
CS 425 / ECE 428

Distributed Systems

Fall 2024

Indranil Gupta (Indy)

W/ Aishwarya Ganesan

Lecture 4: Mapreduce and Hadoop
All slides © IG1

What is MapReduce?
• Terms are borrowed from Functional Language (e.g., Lisp)

Sum of squares:

• (map square ‘(1 2 3 4))

– Output: (1 4 9 16)

[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1)))

– Output: 30

[processes set of all records in batches]

• Let’s consider a sample application: Wordcount

– You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare’s works) and asked to list the count for each

of the words in each of the documents therein
3

Map

• Process individual records to generate

intermediate key/value pairs.

Welcome Everyone

Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1
Input <filename, file text>

Key Value

4

Map

• Parallelly Process individual records to

generate intermediate key/value pairs.

Welcome Everyone

Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1
Input <filename, file text>

MAP TASK 1

MAP TASK 2

5

Map

• Parallelly Process a large number of

individual records to generate intermediate

key/value pairs.
Welcome Everyone

Hello Everyone

Why are you here

I am also here

They are also here

Yes, it’s THEM!

The same people we were thinking of

…….

Welcome 1

Everyone 1

Hello 1

Everyone 1

Why 1

Are 1

You 1

Here 1

…….

Input <filename, file text>

MAP TASKS

6

Reduce

• Reduce processes and merges all intermediate

values associated per key

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

Key Value

7

Reduce

• Each key assigned to one Reduce

• Parallelly Processes and merges all intermediate values by partitioning

keys

• Popular: Hash partitioning, i.e., key is assigned to

– reduce # = hash(key)%number of reduce tasks

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

REDUCE

TASK 1

REDUCE

TASK 2

8

Hadoop Code - Map
public static class MapClass extends MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one =

 new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter)

 // key is empty, value is the line

 throws IOException {

 String line = value.toString();

 StringTokenizer itr = new StringTokenizer(line);

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 output.collect(word, one);

 }

 }

} // Source: http://developer.yahoo.com/hadoop/tutor ial/module4.html#wordcount

9

http://developer.yahoo.com/hadoop/tutorial/module4.html

Hadoop Code - Reduce
public static class ReduceClass extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(

 Text key,

 Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter)

 throws IOException {

 // key is word, values is a list of 1’s

 // called exactly once for each key (e.g., “hello”)

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

} // Source: http://developer.yahoo.com/hadoop/tutor ial/module4.html#wordcount

10

http://developer.yahoo.com/hadoop/tutorial/module4.html

Hadoop Code - Driver
// Tells Hadoop how to run your Map-Reduce job

public void run (String inputPath, String outputPath)

 throws Exception {

 // The job. WordCount contains MapClass and Reduce.

 JobConf conf = new JobConf(WordCount.class);

 conf.setJobName(”mywordcount");

 // The keys are words

 (strings) conf.setOutputKeyClass(Text.class);

 // The values are counts (ints)

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);

 conf.setReducerClass(ReduceClass.class);

 FileInputFormat.addInputPath(

 conf, newPath(inputPath));

 FileOutputFormat.setOutputPath(

 conf, new Path(outputPath));

 JobClient.runJob(conf);

} // Source: http://developer.yahoo.com/hadoop/tutor ial/module4.html#wordcount
11

http://developer.yahoo.com/hadoop/tutorial/module4.html

Some Applications of MapReduce

Distributed Grep:
– Input: large set of files

– Output: lines that match pattern

– Map – Emits a line if it matches the supplied pattern

– Reduce – Copies the intermediate data to output

12

Some Applications of MapReduce
(2)

Reverse Web-Link Graph

– Input: Web graph: tuples (a, b) where (page a → page b)

– Output: For each page, list of pages that link to it

– Map – process web log and for each input <source, target>, it outputs

<target, source>

– Reduce - emits <target, list(source)>

13

Some Applications of MapReduce
(3)

Count of URL access frequency
– Input: Log of accessed URLs, e.g., from proxy server

– Output: For each URL, % of total accesses for that URL

– Map – Process web log and outputs <URL, 1>

– Multiple Reducers - Emits <URL, URL_count>

(So far, like Wordcount. But still need %)

– Chain another MapReduce job after above one

– Map – Processes <URL, URL_count> and outputs <1, (<URL, URL_count>)>

– 1 Reducer – Does two passes. In first pass, sums up all URL_count’s to calculate
overall_count. In second pass calculates %’s

 Emits multiple <URL, URL_count/overall_count>

14

Some Applications of MapReduce
(4)

Map task’s output is sorted (e.g., quicksort)

Reduce task’s input is sorted (e.g., mergesort)

Sort
– Input: Series of (key, value) pairs

– Output: Sorted <value>s

– Map – <key, value> → <value, _> (identity)

– Reducer – <key, value> → <key, value> (identity)

– Partitioning function – partition keys across reducers based on ranges (can’t use
hashing!)
• Take data distribution into account to balance reducer tasks

15

Programming MapReduce
Externally: For user

1. Write a Map program (short), write a Reduce program (short)

2. Specify number of Maps and Reduces (parallelism level)

3. Submit job; wait for result

4. Need to know very little about parallel/distributed programming!

Internally: For the Paradigm and Scheduler

1. Parallelize Map

2. Transfer data from Map to Reduce (shuffle data)

3. Parallelize Reduce

4. Implement Storage for Map input, Map output, Reduce input, and Reduce output

(Ensure that no Reduce starts before all Maps are finished. That is, ensure the barrier between the Map

phase and Reduce phase) 16

Inside MapReduce
For the cloud:

1. Parallelize Map: easy! each map task is independent of the other!

• All Map output records with same key assigned to same Reduce

2. Transfer data from Map to Reduce:

• Called Shuffle data

• All Map output records with same key assigned to same Reduce task

• use partitioning function, e.g., hash(key)%number of reducers

3. Parallelize Reduce: easy! each reduce task is independent of the other!

4. Implement Storage for Map input, Map output, Reduce input, and Reduce

output

• Map input: from distributed file system

• Map output: to local disk (at Map node); uses local file system

• Reduce input: from (multiple) remote disks; uses local file systems

• Reduce output: to distributed file system

local file system = Linux FS, etc.

distributed file system = GFS (Google File System), HDFS (Hadoop

Distributed File System)
17

1

2

3

4

5

6

7
Blocks

from DFS

Servers

Resource Manager (assigns maps and reduces to servers)

Map tasks

I

II

III

Output files

into DFS

A

B

C

Servers

A

B

C

(Local write, remote read)

Reduce tasks

18

The YARN Scheduler
• Used underneath Hadoop 2.x +

• YARN = Yet Another Resource Negotiator

• Treats each server as a collection of containers
– Container = fixed CPU + fixed memory (think of Linux cgroups, but even more lightweight)

• Has 3 main components
– Global Resource Manager (RM)

• Scheduling

– Per-server Node Manager (NM)
• Daemon and server-specific functions

– Per-application (job) Application Master (AM)
• Container negotiation with RM and NMs

• Detecting task failures of that job

19

YARN: How a job gets a container

Resource Manager
Capacity Scheduler

Node A
Node Manager A

Application
Master 1

Node B
Node Manager B

Application
Master 2

Task (App2)

2. Container Completed
1. Need

container 3. Container on Node B

4. Start task, please!

In this figure

• 2 servers (A, B)

• 2 jobs (1, 2)

20

Fault Tolerance
• Server Failure

– NM heartbeats to RM

• If server fails: RM times out waiting for next heartbeat, RM

lets all affected AMs know, and AMs take appropriate action

– NM keeps track of each task running at its server

• If task fails while in-progress, mark the task as idle and restart it

– AM heartbeats to RM

• On failure, RM restarts AM, which then syncs it up with its

running tasks

• RM Failure

– Use old checkpoints and bring up secondary RM

• Heartbeats also used to piggyback container requests

– Avoids extra messages
21

Slow Servers
Slow tasks are called Stragglers

•The slowest task slows the entire job down (why?)

•Due to Bad Disk, Network Bandwidth, CPU, or Memory

•Keep track of “progress” of each task (% done)

•Perform proactive backup (replicated) execution of some straggler
tasks

– A task considered done when its first replica complete (other replicas can
then be killed)

– Approach called Speculative Execution.

22

Barrier at the end

of Map phase!

Locality
• Locality

– Since cloud has hierarchical topology (e.g., racks)

– For server-fault-tolerance, GFS/HDFS stores 3 replicas of each of the chunks (e.g.,
64 MB in size)
• For rack-fault-tolerance, on different racks, e.g., 2 on a rack, 1 on a different rack

– Mapreduce attempts to schedule a map task on

1. a machine that contains a replica of corresponding input data, or failing that,

2. on the same rack as a machine containing the input, or failing that,

3. Anywhere

– Note: The 2-1 split of replicas is intended to reduce bandwidth when writing
file.
• Using more racks does not affect overall Mapreduce scheduling performance

23

That was Hadoop 2.x…

• Hadoop 3.x (new!) over Hadoop 2.x

– Dockers instead of container

– Erasure coding instead of 3-way replication

– Multiple Namenodes instead of one (name resolution)

– GPU support (for machine learning)

– Intra-node disk balancing (for repurposed disks)

– Intra-queue preemption in addition to inter-queue
– (From https://hortonworks.com/blog/hadoop-3-adds-value-hadoop-2/ (broken)

and https://hadoop.apache.org/docs/r3.0.0/)
24

https://hortonworks.com/blog/hadoop-3-adds-value-hadoop-2/
https://hadoop.apache.org/docs/r3.0.0/

Mapreduce: Summary

• Mapreduce uses parallelization + aggregation to

schedule applications across clusters

• Need to deal with failure

• Plenty of ongoing research work in scheduling and

fault-tolerance for Mapreduce and Hadoop

25

Further MapReduce Exercises

26

Exercise 1
1. (MapReduce) You are given a symmetric social network (like Facebook)

where a is a friend of b implies that b is also a friend of a. The input is a

dataset D (sharded) containing such pairs (a, b) – note that either a or b may be

a lexicographically lower name. Pairs appear exactly once and are not

repeated. Find the last names of those users whose first name is “Kanye” and

who have at least 300 friends. You can chain Mapreduces if you want (but only

if you must, and even then, only the least number). You don’t need to write

code – pseudocode is fine as long as it is understandable. Your pseudocode

may assume the presence of appropriate primitives (e.g., “firstname(user_id)”,

etc.). The Map function takes as input a tuple (key=a,value=b).

27

28

29

Exercise 1: Solution

• M1 (a,b):

– if (firstname(a)==Kanye) then output (a,b)

– if (firstname(b)==Kanye) then output (b,a)

• // note that second if is NOT an else if, so a single M1

function may be output up to 2 KV pairs!

• R1 (x, V):

– if |V| >= 300 then output (lastname(x), -)
30

Goal: Last names of those users whose first name

is “Kanye” and who have at least 300 friends.

Exercise 2

2. For an asymmetrical social network, you are given a dataset D

where lines consist of (a,b) which means user a follows user b.

Write a MapReduce program (Map and Reduce separately) that

outputs the list of all users U who satisfy the following three

conditions simultaneously: i) user U has at least 2 million

followers, and ii) U follows fewer than 20 other users, and iii) all

the users that U follows, also follow U back.

31

32

33

Exercise 2: Solution

• M1(a,b):

– Output (key=a, value=(OUT,b))

– Output (key=b, value=(IN,a))

• // Note that a single M1 function outputs TWO KV pairs

• R1(key=x, V):

– Collect Sout = set of all (OUT,*) value items from V

– Collect Sin = set of all (IN,*) value items from V

– if (|Sout| < 20 AND |Sin| >= 2M AND all items in Sout are also present

in Sin) // third term via nested for loops

– then output (x,_)
34

Goal: Find users U

i) U has >= 2 million followers

ii) U follows < 20 other users,

iii) all U’s followers follow U back

Exercise 3

3. For an asymmetrical social network, you are given a dataset D

where lines consist of (a,b) which means user a follows user b.

Write a MapReduce program (Map and Reduce separately) that

outputs the list of all user pairs (x,y) who satisfy the following

three conditions simultaneously: i) x has fewer than 100 M

followers, ii) y has fewer than 100M followers, iii) x and y follow

each other, and iv) the sum of x’s followers and y’s followers

(double-counting common followers that follow both x and y is

ok) is 100 M or more. Your output should not contain duplicates

(i.e., no (x,y) and (y,x)).
35

36

37

Exercise 3: Solution
• M1(a,b): output (b,a)

• R1(x,V):

– if |V| < 100M, then for all a in V, output

(lexicographic_sorted_pair(x,a), |V|)

• M2(a,b): Identity

• R2(key=(a,b), value={|V1|, |V2|,…})

– if |value|==1 output nothing

– else if |value|==2 then add up the counts in value

• if sum of these counts >= 100M then output (a,b)
38

Goal: find pairs (x,y):

i) x has < 100 M followers,

ii) y has < 100M followers,

iii) x and y follow each other,

iv) sum of x’s & y’s followers >= 100 M

 (double count ok).

Announcements
• Please fill out Student Survey (see course webpage).

• DO NOT
– Change MP groups unless your partner has dropped

– Leave your MP partner hanging: Both MP partners should contribute equally (we will
ask!)

• MP1 due Sep 15th

– VMs distributed soon (watch Piazza)

– Demos will be Monday Sep 16th (schedule and details will be posted next week on
Piazza)

• HW1 due Sep 19th: Solve problems right after lecture covers topic!

• Check Piazza often! It’s where all the announcements are at!

• (deadline passed) MP Groups Form DUE this week Mon Sep 2nd @ 5
pm (see course webpage).
– Hard deadline, as Engr-IT will create and assign VMs tomorrow!

39

	Slide 1
	Slide 3: What is MapReduce?
	Slide 4: Map
	Slide 5: Map
	Slide 6: Map
	Slide 7: Reduce
	Slide 8: Reduce
	Slide 9: Hadoop Code - Map
	Slide 10: Hadoop Code - Reduce
	Slide 11: Hadoop Code - Driver
	Slide 12: Some Applications of MapReduce
	Slide 13: Some Applications of MapReduce (2)
	Slide 14: Some Applications of MapReduce (3)
	Slide 15: Some Applications of MapReduce (4)
	Slide 16: Programming MapReduce
	Slide 17: Inside MapReduce
	Slide 18
	Slide 19: The YARN Scheduler
	Slide 20: YARN: How a job gets a container
	Slide 21: Fault Tolerance
	Slide 22: Slow Servers
	Slide 23: Locality
	Slide 24: That was Hadoop 2.x…
	Slide 25: Mapreduce: Summary
	Slide 26: Further MapReduce Exercises
	Slide 27: Exercise 1
	Slide 28
	Slide 29
	Slide 30: Exercise 1: Solution
	Slide 31: Exercise 2
	Slide 32
	Slide 33
	Slide 34: Exercise 2: Solution
	Slide 35: Exercise 3
	Slide 36
	Slide 37
	Slide 38: Exercise 3: Solution
	Slide 39: Announcements

