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• Message passing network

So Far …
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• Processes could share memory pages instead?

• Makes it convenient to write programs

• Reuse programs

But what if …
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• Distributed Shared Memory = processes virtually 

share pages

• How do you implement DSM over a message-

passing network?

Distributed Shared Memory
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1. Message-passing can be implemented over DSM!

– Use a common page as buffer to read/write messages

2. DSM can be implemented over a message-passing 

network! 

In fact …
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• Cache maintained at each process 

– Cache stores pages accessed recently by that process

• Read/write first goes to cache

DSM over Message-Passing Network
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• Pages can be mapped in local memory

• When page is present in memory, page hit

• Otherwise, page fault (kernel trap) occurs 

– Kernel trap handler: invokes the DSM software

– May contact other processes in DSM group, via multicast

DSM over Message-Passing Network (2)
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• Owner = Process with latest version of page

• Each page is in either R or W state

• When page in R state, owner has an R copy, but 

other processes may also have R copies 

– but no W copies exist

• When page is in W state, only owner has a copy

DSM: Invalidate Protocol
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• Process 1 is owner (O) and has page in R state

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 1

Process 1

page (R)(O)

Process 2 Process 3

Process 4
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• Process 1 is owner (O) and has page in W state

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 2

Process 1

page (W)(O)

Process 2 Process 3

Process 4
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• Process 1 is owner (O) and has page in R state

• Other processes also have page in R state

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 3
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page (R)(O)

Process 2 Process 3

page (R)
Process 4

page (R)

12



• Process 1 has page in R state

• Other processes also have page in R state, and someone else is owner

• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 4
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• Process 1 does not have page

• Other process(es) has/have page in (R) state

• Ask for a copy of page. Use multicast.

• Mark it as R

• Do Read

Process 1 Attempting a Read: Scenario 5
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page (R) (O)
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• Process 1 does not have page

• Other process(es) has/have page in (R) state

• Ask for a copy of page. Use multicast.

• Mark it as R

• Do Read

End State: Read Scenario 5
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page (R)
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page (R)
Process 4
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• Process 1 does not have page

• Another process has page in (W) state

• Ask other process to degrade its copy to (R). Locate process via multicast

• Get page; mark it as R

• Do Read

Process 1 Attempting a Read: Scenario 6

Process 1

Process 2 Process 3

Process 4

page (W) (O)
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End State: Read Scenario 6

Process 1

page (R) 

Process 2 Process 3

Process 4

page (R) (O)

• Process 1 does not have page

• Another process has page in (W) state

• Ask other process to degrade its copy to (R). Locate process via multicast

• Get page; mark it as R

• Do Read
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• Process 1 is owner (O) and has page in W state

• Write to cache. No messages sent.

Process 1 Attempting a Write: Scenario 1

Process 1

page (W)(O)

Process 2 Process 3

Process 4
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• Process 1 is owner (O) has page in R state

• Other processes may also have page in R state

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W).

• Do write.

Process 1 Attempting a Write: Scenario 2
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Process 2 Process 3

page (R)
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page (R)
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• Process 1 is owner (O) has page in R state

• Other processes may also have page in R state

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W).

• Do write.

End State: Write Scenario 2

Process 1

page (W)(O)

Process 2 Process 3

page (R)
Process 4

page (R)
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• Process 1 has page in R state

• Other processes may also have page in R state, and someone else is owner

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W), become owner

• Do write

Process 1 Attempting a Write: Scenario 3

Process 1

page (R)

Process 2 Process 3

page (R)
Process 4

page (R) (O)
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• Process 1 has page in R state

• Other processes may also have page in R state, and someone else is owner

• Ask other processes to invalidate their copies of page. Use multicast.

• Mark page as (W), become owner

• Do write

End State: Write Scenario 3

Process 1

page (W) (O)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

22



• Process 1 does not have page

• Other process(es) has/have page in (R) or (W) state

• Ask other processes to invalidate their copies of the page. Use multicast.

• Fetch all copies; use the latest copy; mark it as (W); become owner

• Do Write

Process 1 Attempting a Write: Scenario 4

Process 1

Process 2 Process 3

page (R)
Process 4

page (R) (O)
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• Process 1 does not have page

• Other process(es) has/have page in (R) or (W) state

• Ask other processes to invalidate their copies of the page. Use multicast.

• Fetch all copies; use the latest copy; mark it as (W); become owner

• Do Write

End State: Write Scenario 4

Process 1

page (W) (O)

Process 2 Process 3

page (R)
Process 4

page (R) (O)
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• That was the invalidate approach

• If two processes write same page concurrently

– Flip-flopping behavior where one process invalidates the 

other

– Lots of network transfer

– Can happen when unrelated variables fall on same page

– Called false sharing

• Need to set page size to capture a process’ locality of 

interest

• If page size much larger, then have false sharing

• If page size much smaller, then too many page 

transfers => also inefficient

Invalidate Downsides
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• Instead: could use Update approach

– Multiple processes allowed to have page in W state

– On a write to a page, multicast newly written value (or part of page) to 

all other holders of that page

– Other processes can then continue reading and writing page

• Update preferable over Invalidate 

– When lots of sharing among processes

– Writes are to small variables

– Page sizes large

• Generally though, Invalidate better and preferred option

An Alternative Approach: Update
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• Whenever multiple processes share data, consistency 

comes into picture

• DSM systems can be implemented with:

– Linearizability

– Sequential Consistency

– Causal Consistency

– Pipelined RAM (FIFO) Consistency

– Eventual Consistency

– (Also other models like Release consistency)

– These should be familiar to you from the course! 

• As one goes down this order, speed increases while 

consistency gets weaker

Consistency
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• DSM was very popular over a decade ago

• But may be making a comeback now

– Faster networks like Infiniband + SSDs => Remote 

Direct Memory Access (RDMA) becoming popular

– Will this grow? Or stay the same as it is right now?

– Time will tell!

Is it Alive?
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• DSM = Distributed Shared Memory

– Processes share pages, rather than sending/receiving 

messages

– Useful abstraction: allows processes to use same code as if 

they were all running over the same OS (multiprocessor OS)

• DSM can be implemented over a message-passing 

interface

• Invalidate vs. Update protocols

Summary
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