
CS 425 / ECE 428
Distributed Systems

Fall 2024

Indranil Gupta (Indy)

w/ Aishwarya Ganesan

Lecture 5: Gossiping
All slides © IG

Today’s Agenda

• Epidemics, or how to use them to your

advantage (to do good things)

Multicast

3

Fault-tolerance and Scalability

Needs:
1. Reliability (Atomicity)

• 100% receipt
2. Speed

4

Centralized

5

Tree-Based

6

Tree-based Multicast Protocols

• Build a spanning tree among the processes of the multicast group

• Use spanning tree to disseminate multicasts

• Use either acknowledgments (ACKs) or negative acknowledgements (NAKs)
to repair multicasts not received

• SRM (Scalable Reliable Multicast)

• Uses NAKs

• But adds random delays, and uses exponential backoff to avoid NAK
storms

• (Do you know why SRM is called a “talented” protocol?)

• RMTP (Reliable Multicast Transport Protocol)

• Uses ACKs

• But ACKs only sent to designated receivers, which then re-transmit
missing multicasts

• These protocols still cause an O(N) ACK/NAK overhead [Birman99]
7

A Third Approach

8

A Third Approach

9

A Third Approach

10

A Third Approach

11

“Epidemic” Multicast (or “Gossip”)

12

Push vs. Pull

• So that was “Push” gossip

• Once you have a multicast message, you start
gossiping about it

• Multiple messages? Gossip a random subset
of them, or recently-received ones, or higher
priority ones

• There’s also “Pull” gossip

• Periodically poll a few randomly selected
processes for new multicast messages that you
haven’t received

• Get those messages

• Hybrid variant: Push-Pull

• As the name suggests

13

Properties

Claim that the simple Push protocol

• Is lightweight in large groups

• Spreads a multicast quickly

• Is highly fault-tolerant

14

Analysis

From old mathematical branch of Epidemiology [Bailey 75]

• Population of (n+1) individuals mixing homogeneously

• Contact rate between any individual pair is

• At any time, each individual is either uninfected
(numbering x) or infected (numbering y)

• Then,
 and at all times

• Infected–uninfected contact turns latter infected, and it
stays infected



1, 00 == ynx
1+=+ nyx

15

with solution:

Analysis (contd.)

• Continuous time process

• Then

xy

dt

dx
−=

tntn ne

n
y

en

nn
x

)1()1(1

)1(
,

)1(
+−+ +

+
=

+

+
=



(can you derive it?)

(why?)

16

Epidemic Multicast

17

Epidemic Multicast Analysis

n

b
=

2

1
)1(

−
−+

cbn
ny

(correct? can you derive it?)

Substituting, at time t=clog(n), the number of infected is

(why?)

18

Analysis (contd.)

• Set c,b to be small numbers independent of n

• Within clog(n) rounds, [low latency]

• all but number of nodes receive the multicast

 [reliability]

• each node has transmitted no more than cblog(n)gossip messages

[lightweight]

2

1
−cbn

19

Why is log(N) low?

• log(N) is not constant in theory

• But pragmatically, it is a very slowly growing

number

• Base 2

• log(1000) ~ 10

• log(1M) ~ 20

• log (1B) ~ 30

• log(all IPv4 addresses) = 32

• log(all IPv6 addresses) = 128

20

Fault-tolerance

• Packet loss

• 50% packet loss: analyze with b replaced
with b/2

• To achieve same reliability as 0% packet
loss, takes twice as many rounds

• Node failure

• 50% of nodes fail: analyze with n replaced
with n/2 and b replaced with b/2

• Same as above

21

Fault-tolerance

• With failures, is it possible that the epidemic
might die out quickly?

• Possible, but improbable:
• Once a few nodes are infected, with high

probability, the epidemic will not die out

• So the analysis we saw in the previous slides is
actually behavior with high probability

[Galey and Dani 98]

• Think: why do rumors spread so fast? why do
infectious diseases cascade quickly into
epidemics? why does a virus or worm spread
rapidly?

22

Pull Gossip: Analysis

• In all forms of gossip, it takes O(log(N)) rounds
before about N/2 processes get the gossip

• Why? Because that’s the fastest you can
spread a message – a spanning tree with
fanout (degree) of constant degree has
O(log(N)) total nodes (height of tree)

• Thereafter, pull gossip is faster than push gossip

• After the ith, round let be the fraction of non-
infected processes. Let each round have k pulls.
Then

• This is super-exponential

• Second half of pull gossip finishes in time
O(log(log(N))

() 1

1

+

+
=

k

ii
pp

i
p

23

Topology-Aware Gossip

•Network topology is

hierarchical

•Random gossip target

selection => core routers

face O(N) load (Why?)

•Fix: In subnet i, which

contains ni nodes, pick

gossip target in your subnet

with probability (1-1/ni)

•Router load=O(1)

•Dissemination

time=O(log(N))

Router

N/2 nodes in a subnet

N/2 nodes in a subnet
24

Answer – Push Analysis (contd.)

n

b
=

1

)log()1(1
1

1

1

1

−

+−
+

+


+

+
=

cb

ncn
n

b

n

n

ne

n
y

)
1

1)(1(
1−

−+
cbn

n

2

1
)1(

−
−+

cbn
n

Substituting, at time t=clog(n)

Using:

25

SO,...

• Is this all theory and a bunch of equations?

• Or are there implementations yet?

26

Some implementations

• Clearinghouse and Bayou projects: email and
database transactions [PODC ‘87]

• refDBMS system [Usenix ‘94]

• Bimodal Multicast [ACM TOCS ‘99]

• Sensor networks [Li Li et al, Infocom ‘02, and
PBBF, ICDCS ‘05]

• AWS EC2 and S3 Cloud (rumored). [‘00s]

• Cassandra key-value store (and others) use
gossip for maintaining membership lists

• Usenet NNTP (Network News Transport
Protocol) [‘79]

27

NNTP Inter-server Protocol

1. Each client uploads and downloads news posts from a news server

2.

Server retains news posts for a while,

 transmits them lazily, deletes them after a while.

Upstream
Server

Downstream
Server

CHECK <Message IDs>

238 {Give me!}

TAKETHIS <Message>

239 OK

28

Summary

• Multicast is an important problem

• Tree-based multicast protocols

• When concerned about scale and fault-

tolerance, gossip is an attractive solution

• Also known as epidemics

• Fast, reliable, fault-tolerant, scalable, topology-

aware

29

Announcements

• MP1: Due coming Sunday 9/15, demos Monday 9/16

• VMs distributed: see Piazza

• Demo signup sheet: now on Piazza (sign up by Friday!)

• Demo details: will be posted tomorrow on Piazza

• Make sure you print individual and total linecounts

• HW1 due soon, Thu 9/19!

• Check Piazza often! It’s where all the announcements are at!

	Slide 1
	Slide 2: Today’s Agenda
	Slide 3: Multicast
	Slide 4: Fault-tolerance and Scalability
	Slide 5: Centralized
	Slide 6: Tree-Based
	Slide 7: Tree-based Multicast Protocols
	Slide 8: A Third Approach
	Slide 9: A Third Approach
	Slide 10: A Third Approach
	Slide 11: A Third Approach
	Slide 12: “Epidemic” Multicast (or “Gossip”)
	Slide 13: Push vs. Pull
	Slide 14: Properties
	Slide 15: Analysis
	Slide 16: Analysis (contd.)
	Slide 17: Epidemic Multicast
	Slide 18: Epidemic Multicast Analysis
	Slide 19: Analysis (contd.)
	Slide 20: Why is log(N) low?
	Slide 21: Fault-tolerance
	Slide 22: Fault-tolerance
	Slide 23: Pull Gossip: Analysis
	Slide 24: Topology-Aware Gossip
	Slide 25: Answer – Push Analysis (contd.)
	Slide 26: SO,...
	Slide 27: Some implementations
	Slide 28: NNTP Inter-server Protocol
	Slide 29: Summary
	Slide 30: Announcements

