	Slide 69: Announcements

