
”The Internet”
1973

CS 425 / ECE 428

Distributed Systems

Fall 2024

Aishwarya Ganesan

W/ Indranil Gupta (Indy)

Lecture 25 A: Distributed Shared Memory
All slides © IG

• Message passing network

So Far …

Process
Process

Process

Processsend message

receive message

3

• Processes could share memory pages instead?

• Makes it convenient to write programs

• Reuse programs

But what if …

Process
Process

Process

Processwrite to page 5

read page 5

Page 0 Page 1 Page 2 … Page N-1
4

• Distributed Shared Memory = processes virtually

share pages

• How do you implement DSM over a message-

passing network?

Distributed Shared Memory

Process
Process

Process

Processwrite to page 5

read page 5

5

1. Message-passing can be implemented over DSM!

– Use a common page as buffer to read/write messages

2. DSM can be implemented over a message-passing

network!

In fact …

Process
Process

Process

Processwrite to page 5

read page 5

6

• Cache maintained at each process

– Cache stores pages accessed recently by that process

• Read/write first goes to cache

DSM over Message-Passing Network

Process

Cache

Process

Cache

Process

Cache
Process

Cache

7

• Pages can be mapped in local memory

• When page is present in memory, page hit

• Otherwise, page fault (kernel trap) occurs

– Kernel trap handler: invokes the DSM software

– May contact other processes in DSM group, via multicast

DSM over Message-Passing Network (2)

8

• Owner = Process with latest version of page

• Each page is in either R or W state

• When page in R state, owner has an R copy, but

other processes may also have R copies

– but no W copies exist

• When page is in W state, only owner has a copy

DSM: Invalidate Protocol

9

• Process 1 is owner (O) and has page in R state

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 1

Process 1

page (R)(O)

Process 2 Process 3

Process 4

10

• Process 1 is owner (O) and has page in W state

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 2

Process 1

page (W)(O)

Process 2 Process 3

Process 4

11

• Process 1 is owner (O) and has page in R state

• Other processes also have page in R state

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 3

Process 1

page (R)(O)

Process 2 Process 3

page (R)
Process 4

page (R)

12

• Process 1 has page in R state

• Other processes also have page in R state, and someone else is owner

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 4

Process 1

page (R)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

13

• Process 1 does not have page

• Other process(es) has/have page in (R) state

• Ask for a copy of page. Use multicast.

• Mark it as R

• Do Read

Process 1 Attempting a Read: Scenario 5

Process 1

Process 2 Process 3

page (R)
Process 4

page (R) (O)

14

• Process 1 does not have page

• Other process(es) has/have page in (R) state

• Ask for a copy of page. Use multicast.

• Mark it as R

• Do Read

End State: Read Scenario 5

Process 1

page (R)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

15

• Process 1 does not have page

• Another process has page in (W) state

• Ask other process to degrade its copy to (R). Locate process via multicast

• Get page; mark it as R

• Do Read

Process 1 Attempting a Read: Scenario 6

Process 1

Process 2 Process 3

Process 4

page (W) (O)

16

End State: Read Scenario 6

Process 1

page (R)

Process 2 Process 3

Process 4

page (R) (O)

• Process 1 does not have page

• Another process has page in (W) state

• Ask other process to degrade its copy to (R). Locate process via multicast

• Get page; mark it as R

• Do Read

17

• Process 1 is owner (O) and has page in W state

• Write to cache. No messages sent.

Process 1 Attempting a Write: Scenario 1

Process 1

page (W)(O)

Process 2 Process 3

Process 4

18

• Process 1 is owner (O) has page in R state

• Other processes may also have page in R state

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W).

• Do write.

Process 1 Attempting a Write: Scenario 2

Process 1

page (R)(O)

Process 2 Process 3

page (R)
Process 4

page (R)

19

• Process 1 is owner (O) has page in R state

• Other processes may also have page in R state

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W).

• Do write.

End State: Write Scenario 2

Process 1

page (W)(O)

Process 2 Process 3

page (R)
Process 4

page (R)

20

• Process 1 has page in R state

• Other processes may also have page in R state, and someone else is owner

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W), become owner

• Do write

Process 1 Attempting a Write: Scenario 3

Process 1

page (R)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

21

• Process 1 has page in R state

• Other processes may also have page in R state, and someone else is owner

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W), become owner

• Do write

End State: Write Scenario 3

Process 1

page (W) (O)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

22

• Process 1 does not have page

• Other process(es) has/have page in (R) or (W) state

• Ask other processes to invalidate their copies of the page. Use multicast.

• Fetch all copies; use the latest copy; mark it as (W); become owner

• Do Write

Process 1 Attempting a Write: Scenario 4

Process 1

Process 2 Process 3

page (R)
Process 4

page (R) (O)

23

• Process 1 does not have page

• Other process(es) has/have page in (R) or (W) state

• Ask other processes to invalidate their copies of the page. Use multicast.

• Fetch all copies; use the latest copy; mark it as (W); become owner

• Do Write

End State: Write Scenario 4

Process 1

page (W) (O)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

24

• That was the invalidate approach

• If two processes write same page concurrently

– Flip-flopping behavior where one process invalidates the

other

– Lots of network transfer

– Can happen when unrelated variables fall on same page

– Called false sharing

• Need to set page size to capture a process’ locality of

interest

• If page size much larger, then have false sharing

• If page size much smaller, then too many page

transfers => also inefficient

Invalidate Downsides

25

• Instead: could use Update approach

– Multiple processes allowed to have page in W state

– On a write to a page, multicast newly written value (or part of page) to

all other holders of that page

– Other processes can then continue reading and writing page

• Update preferable over Invalidate

– When lots of sharing among processes

– Writes are to small variables

– Page sizes large

• Generally though, Invalidate better and preferred option

An Alternative Approach: Update

26

• Whenever multiple processes share data, consistency

comes into picture

• DSM systems can be implemented with:

– Linearizability

– Sequential Consistency

– Causal Consistency

– Pipelined RAM (FIFO) Consistency

– Eventual Consistency

– (Also other models like Release consistency)

– These should be familiar to you from the course!

• As one goes down this order, speed increases while

consistency gets weaker

Consistency

27

• DSM was very popular over a decade ago

• But may be making a comeback now

– Faster networks like Infiniband + SSDs => Remote

Direct Memory Access (RDMA) becoming popular

– Will this grow? Or stay the same as it is right now?

– Time will tell!

Is it Alive?

28

• DSM = Distributed Shared Memory

– Processes share pages, rather than sending/receiving

messages

– Useful abstraction: allows processes to use same code as if

they were all running over the same OS (multiprocessor OS)

• DSM can be implemented over a message-passing

interface

• Invalidate vs. Update protocols

Summary

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

