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Today’s Agenda

• Epidemics, or how to use them to your 

advantage (to do good things) 



Multicast
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Fault-tolerance and Scalability

Needs:
1. Reliability (Atomicity)

• 100% receipt
2. Speed
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Centralized
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Tree-Based
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Tree-based Multicast Protocols

• Build a spanning tree among the processes of the multicast group

• Use spanning tree to disseminate multicasts

• Use either acknowledgments (ACKs) or negative acknowledgements (NAKs) 
to repair multicasts not received

• SRM (Scalable Reliable Multicast)

• Uses NAKs

• But adds random delays, and uses exponential backoff to avoid NAK 
storms

• (Do you know why SRM is called a “talented” protocol?)

• RMTP (Reliable Multicast Transport Protocol)

• Uses ACKs

• But ACKs only sent to designated receivers, which then re-transmit 
missing multicasts

• These protocols still cause an O(N) ACK/NAK overhead [Birman99]
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A Third Approach
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A Third Approach
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A Third Approach
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A Third Approach

11



“Epidemic” Multicast (or “Gossip”)
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Push vs. Pull

• So that was “Push” gossip

• Once you have a multicast message, you start 
gossiping about it

• Multiple messages? Gossip a random subset 
of them, or recently-received ones, or higher 
priority ones

• There’s also “Pull” gossip

• Periodically poll a few randomly selected 
processes for new multicast messages that you 
haven’t received

• Get those messages

• Hybrid variant: Push-Pull

• As the name suggests
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Properties

Claim that the simple Push protocol

• Is lightweight in large groups

• Spreads a multicast quickly

• Is highly fault-tolerant

14



Analysis

From old mathematical branch of Epidemiology [Bailey 75]

• Population of (n+1) individuals mixing homogeneously

• Contact rate between any individual pair is 

• At any time, each individual is either uninfected 
(numbering x) or infected (numbering y)

• Then,
 and at all times                            

• Infected–uninfected contact turns latter infected, and it 
stays infected



1, 00 == ynx
1+=+ nyx
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with solution: 

         

 

Analysis (contd.)

• Continuous time process

• Then
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(can you derive it?)

(why?)
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Epidemic Multicast
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Epidemic Multicast Analysis
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(correct? can you derive it?)

Substituting, at time t=clog(n), the number of infected is

(why?)
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Analysis (contd.)

• Set c,b to be small numbers independent of n

• Within clog(n) rounds, [low latency]

• all but              number of nodes receive the multicast 

     

     [reliability]

• each node has transmitted no more than cblog(n)gossip messages 

[lightweight]

2

1
−cbn
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Why is log(N) low?

• log(N) is not constant in theory

• But pragmatically, it is a very slowly growing 

number

• Base 2

• log(1000) ~ 10

• log(1M) ~ 20

• log (1B) ~ 30

• log(all IPv4 addresses) = 32

• log(all IPv6 addresses) = 128

20



Fault-tolerance

• Packet loss

• 50% packet loss: analyze with b replaced 
with b/2

• To achieve same reliability as 0% packet 
loss, takes twice as many rounds

• Node failure

• 50% of nodes fail: analyze with n replaced 
with n/2 and b replaced with b/2

• Same as above
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Fault-tolerance

• With failures, is it possible that the epidemic 
might die out quickly?

• Possible, but improbable:
• Once a few nodes are infected, with high 

probability, the epidemic will not die out

• So the analysis we saw in the previous slides is 
actually behavior with high probability

[Galey and Dani 98]

• Think: why do rumors spread so fast? why do 
infectious diseases cascade quickly into 
epidemics? why does a virus or worm spread 
rapidly?
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Pull Gossip: Analysis

• In all forms of gossip, it takes O(log(N)) rounds 
before about N/2 processes get the gossip

• Why? Because that’s the fastest you can 
spread a message – a spanning tree with 
fanout (degree) of constant degree has 
O(log(N)) total nodes (height of tree)

• Thereafter, pull gossip is faster than push gossip

• After the ith, round let        be the fraction of non-
infected processes. Let each round have k pulls. 
Then

• This is super-exponential

• Second half of pull gossip finishes in time 
O(log(log(N)) 
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Topology-Aware Gossip

•Network topology is 

hierarchical

•Random gossip target 

selection => core routers 

face O(N) load (Why?)

•Fix: In subnet i, which 

contains ni nodes, pick 

gossip target in your subnet 

with probability (1-1/ni)

•Router load=O(1)

•Dissemination 

time=O(log(N))

Router

N/2 nodes in a subnet

N/2 nodes in a subnet
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Answer – Push Analysis (contd.)
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Substituting, at time t=clog(n)

Using:
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SO,...

• Is this all theory and a bunch of equations?

• Or are there implementations yet?
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Some implementations

• Clearinghouse and Bayou projects: email and 
database transactions [PODC ‘87]

• refDBMS system [Usenix ‘94]

• Bimodal Multicast [ACM TOCS ‘99]

• Sensor networks [Li Li et al, Infocom ‘02, and 
PBBF, ICDCS ‘05]

• AWS EC2 and S3 Cloud (rumored). [‘00s]

• Cassandra key-value store (and others) use 
gossip for maintaining membership lists

• Usenet NNTP (Network News Transport 
Protocol) [‘79]
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NNTP Inter-server Protocol

1. Each client uploads and downloads news posts from a news server

2.

Server retains news posts for a while,

 transmits them lazily, deletes them after a while.

Upstream
Server

Downstream
Server

CHECK <Message IDs>

238 {Give me!}

TAKETHIS <Message>

239 OK
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Summary

• Multicast is an important problem

• Tree-based multicast protocols

• When concerned about scale and fault-

tolerance, gossip is an attractive solution

• Also known as epidemics

• Fast, reliable, fault-tolerant, scalable, topology-

aware
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Announcements

• MP1: Due coming Sunday 9/15, demos Monday 9/16

• VMs distributed: see Piazza

• Demo signup sheet: now on Piazza (sign up by Friday!)

• Demo details: will be posted tomorrow on Piazza

• Make sure you print individual and total linecounts

• HW1 due soon, Thu 9/19!

• Check Piazza often! It’s where all the announcements are at!
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